

Accepted Manuscript

A Renewable Energy System for a nearly Zero Greenhouse City: case study of a small city in southern Italy

G. De Luca, S. Fabozzi, N. Massarotti, L. Vanoli

PII: S0360-5442(17)31178-7
DOI: 10.1016/j.energy.2017.07.004
Reference: EGY 11191
To appear in: *Energy*
Received Date: 27 November 2016
Revised Date: 28 June 2017
Accepted Date: 01 July 2017

Please cite this article as: G. De Luca, S. Fabozzi, N. Massarotti, L. Vanoli, A Renewable Energy System for a nearly Zero Greenhouse City: case study of a small city in southern Italy, *Energy* (2017), doi: 10.1016/j.energy.2017.07.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 A Renewable Energy System for a nearly Zero Greenhouse City: case study of a
2 small city in southern Italy

3

4 G. De Luca, S. Fabozzi, N. Massarotti, L. Vanoli*¹

5 Engineering Department

6 University of Naples “Parthenope”, Isola C4, Centro Direzionale, 80143 Naples, Italy

7 e-mail: gusi.deluca@uniparthenope.it

8 salvatore.fabozzi@uniparthenope.it

9 massarotti@uniparthenope.it

10 laura.vanoli@uniparthenope.it*

11

12 **ABSTRACT**

13 This paper presents an economic and energy feasibility analysis of a renewable energy system
14 for a small city in southern Italy to convert it to zero greenhouse gas city by 2030. The
15 proposed energy infrastructure utilises different technologies: wind turbine, photovoltaic
16 panels and biogas cogeneration plants to produce electric energy, and thermal solar panels,
17 cogeneration and heat pumps to meet the thermal energy demand of the city. The
18 electrification of transport sector is also considered. The whole city energy system is analysed
19 by the EnergyPLAN software to evaluate streams combination and potential synergies
20 between the different sectors. In order to improve the analysis, PhotoVoltaic technology has
21 been simulated in TRNSYS environment, to obtain detailed prediction of this component of
22 the energy infrastructure. The system behaviour was analysed considering different time
23 bases: daily, weekly and yearly. The EnergyPLAN outputs include the aggregated yearly

¹ *Corresponding Author: laura.vanoli@uniparthenope.it

24 production and demands of all modelled energy conversion systems, as well as hourly values
25 useful to identify the measures to make Altavilla Silentina nearly zero carbon city. Every
26 measure identified becomes a new input in EnergyPLAN to evaluate its effect on city energy
27 balance. The economic analysis has been performed to evaluate the electricity and thermal
28 energy costs.

29 **KEYWORDS**

30 Smart Energy Systems, Smart City, Energy Planning, Renewable Energy, TRNSYS,
31 EnergyPLAN.

32 **1. INTRODUCTION**

33 In Europe, a number of municipalities and public bodies have already adopted integrated
34 urban approaches to energy saving, for example by developing and implementing the
35 Sustainable Energy Measures Plan (SEAP), proposed under the Covenant of Mayors initiative
36 [1]. These plans need to be updated every five years in order to take in account the
37 development of new regional and local energy plans and strategies [2]. In fact, Member States
38 have to encourage municipalities and other public bodies to adopt integrated and sustainable
39 energy efficiency plans with clear objectives, to involve citizens in their development and
40 implementation, and to adequately inform them about their content and progress in achieving
41 objectives [3]. Indeed, the urban dimension is crucial due to the fact that 70% of the world
42 population will be living in urban areas by the next 40 years [4].

43 Future energy solutions must be developed locally based on sustainable and realistically
44 achievable plans, that must be tailored to the local context, perspective, needs and constraints
45 such as:

46 • Specific territorial characteristics and climate conditions;

47 • Current and forecasted end user's demands in locations with sufficiently high
48 population/activity densities, and in the proximity of energy sources;
49 • Opportunities to further develop the energy infrastructure, as well as the integration of
50 highly efficient cogeneration plants;
51 • Availability of Renewable Energy Sources;
52 • Availability of waste heat sources at urban and industrial level (waste heat from
53 incineration, power plants and other industrial facilities, sewage networks, transportation,
54 aquifers, etc.).

55 The analysis of the territory is important to design new energy systems that can convert cities
56 in to zero or nearly zero greenhouse city. A city can be defined as “zero greenhouse” when
57 the CO₂ production is zero [5], in other words when the energy production system is a
58 renewable energy system.

59 Examples of possible 100% renewable cities have already been reported in literature [6-12;
60 28]. One of the most interesting is represented by the Danish city of Frederikshavn [6] The
61 energy demand of the city is satisfied by off-shore wind plants, district heating supplied by
62 heat recovery of thermal waste and by low-temperature geothermal heat pumps [7]. The
63 authors of this study outline a scenario for the transition of Frederikshavn's energy supply
64 from predominantly fossil fuels to locally available renewable energy sources. The scenario
65 includes all aspects of the energy demand in Frederikshavn, such as electricity demand,
66 thermal energy demand, industrial energy demand as well as the energy demand for
67 transportation.

68 For Aalborg Municipality in Denmark [8], the possibilities to enable the city to become
69 independent from fossil fuels have been investigated, through a combination of low-
70 temperature geothermal heat, wind power and biomass. The results of the analyses show that
71 it is possible to cover the city energy needs through the use of locally available energy sources

72 if additional significant electricity and heat savings measures are combined with fuel
73 substitution in the transport sector.

74 Climate change and energy security are imposing also for the city of Hong Kong to shift from
75 a fossil based to a clean and low-carbon energy structure, as proposed in [9] where the present
76 energy structure of the city is examined, and alternative future sustainable energy strategies
77 are analysed. The Hong Kong government has planned to import more nuclear power from
78 mainland by 2020, however this will not be possible in the near future due to Fukushima
79 nuclear accident. In [9] an alternative scenario based on a more extensive use Renewable
80 Energy Sources proposed to replace nuclear power. The results show that both scenarios can
81 achieve the targeted carbon reduction, however, RES present better results in terms of
82 environmental, social benefits and long-term sustainability.

83 Another interesting study of zero carbon energy system, one large scale, has been presented
84 by Dominkovic et al. [10], who analyse the steps necessary for a transition of South East
85 Europe Regions to a 100% renewable energy system by 2050. The countries interested by this
86 study have distinct geographical features, different climates and significant differences in
87 gross domestic product per capita; the integration of their energy systems and the search for
88 100% renewable solution are considered to be very challenging. However, biomass has been
89 determined to have the potential to meet the target of 100% renewable energy in all the
90 countries considered, despite their differences.

91 Many studies focused on energy planning by using the EnergyPLAN software [13-27] to
92 simulate the current and future territory energy balance. Despite its extensive use, EnergyPlan
93 must be used in combination with software that can model the actual performance of the
94 systems that use renewable energy sources, such as TRNSYS software [29], in order to
95 perform energy balance simulations. In fact, the energy production values are input data to
96 EnergyPLAN, and when a technology is new or not yet available on the territory, production

97 data must be predicted. In this case, a simulation software is needed in order to estimate
98 energy production of the proposed technology.

99 In this work, EnergyPLAN is used to analyse the possibility for the transition of a city in
100 southern Italy to a 100% RES by 2030, in combination with a simulation tool (TRNSYS) that
101 can reproduce the dynamic behaviour and performance of the systems that use renewable
102 energy sources. The whole energy infrastructure of the city is analysed by using EnergyPlan,
103 in order to evaluate fluxes combination and potential synergies between the different sectors,
104 while, PV technology is modelled in TRNSYS environment, in order to obtain a detailed
105 simulation of this component of the infrastructure. These two models, coupled for the first
106 time in this work, allow the authors to outline a new energy scenarios for the city, establishing
107 a new methodology to carry out an analysis of the energy planning of a city.

108 The proposed approach is crucial in the development of a new RES energy system because it
109 allows to take into account large temporal variations in energy availability of the RES systems
110 and to design an appropriate management and control system, which is crucial for the
111 effective use of these systems.

112

113 **2. A CASE STUDY: ALTAVILLA SILENTINA**

114 *Geography, Climate and Population*

115 Altavilla Silentina is a Municipality of Campania Region, in southern Italy (Figure 1); more precisely in the province of Salerno. The City is developed along a hill
116 characterized by different heights, from 275 m .a.s.l, where the “Saint Blaise's Door” is
117 located, up to the 313 meters a.s.l .where the Municipal building is ubicated; the top of the hill
118 reaches about 424 m a.s.l. [42].

120 The climate is typically Mediterranean: the coldest month of the year is January with the
121 average temperature equal to 6.8 °C and the hottest month is August with the average
122 temperature of 24.4 °C [42].

123 The population trend of Altavilla Silentina from 1861 to 2011 has been estimated on the basis
124 of the official Italian database (ISTAT) [43]. The population increases of about 100 % from
125 the years 1921 to 1961 reaching the maximum value of 7000 inhabitants in 1961. In following
126 years, the number of inhabitants is remained almost constant (Figure 1).

127

128 *(Insert Figure 1 here)*

129

130 *Industrial activities*

131 According to data available from the last survey by ISTAT in 2011 [43], the number of
132 companies in Altavilla Silentina is equal to 390. Figure 2 shows that the largest share (34%) of
133 these companies is classified as "Wholesale and retail trade, sale of Vehicles and
134 motorcycles". The "Construction" sector represents a significant part of the local industry,
135 with a 15%, as well as the Manufacturing and Scientific activity (13%).

136 Figure 3 reports the number of employees for each category. According to data from the
137 ISTAT [43], the 32% of 890 employees, about 285 employees, work in the "Manufacturing"
138 sector and the 23% of them, about 205 employees, for "Wholesale and retail trade, sale of
139 motor vehicles and motorcycles" category.

140

141 *(Insert Figure 2 here)*

142

143 *(Insert Figure 3 here)*

144

145 *Number of vehicles*

146 In Figure 4 is shown the number of vehicles per category registered in the years 2010 and
 147 2014 in the City of Altavilla Silentina [44]. It is interesting to note that there has been a slight
 148 increases in the number of motorcycles (+3.4 %), cars (+2 %) and trucks to transport goods
 149 (+5.4 %) from 2010 to 2014. Most significant changes recorded are: a decrease of tractors (-
 150 32 %), a decrease of the three wheelers and quadricycles for freight (-22 %) and, an increase
 151 of buses (+8 %). In total, an increase in number of vehicles on the road equal to 2 % between
 152 2010 to 2014 has been found, in accordance with the population growth.

153

154 *(Insert Figure 4 here)*

155

156 *State of the buildings*

157 The City could be divided into four main areas: the city center on the hill, and three minor
 158 areas:

- 159 • “Borgo Carillia” (20 m a.s.l): 779 inhabitants, located along the PR 317;
- 160 • “Cerrelli” (50 m a.s.l): 586 inhabitants, located along the PR 174 and PR 314;
- 161 • “Cerrocupo” (93 m a.s.l): 234 inhabitants, located along the PR 246 [42].

162 In according to the ISTAT data-base [43], from 1970 the number of buildings has steadily
 163 grown over the years. In Table 1 the number of new residential buildings built during each
 164 time period are reported.

165

166 *(Insert Table 1 here)*

167

168 **3. PREDICTIVE MODELS**

169 The energy system of a city is characterized by fluctuating demands and productions and by
 170 interdependencies between heat production, heat demands, electricity production, electricity
 171 demands and transportation needs. In order to evaluate the transient behaviour of an energy
 172 system, a dynamic model must be used. One such model is the EnergyPLAN model. Among
 173 the tools present in literature the authors choose EnergyPLAN because it has been previously
 174 used to simulate a 100% renewable energy system for several cities such as Aalborg and
 175 Frederikshavn.

176 EnergyPLAN software allows users to simulate the whole energy infrastructure of a territory
 177 (Municipality, Region or State), considering potential synergies between the different sectors.
 178 EnergyPLAN can be used to design and analyse the energy system/infrastructure on an hourly
 179 basis with reference to a typical year, including electricity, heating and cooling, energy
 180 consumptions of residential, industry and transport sectors.

181 The software can take into account many energy conversion systems such as heat pumps,
 182 combined-cycle power stations, etc. and every energy carrier [11], it has been widely used in
 183 Denmark and in the countries such as China and America [30].

184 The software is designed to provide users with:

- 185 • An energy plan for a territory, obtained from a comparative analysis of several
 186 alternative energy systems;
- 187 • A clear methodology to produce results understandable to all stakeholders.

188 The following inputs are requested for EnergyPLAN simulations: yearly energy demand-
 189 production and hourly energy demand-production trends. EnergyPLAN evaluates the hourly
 190 value of energy demand/production from the annual value [13].

191 The yearly energy demand/production can be obtained from data monitoring, upon request to
 192 energy distributors and/or retail energy sales companies, or from national databases. In case

193 national database is available, a “Top-down” methodology can be used: local data are scored
194 from the national database based on the local representative parameter (population, number of
195 buildings etc.) [31].

196 The most recent data available in the Italian national database refer to the year 2010-2011. In
197 this work, where the authors planned an energy scenario by 2030, the energy consumption
198 based on the estimate of the population increase and urban expansion. In particular, the
199 increase of the population is calculated following the trend between 1861 and 2010. The
200 urban expansion is tied to the population increase, which implies new buildings (private and
201 public), new areas and the increase of public and private transportation.

202 In addition, the work considers specific measures for reducing energy consumption and CO₂
203 emissions, the expected increase of systems efficiency related to technology development,
204 and the energy production from plants already installed or planned by the municipality before
205 and after 2016.

206 In order to estimate energy and CO₂ emissions reduction due to the implementation of
207 specific measures, and the increase of system efficiency between 2010 and 2030, the AEEG
208 procedure presented in Technical Data Sheets [32] for energy savings evaluation has been
209 used.

210 Data for the new energy production plants, obtained from the municipal and regional
211 authorisations granted to companies for installation of wind turbine and biogas CHP plant; for
212 PV plants, the GSE ATLASOLE database [33] has been consulted.

213 As regards the hourly trend, standard hourly energy demand and production curve, are
214 reported in EnergyPLAN data-base for every country. In most cases, municipal energy
215 demand is different from the national one, and therefore users have to build it before running
216 the simulations . Users also have to implement the hourly energy production of plants, such as

217 photovoltaic plants, wind turbines and, geothermal plants, that depend on local climate
 218 conditions.

219 In this work, for plants already installed, the hourly production is obtained from field
 220 measured data. Instead, for new systems/technology proposed for use in the energy plan, a
 221 detailed model has been used to simulate the performance and calculate hourly production.
 222 This has been the case also for energy production from photovoltaic, that is not available for
 223 case under study, and has been simulated by using TRNSYS software. The mathematical
 224 model implemented in TRNSYS (type 194 [34] developed by De Soto et al. [35]) is based on
 225 this current-voltage relationship:

$$226 \quad I = I_L - I_o [e^{\frac{V+IR_s}{a}} - 1] - \frac{V + IR_s}{R_{sh}}$$

227 Where:

$$228 \quad a = \frac{N_s n_1 k T_c}{q}$$

229 Five-parameter (the light current I_L , the diode reverse saturation current I_o , the series
 230 resistance R_s , the shunt resistance R_{sh} , and the modified ideality factor a) affect the current–
 231 voltage curve of a PV systems at operating conditions and are functions of the solar radiation
 232 incident on the cell and cell-temperature. In order to compare several technologies, generally
 233 the electric performance of PV systems is calculated referring to Standard Test Condition
 234 (STC) defined by IEC/EN 60904 [36]. These conditions are rarely encountered during actual
 235 operation, in which case the energy output can be significantly lower. In this work the authors
 236 take in to account solar radiation and a semi-empirical model for the prediction of energy
 237 production for four different cell technologies (single crystalline, polycrystalline, silicon thin
 238 film, and triple-junction amorphous) under operating conditions.

239 The trend of thermal energy for space heating has been assumed directly proportional to the
 240 outdoor air temperature. The energy demand is considered to be zero when the outdoor

241 temperature is higher than 16°C. In fact, the temperature within a building is 18.0-20.0°C, so
242 when the outside temperature is 16.0°C, inside of a building it is assumed that the temperature
243 is 2-3°C higher than the outside one [37].

244 For cooling demand, the trend has been considered a function of the sol-air temperature,
245 which is defined as the equivalent outdoor air temperature that gives the same rate of heat
246 transfer to a surface as it would the combination of incident solar radiation, convection with
247 the ambient air, and radiation exchange with the sky and the surrounding surfaces [38]. In this
248 case, the demand for cooling is considered absent when the sol-air temperature is lower than
249 28°C.

250 The electric energy trend has been estimated on the basis of the national electricity hourly
251 data provided by the Italian company Terna SpA [39], which manages the national electric
252 grid.

253 Finally, the hourly energy production from wind turbines has been obtained from the
254 monitoring conducted by a plant installed in the municipality. The company that owns the
255 plant has provided the authors with the measured data for wind speed and plant electricity
256 production for an entire year.

257 The abovementioned curves have been normalised with respect to the peak load in order to
258 obtain a load curve representing 0-100% of the energy demand/production.

259 The use of EnergyPLAN, coupled with TRNSYS results and the monitoring data allows to
260 produce realistic result, and to outline detailed scenarios.

261 In Figure 5, it is possible to see a block diagram that describes the model used for the analysis
262 and the construction of the scenarios for the city of Altavilla Silentina.

263

264 *(Insert Figure 5 here)*

265

266 The outputs of EnergyPLAN include aggregated yearly production and demand of all
 267 modelled types, as well as the hourly values, useful to identify the necessary measures to turn
 268 any city into a zero carbon city. Every measures identified becomes a new input in
 269 EnergyPLAN, in order to evaluate its effect on energy balance of the city. The process
 270 becomes iterative until a zero carbon scenario is obtained.

271 Finally, in this work an economic analysis has been carried in order to evaluate the electricity
 272 and thermal energy cost. Prices per kWh of both thermal and electric energy have been
 273 calculated according to the following equation:

$$274 \quad C_{kWh} = \frac{Investments + Operational + Aquisition - Sales}{EnergyDemand} \quad (1)$$

275 **4. SCOPE and METHOD**

276 In this work, the authors carry out the energy planning of Altavilla Silentina Municipality in
 277 order to convert it to a nearly zero greenhouse gas emissions by 2030.

278 In 2013, the Municipality adhered to the Covenant of Mayors [40], and developed a
 279 Sustainable Energy Measures Plan (SEAP) [41]. A SEAP includes an assessment of the
 280 current situation, i.e. a “Baseline Emission Inventory” (BEI), and a “Measures Plan” with
 281 reduction emissions targets and the measures to achieve them.

282 The Baseline Emission Inventory quantifies the amount of CO₂ (or CO₂ equivalent) emissions
 283 due to energy consumption in the territory, it identifies the main sources of CO₂ emissions
 284 and their respective reduction potentials.

285 Based on the most energy-intensive sectors as given in the BEI, it is possible to identify and
 286 analyse specific measures to reduce the consumption and emissions of 20% by the year 2020
 287 with respect those evaluated in the BEI reference year (2010 for Altavilla Silentina).

288 The authors analysed measures that go beyond the minimum requirements of Covenant of
289 Major, and developed a new energy plan in order to convert Altavilla Silentina to a nearly
290 zero greenhouse gas emissions by 2030.

291 The transformation of the city is scheduled in two steps

292 • From 2010 to 2020 with the implementation of measures considered in the Sustainable
293 Energy Measures Plan;

294 • From 2020 to 2030 with the analysis of measures needed to fully decarbonise the city.

295

296 **3.1 Baseline: Altavilla Silentina 2010**

297 The scenario Altavilla Silentina 2010 is the baseline used by the authors to analyse future
298 development of the municipality energy system/infrastructure. The authors analysed the
299 geography and climate of the city, the population and its density, the level of economic
300 activity, characteristics of buildings, usage and development of transportation, citizens'
301 attitudes, in order to evaluate energy consumption and CO₂ emissions related to all of these
302 factors. The choice of the reference year for the BEI (2010) is based on the data available for
303 this year to build the inputs for the EnergyPLAN model, which are more accurate and
304 complete than previous years.

305 The main data collected for this work are reported below.

306

307 *Primary Energy Consumptions*

308 The yearly energy consumptions for the year 2010 has been obtained through a “top-down”
309 methodology using several national data-bases [43; 45-47]. In Table 2 and Table 3, the local
310 parameter and the reference database used in order to apply the “top-down” methodology are
311 presented.

312

313

(Insert Table 2 here)

314

315 The results of the “Top-down” analysis are shown in
316 Table 4. The energy consumptions have been divided by sector and energy carrier
317 respectively. Residential buildings and industry have the highest energy demand, while the
318 industrial and transportation sectors show a lower consumption than the formers.

319

320

(Insert Table 3 here)

321

322

(Insert Table 4 here)

323

324 The analysis has demonstrated that 67% of residential heating demand is supplied by biomass.
325 In order to evaluate the primary energy demand, a cognitive survey on the type of biomass
326 used by Altavilla citizen has been performed. Results shown that wood, wood pellets and
327 wood briquettes biomass are widely used. The net calorific value is different for these type of
328 woods (from 3.5 kWh/kg for chips, 4.1 kWh/kg for logwood, 4.8 kWh/kg for pellets and
329 briquettes to 5.3 kWh/kg for solid wood [48]), thus in this work an average value, equal to 4.4
330 kWh/kg, and has been considered. The conversion efficiency value has been set to 80%, due
331 to the size of the plants that generally varies from 10-20 kW_t to 50 kW_t. Biomass plants have
332 been considered CO₂ neutral, as indicated by the European guide on “How to develop a
333 Sustainable Energy Measures Plan (SEAP)” [31].

334

As it can be seen from

335

Table 4, the remaining heating demand is satisfied by LPG (32%), diesel (1.3%) and oil
336 (0.07%). For such systems, the energy conversion efficiency has been set equal to 80%, in
337 order to find the primary energy used for these energy carriers.

338 The analysis has also shown that LPG boilers are the most common heating system in the
 339 tertiary sector; this is mainly due to the absence of natural gas distribution system in the
 340 municipality. In addition, in this case, the efficiency of such systems has been considered
 341 equal to 80% [49]. Industry presents the highest electric energy demand of all sectors.

342 Table 5 shows the primary energy consumptions for the transport and agriculture sectors. The
 343 data demonstrates that the electric vehicles are practically not used, mainly because of the
 344 high investment cost of this technology [50], while diesel is the most used fuel for both
 345 agriculture and transport activities due reduced tax fee provided by Italian law for this sectors
 346 [51].

347 CO₂ emissions have been calculated by using the standard CO₂ emission factor [31] for
 348 different fuels and the national emission factors for electricity.

349 The results in terms of CO₂ emissions have been shown detailed in Table 6.

350

351 *(Insert Table 5 here)*

352

353 Table 6 even shows, that the highest CO₂ emission are due to the industrial sector (50%),
 354 although the energy consumption of the industrial is equal to that of the residential buildings
 355 (31%); that is because the biomass systems used for space heating in buildings are considered
 356 globally as zero emissions plant.

357

358 *(Insert Table 6 here)*

359

360 Although the national emission factors for electricity is lower than the others energy carriers,
 361 the highest CO₂ emissions are related to its large consumption in the municipality.

362

363 4. RESULTS

364 4.1 Altavilla Silentina 2020: the SEAP strategy

365 The measures set in the Altavilla Silentina SEAP have been derived on the basis of the energy
366 consumptions and CO₂ emissions of 2010, in order to achieve the European objective of CO₂
367 emission reduction of over 20% by 2020. Particularly, Altavilla Silentina has set a far more
368 restrictive target that is 27% by 2020, with respect to the values of 2010.

369 To analyse the impact of these measures on the CO₂ emission, the authors took into account:

370 - The population increase and the related urbanization effect;

371 - The measures implemented by the municipality before 2015 and their effects on the

372 CO₂ emissions in 2020;

373 - The reduction of CO₂ emissions from new renewable energy systems that are going to

374 be built in the future (a project has already been approved by the municipality);

375 - The increase of systems efficiency linked to technology development;

376 The expected CO₂ emissions increase due to population and buildings growth are shown in
377 Table 7.

378 In order to estimate the CO₂ reduction due to the implementation of every measures, the
379 authors used the above AEEG methodology [32].

380 Table 8 shows a list of the aforementioned measures and the expected CO₂ emission reduction
381 effects

382

(Insert Table 7 here)

384

385 The measures planned in the SEAP have been designed in order to reduce energy
386 consumption and CO₂ emissions reduction for the residential, transporting and, industry
387 sectors. The construction of wind farms implies a significantly CO₂ reduction (50%). The

388 other planned actions affect for a few percentage points on the reduction of emissions except
389 some measures for the residential sector, such as the installation of photovoltaic systems.

390

391 *(Insert Table 8 here)*

392

393 Figure 6 shows that the implemented measures generate a reduction of previous CO₂
394 emissions of at least 70% by 2020 with respect to the emissions of 2010. This result exceeds
395 the 27% which was the initial target set by the administration for 2020. In fact, the reduction
396 of 27% is estimate equal to 5566 t of CO₂ while the measures implementation imply a
397 reduction equal to 14811 t of CO₂, as shown in this figure.

398

399 *(Insert Figure 6 here)*

400

401 In 2020, wind plants will be able to cover the yearly municipality electricity demand and to
402 export the overproduction in national grid (Figure 7); however, wind power depends on wind
403 velocity thus the production is not able to match the energy demand. Furthermore, 7.2% of
404 renewable electric energy will come from photovoltaic plants; also in this case production is a
405 function of the solar radiation that is not continuous. The electricity produced by biogas
406 cogeneration plants is constant but it will represent only 10% of renewable energy production
407 thus, even if only for a few hours per day, a supply of electrical energy from the national grid
408 should be considered.

409 Because of this daily un-matching between the energy demand and its production, results of
410 simulation shows that the yearly energetic balance is not sufficient to define the municipality
411 as “Electric self-sufficient city”. On a daily basis, even a small amount of energy comes from
412 the national grid, however, on a yearly basis Altavilla Silentina will be self-sufficient.

413 Regarding the electric energy consumption, no significant increase is expected by 2020, due
 414 to the small population growth instead a large gap between production and consumption
 415 occurs by 2020.

416

417 *(Insert Figure 7 here)*

418

419 Figure 8 shows the primary energy consumption for heating and heat available from the
 420 cogeneration biogas power plant. The thermal energy demand decreases between 2010 and
 421 2020 due to the improvement of energy efficiency of buildings supported by the state
 422 financial instruments [52-53]. The gap between production by RES and consumption
 423 represents the energy for space heating that needs to be supplied by fossil fuel plants, which
 424 affects negatively CO₂ emissions.

425

426 *(Insert Figure 8 here)*

427

428 **4.2 Altavilla Silentina 2030: Decarbonisation Process**

429 The 2030 Altavilla Silentina energy scenario is outlined on basis of the 2020 SEAP results, by
 430 using EnergyPLAN.

431 The initial assumptions are stated below:

- 432 1) The yearly electric energy consumption in the residential and public buildings are
 433 obtained following the consumption trend between 2010 and 2020;
- 434 2) The yearly electric energy consumption for public lighting will equal 585 MWh/year
 435 in 2030 considering an increase of the number of lamps;
- 436 3) The yearly thermal and cooling demand will increase proportionally to the population
 437 increase;

438 4) Industrial and agriculture consumptions will not increase during the decade 2020-
 439 2030;

440 5) Common increase of systems efficiency due to technology development are based on
 441 the trend between 2010 and 2020;

442 6) The yearly thermal energy production by biomass plants in the residential buildings
 443 will be equal to that of 2020;

444 7) The expected consumption for transportation will equal 4918 MWh in 2030. Fuel
 445 consumption nearly halved in the period 2010-2020 due to the rapid development of
 446 transport technology. In order to estimate primary energy consumption in 2030, the
 447 same trend has been considered.

448 8) Finally, the total primary energy consumption (residential buildings, public buildings
 449 and service, public and private transporting fleet, industry, agriculture and public
 450 lighting) equal to 44837 MWh has been estimated for 2030.

451 Furthermore:

452 9) The electric and thermal energy production by RES (wind farm, PV systems and
 453 biogas cogeneration) will be equal to that of 2020. In 2020 in fact, the electricity
 454 production by RES is already sufficient to meet the heat and electricity demand. Thus,
 455 thermal and electric energy production is supposed the same in 2030.

456 The authors modelled in “EnergyPLAN” environment the above described “Altavilla
 457 Silentina 2030 scenario” in order to find the solutions that will enable to convert Altavilla
 458 Silentina into a zero greenhouse gas emission municipality by 2030.

459 The assumptions relating to the energy demand/production trend are the ones above described
 460 in the “Predictive Models” paragraph.

461

462 *(Insert Figure 9 here)*

463

464 *(Insert Figure 10 here)*

465

466 In Figure 9 and in Figure 10 are reported the hourly energy demand and production trend of
467 Altavilla Silentina Municipality expected for 2030, respectively. Curves have been
468 normalized with respect to the peak load.

469 Results of the EnergyPLAN software show that Altavilla Silentina can became zero carbon
470 emissions city if:

- 471 1) The fossil fuel plants that will still be present in 2020 scenario are substituted with
472 electric heat pumps, increasing the electric energy consumptions. The authors have
473 considered heat pumps with a Seasonal COefficient of Performance (SCOP) equal to
474 3, thus an electric energy increase for residential sector equal to 1212 MWh_e is
475 expected with respect to that of 2020.
- 476 2) In the industry sector, 23% of thermal demand has to be supplied at high temperature
477 (above 70°C) while the 77% has to be supplied at low temperature (60°-70°). The
478 authors propose the installation of electric heat pumps in order to satisfy the request of
479 low-temperature thermal energy, and biomass plants for the high temperature one. The
480 heat pumps installation implies an electric energy increase of 419MWh/year with
481 respect to 2020.
- 482 3) In the tertiary sector, 83% of thermal energy demand for heating will be supplied by
483 heat pumps, for a total of 888 MWht, biomass plant will supply the rest of the
484 demand;
- 485 4) In 2030 only electric cars must be considered. The authors have evaluated the electric
486 energy consumption for the transport sectors by using a typically hourly consumption
487 profile.

488 Figure 11 shows an overview of the expected electric energy consumptions for sectors
489 of Altavilla Silentina in the year 2030.

490

491 *(Insert Figure 11 here)*

492

493 It is important to note that the yearly electricity production by RES will be even higher than
494 the demand in 2030, even though electricity consumption will increase (Figure 12). This is
495 also clear in the yearly balance reported in Figure 13 where the energy exported in national
496 grid and the energy consumption is indicated.

497 The electric energy production by RES should be equal to energy demand in order to achieve
498 a zero energy balance of the city. In fact, the Critical Excess in Electricity Production (CEEP)
499 could make problems in the managing of the energy grids.

500 In the case of Altavilla Silentina, the construction of RES plants has already been planned
501 before the SEAP development, and the relationship between production and consumption had
502 not been evaluated.

503 For this reason, in the 2030 scenario the authors aim to electrify the city in order to reduce the
504 gap between production and consumption. Despite the efforts of authors, this gap remains.
505 An energy planning extended to neighbouring territories can be considered as an interesting
506 solution, which is analysed in paragraph 5.

507

508 *(Insert Figure 12 here)*

509

510 *(Insert Figure 13 here)*

511

512 The EnergyPLAN results show that electricity production by RES will not cover the electric
513 energy demand on hourly base.

514 As an example, the hour demand and production of electric energy are shown in Figure 14 for
515 a typical day in January. From this figure, it is clear that it will be necessary to import electric
516 energy from the national grid. To avoid this situation, an electric energy storage should be
517 considered in the energy system, thus completing a self-sustained “zero emissions energy
518 system/infrastructure”.(Insert *Figure 14 here*)

519

520 reports a list of the RES power plants to be installed by 2030 in order to convert Altavilla
521 Silentina to “nearly zero carbon emissions”. In case of heat pumps and biomass boilers, the
522 overall power installed is calculated considering a mean size equal to 10 kW_e/unit and 35
523 kW_t/unit respectively for residential and tertiary sector, and average sizes of heat pumps and
524 biomass boilers equal to 20 kW_e/unit and 50 kW_t/unit respectively for industrial sector.

525

526 *(Insert Figure 14 here)*

527

528 *(Insert Table 9 here)*

529

530 In Figure 15, the total primary energy supply for the years 2010, 2020 and 2030 can be
531 observed. The “electricity” nomenclature refers to the primary energy required for the
532 “electric energy end-use”. The conversion efficiency for electric production is considered for
533 the nation equal to 0.47 [54].

534

535 *(Insert Figure 15 here)*

536

537 Finally, an economic analysis has been performed in order to evaluate the cost of electricity
 538 and thermal energy. In Table 10 a list of the investment and operating costs for new plants
 539 needed for the decarbonisation by 2030 [54] is reported. In the analysis, the cost for electric
 540 energy storage and the costs related to electric energy exchange with the national grid have
 541 not been taken in account.

542

543 *(Insert Table 10 here)*

544

545 Assuming that:

546 1) The cost of electric energy to be acquired on the market is equal to 0.20 €/kWh_e [56];
 547 2) The sale price electric energy is equal to 0.05 €/kWh_e [56];
 548 3) The price of wood chips and wood pellets is equal to 679 k€/year [48].

549 The results of the cost analysis are:

550 1) The total costs for electricity production is equal to 31612 k€ (1304 k€/year);
 551 2) The total costs for thermal energy production is equal to 929119 k€ (19865 k€/year).
 552 3) The total acquired electric energy cost is equal to 2698 k€/year;
 553 4) The electric energy sales revenue is equal to 1211 k€/year.

554

555 Prices per kWh of both thermal and electric energy have been calculated according to
 556 Equation (1).

557 Results shown that prices of both thermal and electric energy could be significantly lower
 558 than current price, 11 c€/kWh_e and 12 c€/kWh_t, making the whole system highly profitable
 559 also from an economic point of view.

560 **5. POSSIBLE SOLUTION TO CRITICAL EXCESS ELECTRICITY PRODUCTION**

561 The influence of the control volume on which energy planning is based obviously very
 562 important. Moreover, the ability of a system to operate in “Island mode”, “connected mode”
 563 or “connected island mode” is a very interesting point to analyse and there are a lot of
 564 arguments in favour or against each of these approaches[57].

565 In this work, the authors investigate an energetic analysis of the neighbouring territories
 566 (“connected mode”), in order to evaluate the possibility to export the over-produced
 567 electricity. The excess of electricity production, due to the wind plants in Altavilla Silentina,
 568 can be a problem for the national grid.

569 The electricity demand of the neighbouring territories has been estimated considering the pro-
 570 capite electricity demand of Altavilla Silentina by 2030 (including the electrification of
 571 transport sector) and the population number of close municipalities (Albanella, Controne and
 572 Castelcivita). Moreover, the authors have considered an analysis of RES plants in the
 573 surrounding territories in order to evaluate their electric energy balance. The results
 574 demonstrate that the yearly energy demand of these close neighbouring municipalities is
 575 higher than the local production. (Figure 16). Therefore the electricity produced in Altavilla
 576 Silentina can be an interesting opportunity to solve the CEEP problem and to increase the
 577 share of green energy in their energy balance, without the need of new plants.

578

579 *(Insert Figure 16 here)*

580

581 However, yearly energy results are not adequate to establish that energy over-production by
 582 Altavilla Silentina can be used by neighbouring municipality. Therefore, a further analysis is
 583 necessary that takes in to account both energy demand of the surrounding cities and that of
 584 Altavilla Silentina.

585 The hourly results confirm that the excess electricity produced in Altavilla Silentina can be
586 completely used by neighbouring cities, meeting a large part of the three municipalities
587 demand. The choice of a larger control volume offers two-fold benefit: it solves the CEEP
588 problem of Altavilla Silentina, and it increases the share of RES energy in the balance of the
589 area.

590 Another benefit that should be considered is the sharing of the costs among the municipalities.
591 Infact, a shared service agreement among the neighboring municipalities has the potential to
592 decrease the operational costs and the investment ones. Every municipality may provide its
593 energy resources available for the agreement municipalities sharing the investment and
594 operational costs for the resource exploitation.

595 The study has demonstrates that proper energy planning must take in account also the
596 dependence of results on control volume considered.

597 **6. CONCLUSION**

598 The work presents a feasibility assessment of a novel strategy to make the Italian city of
599 Altavilla Silentina dependent only on renewable energy sources by 2030. An analysis of the
600 actual energy consumption, as well as the evaluation of CO₂ emission have been carried out.
601 The energy demand of the municipality in 2030 has been evaluated by using the software
602 EnergyPlan, integrated with TRNSYS software, through which a possible and effective
603 energy system based on renewable sources has been modelled in order to cover both the
604 future electric and thermal energy demands.

605 The analysis of the energy demand in 2010 shows that the most of the energy consumption of
606 the city is due to both residential and tertiary buildings (the former has 32% of global energy
607 consumption the latter 31%), followed by public transportation (21%). The analysis also
608 shows that electric energy (31%), heavy fuel (i.e. diesel 20%) and LGP (18%) are the three
609 most used energy carriers. Based on these evaluations, the Altavilla Silentina CO₂ footprint

610 has been evaluated by using emission factors and top-down method for public and private
611 sectors respectively. Emission factors measure the amount of CO₂ released per kWh of
612 primary energy converted into electricity or/and heat. As expected, the results show that
613 industry has the highest CO₂ footprint, with more than 6881 tons of CO₂ per year (31% of
614 total emissions), followed by the tertiary buildings, 4173 tons of CO₂ per year (more than
615 21% of total emissions).

616 In order to reduce the energy demand and the related CO₂ emissions, the authors studied a
617 number of measures for each sector mainly:

618 - Increase the efficiency of energy systems for both public and residential buildings;
619 - Installation of new and more efficient systems for electricity and heat production;
620 - Increasing the efficiency of public transportation.

621 Each measure gives a significant contribution to both energy consumption and CO₂ emission
622 reduction. The analysis shows that, if all the proposed measures are undertaken by 2020, there
623 will be a reduction of more than 10900 tons of CO₂ per year, mostly thanks to wind energy.

624

625 In the last part of the present work, the authors simulate the energy balance of the whole city
626 for the year 2030 by using the software Energy Plan integrated with TRNSYS, and defined an
627 effective and complex system of multiple technologies able to feed Altavilla Silentina only
628 through renewable energy sources by 2030. The results show that, starting from the 2020
629 scenario, by replacing conventional boilers with electric heat pumps and by using electric
630 public transport, the goal can be achieved. However, a CEEP problem occurs in this scenario
631 due to a large electric production by wind farms.

632 In order to verify the system feasibility, an economic analysis of the system has been carried
633 out. The results show that prices of both thermal and electric energy could become as low as

634 the actual ones, 0.11 €/kWh_e and 0.12 €/kWh_t, making the whole system profitable also from
 635 an economic point of view.

636 Finally, in order to solve the CEEP problems, an inter-municipality energy balance has been
 637 considered. In this new scenario, the whole energy production due to wind plants is used by
 638 citizens and the exportation in the national grid is equal to zero. The larger volume-control
 639 offers two-fold benefit: it solve the CEEP problem of Altavilla Silentina and it increase the
 640 share of RES energy in the balance of the closed cities.

641

642 **ACKNOWLEDGMENTS**

643 The authors would like to acknowledge Scientific Consortium for the Industrial Research and
 644 Engineering (CRAVEB) for providing the energy data of Altavilla Silentina. The
 645 "Terralavoro Costruzioni SRL" Company and the Altavilla Silentina Municipality have to be
 646 greatly acknowledged for providing data of wind turbine production and the PV plants of
 647 school buildings, respectively.

648 **NOMENCLATURE**

649 a.s.l above sea level
 650 BEI Baseline Emission Inventory
 651 C Costs
 652 CE Cooling Energy Demand
 653 CEEP Critical Excess Electricity Production
 654 CHP Combined Heat and Power
 655 EE Electric Energy Demand
 656 ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic
 657 Development
 658 GSE Gestore Servizi Energetici
 659 HP Heat Pump
 660 ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale
 661 ISTAT Italian National Institute of Statistics
 662 LPG Liquefied Petroleum Gas
 663 PR Provincial Road
 664 PV PhotoVoltaic
 665 PVP PhotoVoltaic Energy Production
 666 RES Renewable Energy Sources
 667 SCOP Seasonal Coefficient Of Performance
 668 SEAP Sustainable Energy Measures Plans
 669 TE Thermal Energy Demand
 670 WP Wind Turbine Energy Production

671

672 REFERENCES

- 673 1. Covenant of Mayors for Climate & Energy: <http://www.covenantofmayors.eu/>
- 674 2. Delponte I., Pittalunga I., Schenone C., Monitoring and evaluation of Sustainable Energy
- 675 Action Plan: Practice and perspective, Energy plocy, Vol.100,pp 9-17, October 2016.
- 676 3. The European Parliament and the Council of the European Union. Directive 2012/27/EU of
- 677 the European parliament and of the Council of 25 October 2012 on energy efficiency,
- 678 amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and
- 679 2006/32/EC. 2012.
- 680 4. De Santoli L., *Le comunità dell'energia*, Quodlibet, 2011, pp 109-110.
- 681 5. Kennedy S., Sgouridis S., Rigorous classification and carbon accounting principles for low
- 682 and Zero Carbon Cities, *Energy Policy*, Vol. 39, pp 5259-5268, June 2011.
- 683 6. Østergaard P. A., Lund H., A renewable energy system in Frederikshavn using low-
- 684 temperature geothermal energy for district heating, *Applied Energy*, Vol. 88, No 2, pp 479–
- 685 487, February 2011.
- 686 7. Carotenuto A., De Luca G., Fabozzi S., Figaj R.D., Iorio M., Massarotti N., Vanoli L. Energy
- 687 analysis of a small geothermal district heating system in Southern Italy, *International Journal*
- 688 *of Heat and Technology*, Vol. 34, Special Issue 2, pp S519-S527, 2016.
- 689 8. Østergaard P. A, Vad Mathiesen B., Möller B., Lund H., A renewable energy scenario for
- 690 Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass,
- 691 *Energy*, Vol. 35, No 12, pp 4892–4901, December 2010.
- 692 9. Tao M., Østergaard P. A., Lund H., Yang H., Lu L., An energy system model for Hong Kong
- 693 in 2020, *Energy*, Vol. 68, pp 301–310, April 2014.
- 694 10. Dominkovic D.F., Bac'ekovic' I., Krajačić G., Pukšec T., Duić N., Markovska N., Zero
- 695 carbon energy system of South East Europe in 2050, *Applied Energy*, In Press, Corrected
- 696 Proof, Available online 19 March 2016.
- 697 11. Novosel T, Pukšec T., Krajačić G., Duić N., Role of District Heating in Systems with a High
- 698 Share of Renewables: Case Study for the City of Osijek, *Energy Procedia*, Vol. 95, pp 337-
- 699 343, September 2016.
- 700 12. Dominković D.F., Baćeković I., Sveinbjörnsson D., Pedersen A.S., Krajačić G., On the way
- 701 towards smart energy supply in cities: The impact of interconnecting geographically
- 702 distributed district heating grids on the energy system, *Energy*, In Press, Corrected Proof,
- 703 Available online 27 March 2017.
- 704 13. Lund H., EnergyPLAN - Advanced Energy Systems Analysis Computer Model. Available
- 705 online: <http://www.energyplan.eu/>
- 706 14. Thellufsen J. Z., Lund H., Cross-border versus cross-sector interconnectivity in renewable
- 707 energy systems, *Energy*, Vol. 124, pp 492-501, February 2017.
- 708 15. Komušanac I, Cosić B, Duić N., Impact of high penetration of wind and solar PV generation
- 709 on the country power system load: The case study of Croatia, *Applied Energy*, Vol. 184, pp
- 710 1470-1482, July 2016.
- 711 16. Thellufsen J. Z., Lund H., Roles of local and national energy systems in the integration of
- 712 renewable energy, *Applied Energy*, Vol. 183, pp 419–429, September 2016.
- 713 17. Xiong W., Wang Y., Vad Mathiesen B., Lund H., Zhang X., Heat roadmap China: New heat
- 714 strategy to reduce energy consumption towards 2030, *Energy*, Vol. 81, pp 274-285, January
- 715 2015.

716 18.Cerovac T., Pukšec T., Cosić B, Duić N., Wind energy integration into future energy systems
 717 based on conventional plants – The case study of Croatia, *Applied Energy*, Vol. 135, pp 643–
 718 655, July 2014.

719 19.Kwon P.S., Østergaard P. A, Priority order in using biomass resources – Energy systems
 720 analyses of future scenarios for Denmark, *Energy*, Vol. 63, pp 86-94, October 2013.

721 20.Cosić B, Krajačić G., Duić N., A 100% renewable energy system in the year 2050: The case
 722 of Macedonia, *Energy*, Vol. 48, pp 80-87, June 2012.

723 21.Duquette J., Wild P., Rowe A., The potential benefits of widespread combined heat and
 724 power based district energy networks in the province of Ontario, *Energy*, Vol. 67, pp 41-51,
 725 January 2014.

726 22.Zhao G., Guerrero J. M., Jiang K., Chen S., Energy modelling towards low carbon
 727 development of Beijing in 2030, *Energy*, Vol. 121, pp 107-113, January 2017.

728 23.Child M., Nordling A., Breyer C., Scenarios for a sustainable energy system in the Åland
 729 Islands in 2030, *Energy Conversion and Management*, Vol. 137, pp 49-60, January 2017.

730 24.Pillai J. R., Heussen K., Østergaard P. A, Comparative analysis of hourly and dynamic power
 731 balancing models for validating future energy scenarios, *Energy*, Vol. 36, no 5, pp 3233-3243,
 732 May 2011.

733 25.Østergaard P. A, Comparing electricity, heat and biogas storages' impacts on renewable
 734 energy integration, *Energy*, Vol. 37, No 1, pp 255-262, January 2012.

735 26.Lund H., Hvelplund F., The economic crisis and sustainable development: The design of job
 736 creation strategies by use of concrete institutional economics, *Energy*, Vol. 43, No 1, pp 192-
 737 200, July 2012.

738 27.Kwon P.S., Østergaard P.A., Priority order in using biomass resources – Energy systems
 739 analyses of future scenarios for Denmark, *Energy*, Vol. 63, pp 86-94, December 2013

740 28.Østergaard P. A, Reviewing EnergyPLAN simulations and performance indicator
 741 applications in EnergyPLAN simulations, *Applied Energy*, Vol. 154, pp 921–933, September
 742 2015.

743 29.University of Wisconsin-Madison. A TRAnsient SYtems simulation program.Available on
 744 line: <http://sel.me.wisc.edu/trnsys/> .

745 30.Lund H., Renewable Energy Systems A smart Energy Systems approach to the Choice and
 746 Modeling of 100% Renewable Solutions. Second ed, ed. Elsevier. 2014.

747 31.JRC Scientific and Techincal Reports, *Reporting Guidelines on Sustainable Energy Measures
 Plan and Monitoring*, 2010.

748 32.GSE- Technical Data Sheets Available on line:
 749 <http://www.gse.it/it/CertificatiBianchi/Modalit%C3%A0%20di%20realizzazione%20dei%20progetti/Schede%20tecniche/Pagine/default.aspx>

750 33.GSE ATLASOLE: <http://atlasole.gse.it/atlasole/>

751 34.TRNSYS 17 – a TRAnsient System Simulation program-Mathematical reference”. Vol.5.
 752 Available on line: <http://web.mit.edu/parmstr/Public/Documentation/05-MathematicalReference.pdf>

753 35.De Soto W., Klein S.A., Beckman W.A., Improvement and validation of a model for
 754 photovoltaic array performance. *Solar Energy*, Vol. 80, No.1 pp. 99-106, January 2006.

755 36.The International Standard IEC 60904-1. Photovoltaic devices-Part 1: Measurement of
 756 photovoltaic current-voltage characteristics. 2006.09

757 37.Connolly D., *Finding and Inputting Data into EnergyPLAN*. Aalborg Universitet. Vers. 5,
 758 January 2015. Available on line: <http://www.energyplan.eu/wp-content/uploads/2013/06/Finding-and-Inputting-Data-into-the-EnergyPLAN-Tool-v5.pdf>

759 38.Kreider J.F., Curtiss P.S., Rabl A., *Heating and Cooling of Buildings- Design for Efficiency*,
 760 CRC Press December 2009.

765 39.TERNA. <http://www.terna.it/>

766 40.Covenant of Mayor –Signatories: Altavilla Silentina:
http://www.pattodeisindaci.eu/about/signatories_it.html?city_id=6228

768 41.Piano d’Azione per l’Energia Sostenibile- Comune di Altavilla Silentina. Available on line:
http://www.covenantofmayors.eu/about/signatories_en.html?city_id=6228&seap

770 42. Altavilla Silentina Municipality website. <http://www.comune.altavillasilentina.sa.it/>

771 43.ISTAT, Italian National Institute of Statistics. <http://www.istat.it/>

772 44.ACI. Automobile Club of Italy. <http://www.aci.it/>

773 45.ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale.
<http://www.isprambiente.gov.it/it>

775 46.ENEA Agenzia Nazionale per le nuove tecnologie, l’Energia e lo sviluppo economico
 sostenibile <http://www.enea.it/it/pubblicazioni/rapporto-energia-e-ambiente/rapporto-energia-e-ambiente-2009-2010/i-dati-2009-2010/statistiche-regionali>

777 47. E-distribuzione. <https://e-distribuzione.it/it-IT>

779 48.Bibbiani C., Fantozzi F., Gargari C., Campiotti C.A., Schettini E., Vox G., Wood Biomass as
 Sustainable Energy for Greenhouses Heating in Italy. *Agriculture and Agricultural Science
 Procedia*, Vol. 8, pp. 637 – 645, 2016.

782 49.IEA, ETSAP Energy Technology Systems Analysis Programme, *Industrial Combustion
 Boilers*, May 2010. Available on line: http://www.iea-etsap.org/web/e-techds/pdf/i01-ind_boilers-gs-ad-gct1.pdf

785 50.Bishop J.D.K., Martin N.P.D., Boles A. M., Cost-effectiveness of alternative powertrains for
 reduced energy use and CO₂ emissions in passenger vehicles. *Applied Energy*, Vol. 124, pp.
 44-61, July 2014.

788 51.Legislative Decree n.504 of 26 October 1995, *Testo Unico delle disposizioni legislative
 concernenti le imposte sulla produzione e sui consumi e relative sanzioni penali e
 amministrative*

791 52.Economic Ministry Decree of 28 December 2012, *Incentivazione della produzione di energia
 termica da fonti rinnovabili ed interventi di efficienza energetica di piccole dimensioni*.

793 53.Law n . 208 Of the 28 December, *Disposizioni per la formazione del bilancio annuale e
 pluriennale dello Stato (legge di stabilità 2016)».*

795 54. Ministry Decree of 26 June 2016, *Applicazione delle metodologie di calcolo delle prestazioni
 energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici*.

797 55.Connolly D. *EnergyPLAN Cost Database*. Aalborgh University, January 2015.Available on
 line: http://www.energyplan.eu/useful_resources/costdatabase/

799 56.Gestore Mercati Energetici. Ritiro dedicato. [18-11-2014]; Available from:
<http://www.gse.it/it/Ritiro%20e%20scambio/Ritiro%20dedicato/Pages/default.aspx>

801 57.Henrik Lund, Brian Vad Mathiesen The role of Carbon Capture and Storage in a future
 sustainable energy system, *Energy*, Volume 44, Issue 1, August 2012, Pages 469-476.

803

804

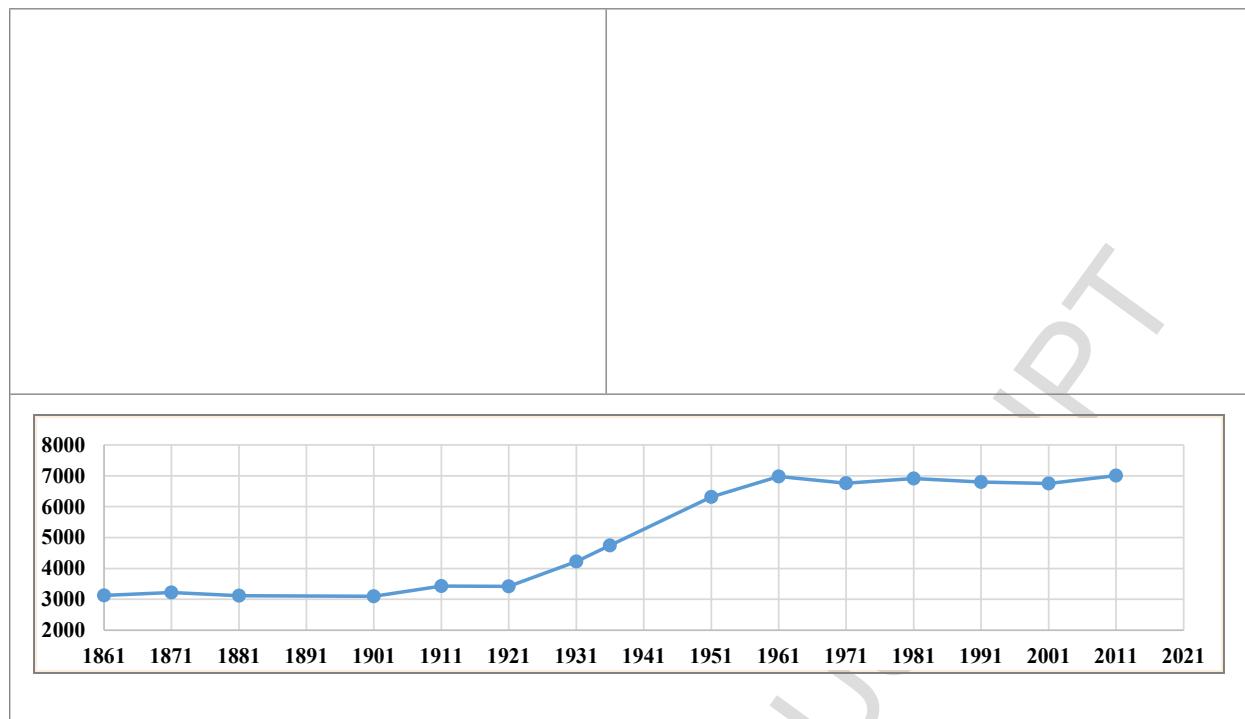
805

806

807

808

809

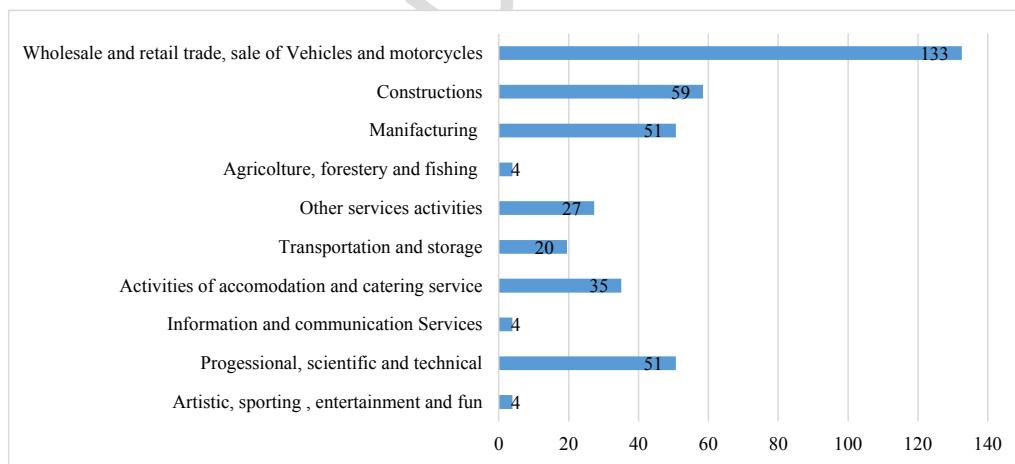

810

811

812

813

814

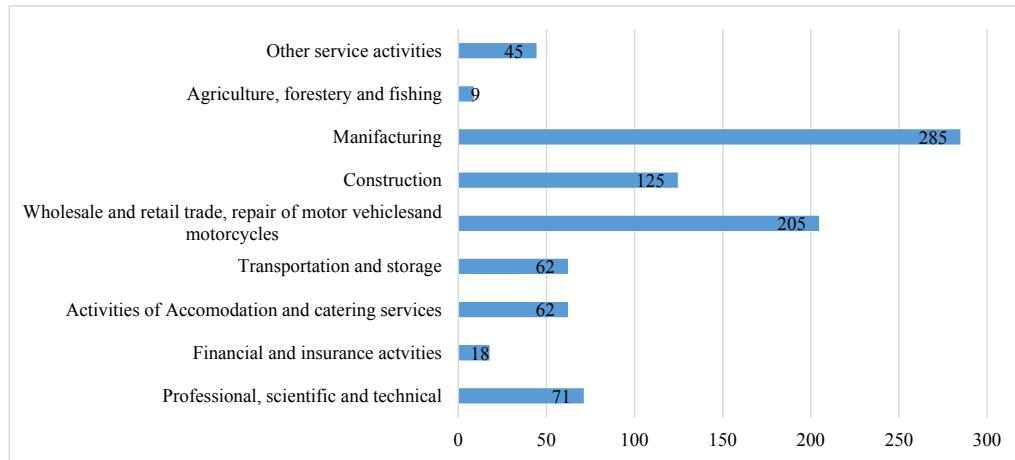

815

816 Figure 1 Geographic position and Trend of the population from 1861 to 2011, *Altavilla*
 817 *Silentina*, (ISTAT [43].).

818

819

820

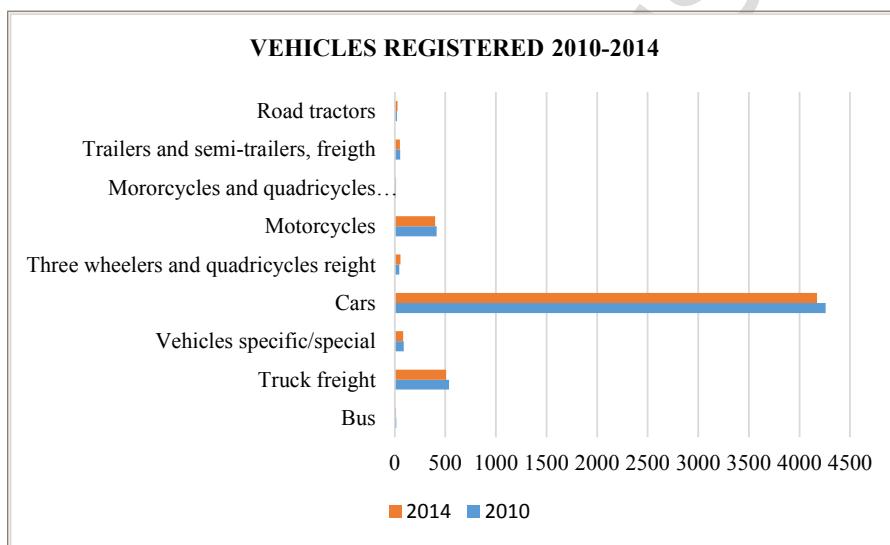

821

822

823

824

Figure 2: Active companies in 2011, Altavilla Silentina, (ISTAT [43].).



825

826

827

Figure 3: Employees in 2011, Altavilla Silentina, (ISPRA [43].)

828

829

830

Figure 4: Vehicles on the road 2010-2014, Altavilla Silentina, (ACI [44])

831

832

Table 1: Age of residential buildings in Altavilla Silentina (ISTAT [43].)

Residential Buildings built in Altavilla Silentina						
Time interval	Until 1970	1971-1990	1991-2000	2001-2005	2006-2011	Total
Residential Buildings	1515	455	154	98	119	2341

833

834

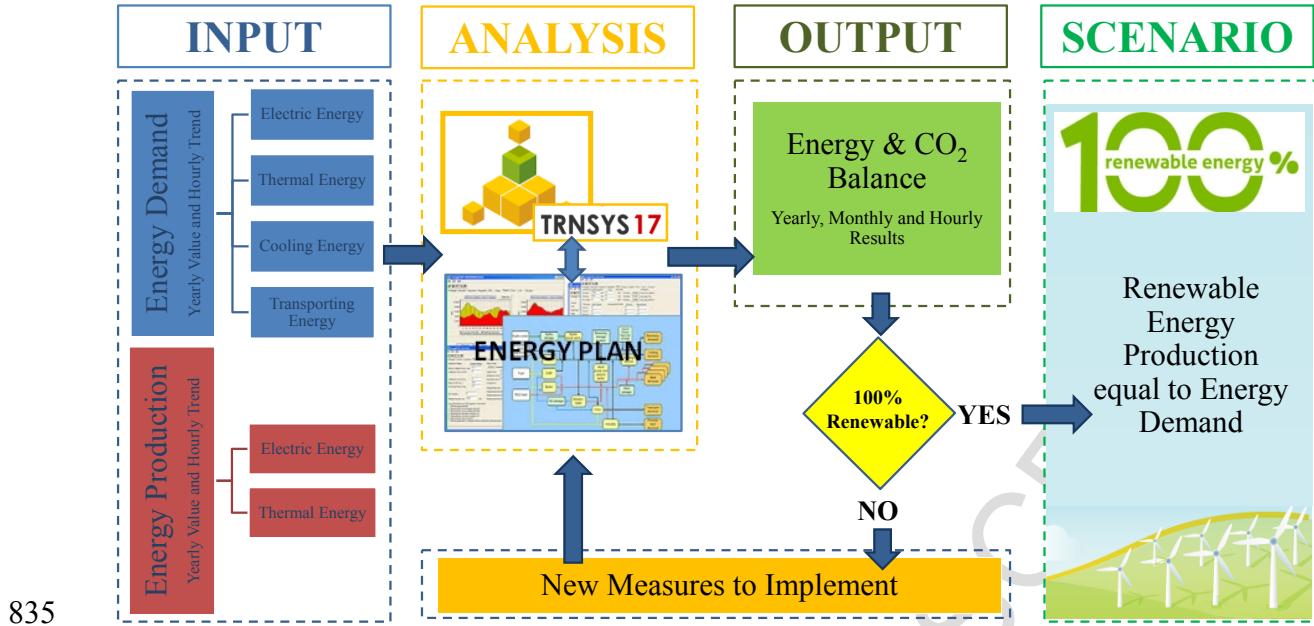


Figure 5: Input and Output of EnergyPLAN software.

Table 2: References Local Parameters for Top-down analysis

Vector	End User Sector				
	Residential	Service Sector	Industry	Agriculture	Urban Transport
Electric Energy	Number of inhabitants	Number of active units	Number of employees	Utilized agricultural area	Number of vehicles
Other Vector	Residential Surface				

854

Table 3: Reference Databases used in the Top-down analysis

<i>Sector</i>	<i>Gasoline</i>	<i>Diesel</i>	<i>LPG</i>	<i>Heating oil</i>	<i>Electricity</i>	<i>Lignite</i>	<i>Waste</i>	<i>Coal</i>
<i>Residential</i>	ISPRA	ISPRA	ISPRA	ISPRA	TERNA	ISPRA	ISPRA	ISPRA
<i>Tertiary</i>	ISPRA	ISPRA	ISPRA	ISPRA	TERNA	ISPRA	ISPRA	ISPRA
<i>Public lighting</i>	-	-	-	-	e-distribuzione	-	-	-
<i>Industry</i>	Energy Regional Balance /ENEA	Energy Regional Balance /ENEA	Energy Regional Balance/ ENEA	Energy Regional Balance/ ENEA	TERNA	Energy Regional Balance /ENEA	Energy Regional Balance /ENEA	Energy Regional Balance /ENEA
<i>Private and commercial Transport:</i>	ISPRA	ISPRA	ISPRA	ISPRA	ISPRA	ISTRA	ISPRA	ISPRA
<i>Agriculture</i>	ISPRA	ISPRA	ISPRA	ISPRA	TERNA	ISTRA	ISPRA	ISPRA

855

856

Table 4: Primary Energy Consumptions for the Buildings and Industry per energy carrier

	<i>Gasoline</i>	<i>Diesel</i>	<i>LPG</i>	<i>Heating oil</i>	<i>Electricity</i>	<i>Lignite</i>	<i>Waste</i>	<i>Coal</i>	<i>Total</i>
<i>Municipal buildings, equipment/facilities</i>	0	387	0	0	110	0	0	0	497
<i>Residential buildings</i>	0	167	3871	8	6942	8116	0	0	19105
<i>Tertiary (non municipal) buildings, equipment/facilities</i>	0	12	6581	0	3206	2	151	0	9952
<i>Public lighting</i>	0	0	0	0	827	0	0	0	827
<i>Industry</i>	115	1048	814	6807	9047	93	0	753	18677
<i>Total</i>	115	1603	11266	6815	19194	8211	151	753	48109

857

858

859

860

861

862

863 Table 5 Primary Energy Consumptions for the Transport and Agriculture sectors per energy
 864 carrier in 2010

	<i>Gasoline</i>	<i>Diesel</i>	<i>LPG</i>	<i>Heating oil</i>	<i>Electricity</i>	<i>Natural Gas</i>	<i>Lignite</i>	<i>Waste</i>	<i>Coal</i>	<i>Total</i>
<i>Transport:</i>										
<i>Municipal fleet</i>	28	14	0	0	0	0	0	0	0	42
<i>Private and commercial</i>	5633	6035	607	0	0	220	0	0	0	12496
<i>Sub-total trasport</i>	5661	6049	607	0	0	220	0	0	0	12538
<i>Agriculture and Forestry</i>	0	5940	95	0	1837	0	49	0	0	7922

865
 866
 867 Table 6 CO₂ emissions per sector and per energy carrier in 2010

	<i>Gasoline</i>	<i>Diesel</i>	<i>LPG</i>	<i>Heating oil</i>	<i>Electricity</i>	<i>Lignite</i>	<i>Waste</i>	<i>Coal</i>	<i>Natural gas</i>	<i>Total</i>
<i>Municipal buildings, equipment/facilities</i>	0	103	0	0	51	0	0	0	0	155
<i>Residential buildings</i>	0	45	879	2	3247	0	0	0	0	4173
<i>Tertiary (non municipal) buildings, equipment/facilities</i>	0	3	1494	0	1500	0	50	0	0	3047
<i>Public lighting</i>	0	0	0	0	387	0	0	0	0	387
<i>Industry</i>	29	280	185	1899	4231	0	0	257	0	6881
<i>Transport:</i>										
<i>Municipal fleet</i>	7	4	0	0	0	0	0	0	0	11
<i>Private and commercial</i>	1403	1611	138	0	0	0	0	0	220	3196
<i>Agriculture and Forestry</i>	0	1586	22	0	859	0	0	0	0	2467

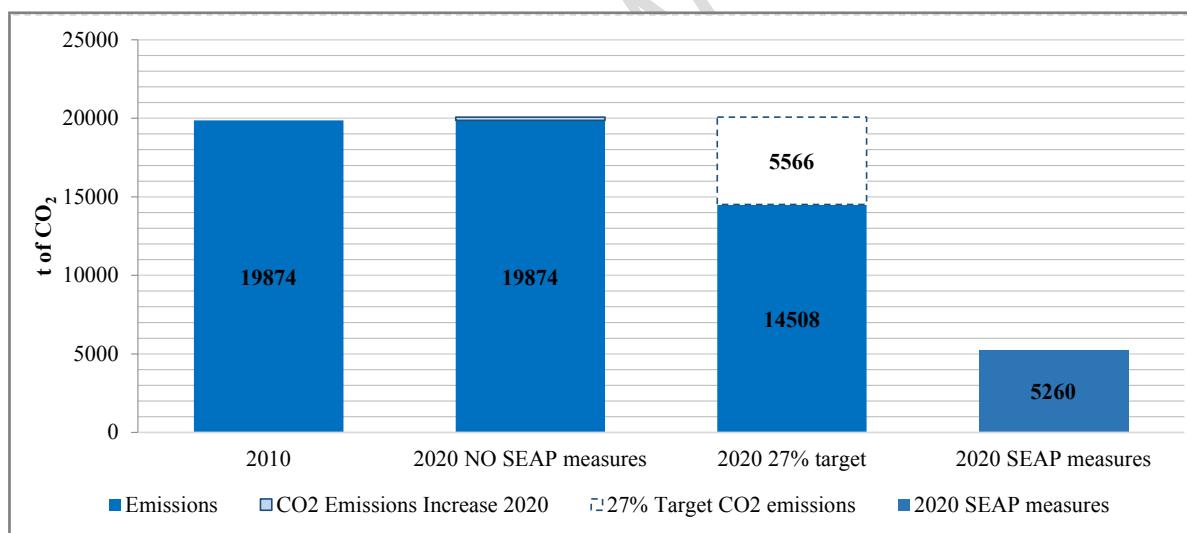
868
 869
 870
 871
 872
 873
 874
 875
 876
 877

878 Table 7 Expected CO₂ emissions increase from 2010 to 2020, due to the population and
 879 buildings growth.

	<i>Value</i>	<i>Sector</i>	<i>CO₂ Emission Increase (t)</i>
Building increase (m²)	17936	Heating Energy Consumptions for Residential Buildings	57
Population Increase	146	Electricity Energy for residential Buildings	68
		Public Lighting	8
		Public and Private Trasporting	67
Total			200

880
 881
 882

883 Table 8 CO₂ Emissions reductions expected for each of the SEAP measure

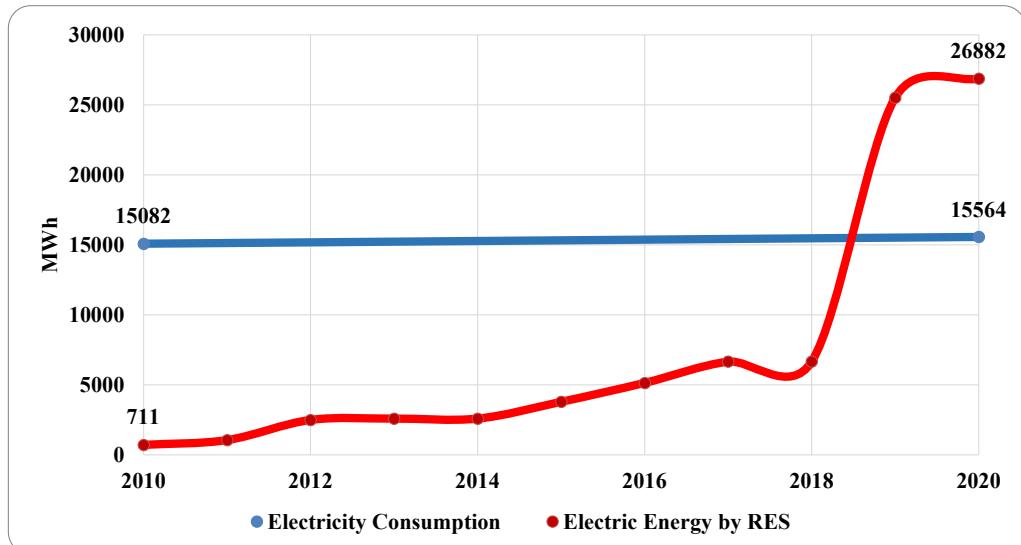

<i>Sector</i>	<i>Measure</i>	<i>Measures</i>	<i>Energy Saving (MWh)</i>	<i>Energy from RES (MWh)</i>	<i>CO₂ Reduction (t)</i>
<i>Public Building</i>	01_RES_01	PV plants in the School Buildings (20 kW _e) (2012-2020)	0	28	13
	01_RES_02	Energy Efficiency for School Building (2012-2020)	0	0,57	2
<i>Residential Buildings</i>	03_EE_01	Replacement lamp(2010-2020)	858	0	400
	03_EE_02	Replacement fridge freezers (2011-2020)	465	0	217
	03_EE_03	PV plants (822 kW _e) (2013-2020)	0	2123	989
	03_EE_04	Install automatic shutoff devices TVs / decoder (2010-2020)	223	0	104
	03_RES_05	PV plants (1077 kW _e) (2010-2013)	0	715	333
	03_RES_06	Wind farm (900 kW _e) (2017-2020)	0	1350	629
	03_RES_07	Wind farm (600	0	1200	569

kW _e) (2012-2020)					
	03_RES_08	Wind farm (14 MW _e) (2019-2020)	0	21000	9874
<i>Industry</i>	05_RES_01	Biogas plant for electric energy production (256 kW _e)	0	1228	170
	05_RES_02	Biogas Cogeneration plant (190 kW _e)	0	1520	708,6
		Biogas Cogeneration plant (261 kW _t)	0	835,2	110
<i>Transporting</i>	08_RES_01	Renewal of the vehicle fleet (2010-2020)	3394	705	1049

884

885

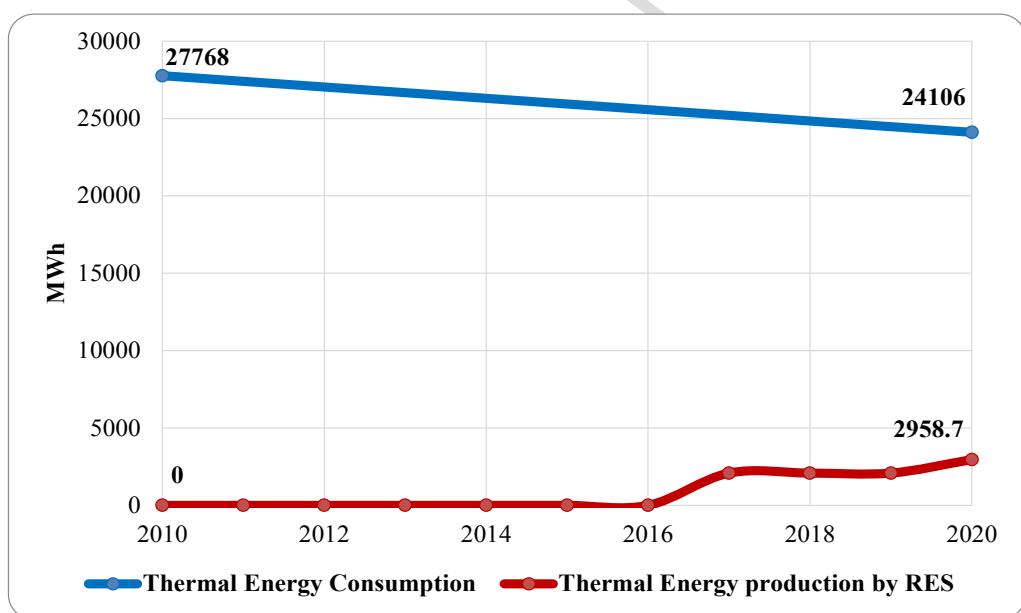
886



887

888

889 Figure 6 Comparison of the CO₂ emissions of Altavilla Silentina in the years 2010 and 2020.


890

891

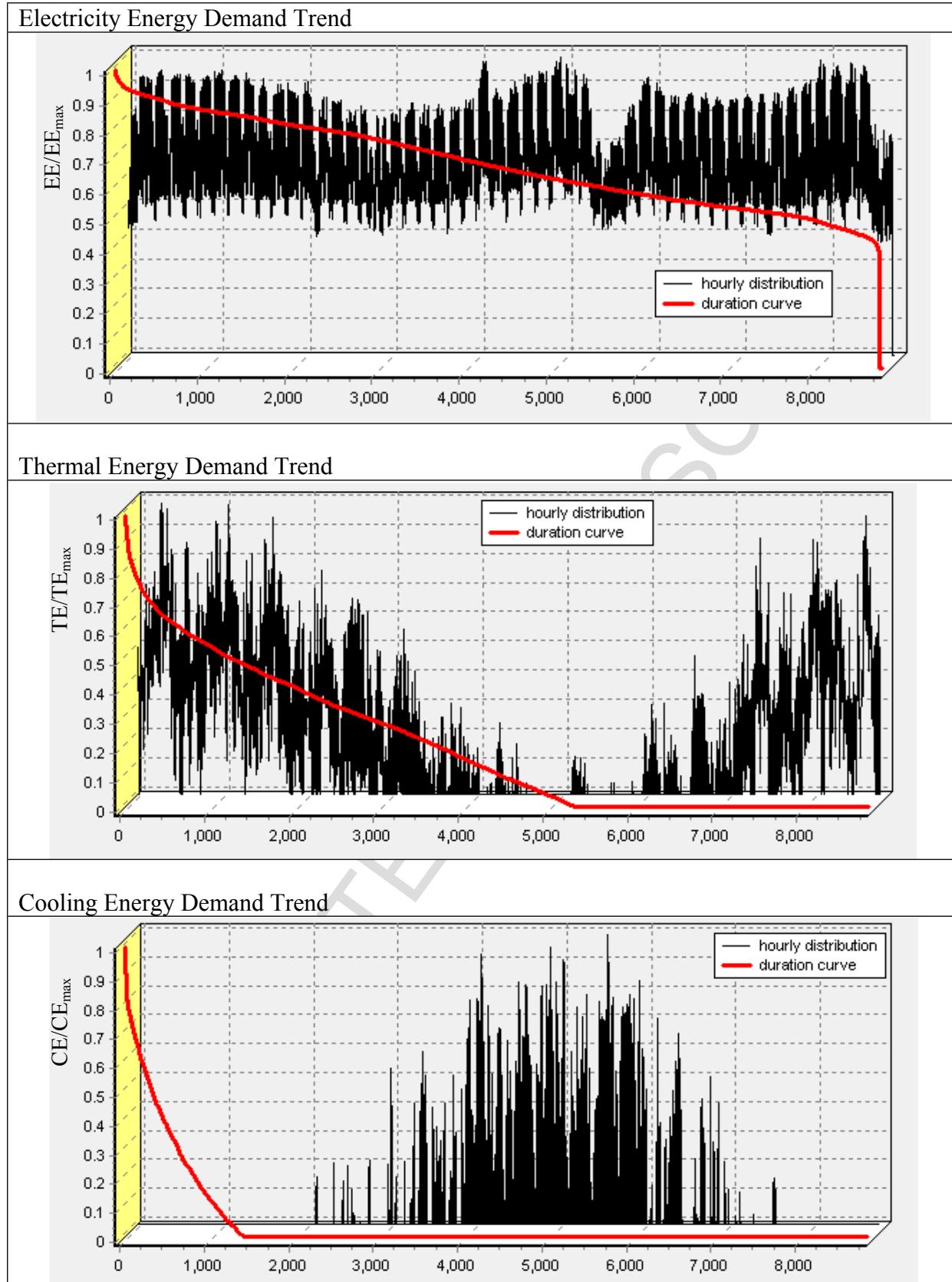
892

893 Figure 7 Electric Energy Consumptions and Electric Energy Production by RES of Altavilla
 894 Silentina Municipality in the year 2010 and 2020.

895

896

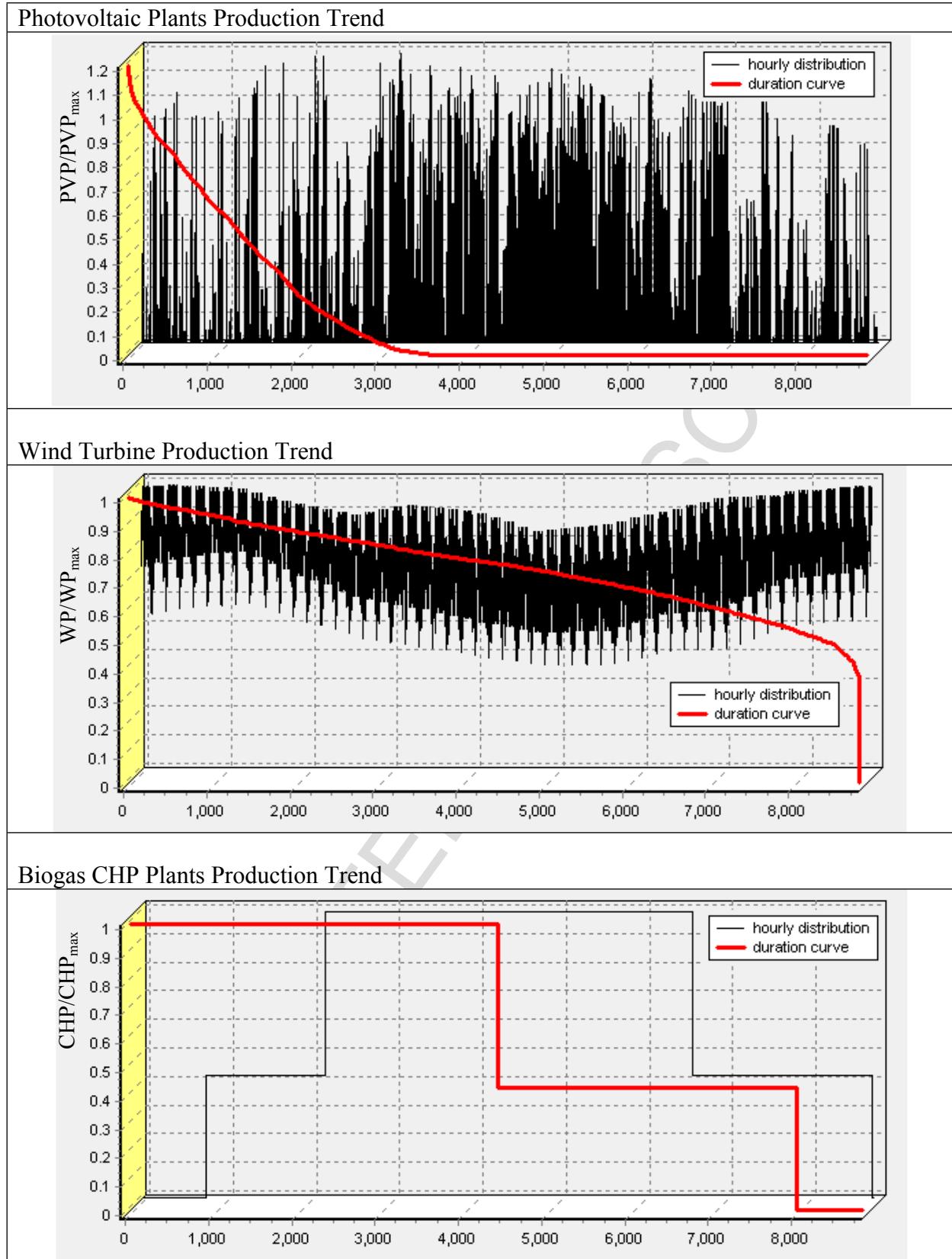
897 Figure 8 Primary Energy consumption for heating and thermal energy production by RES of
 898 Altavilla Silentina from the year 2010 to 2020.


899

900

901

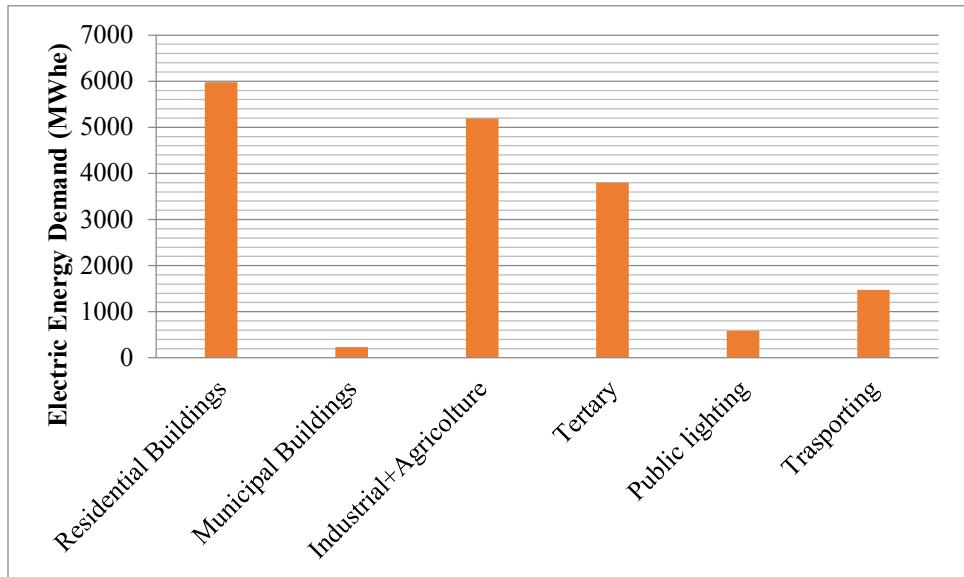
902


903

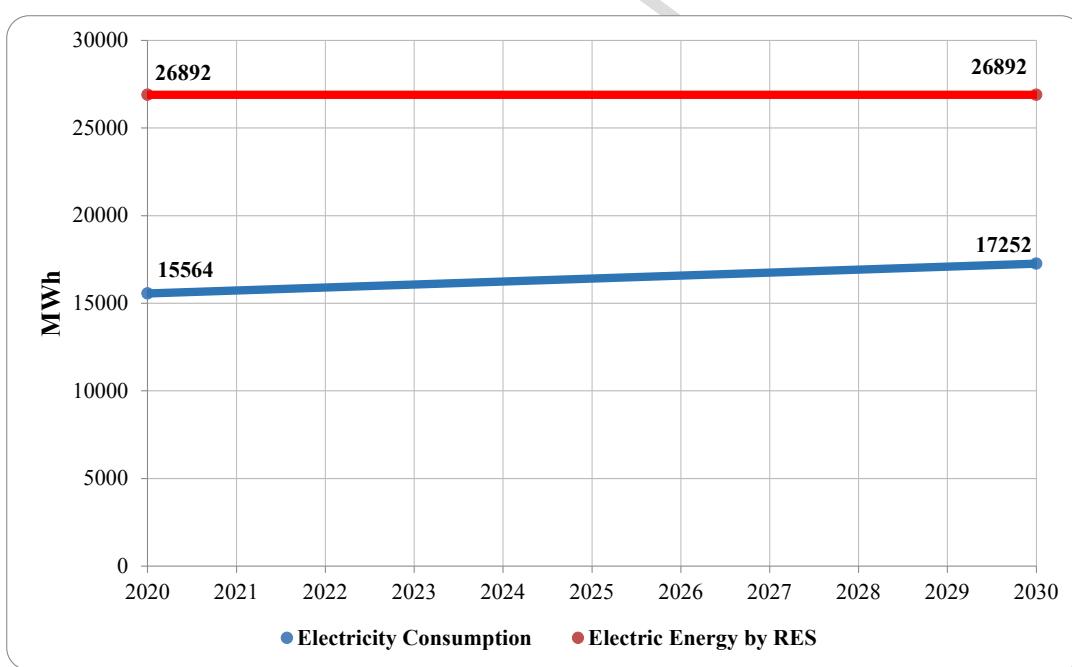
904

905 Figure 9 Hourly energy demand trend of Altavilla Silentina Municipality expected for 2030

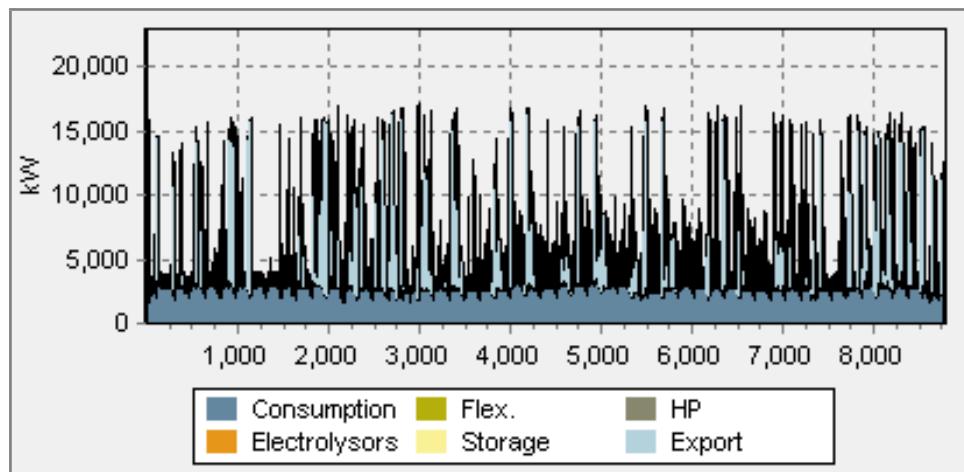
906


907

908

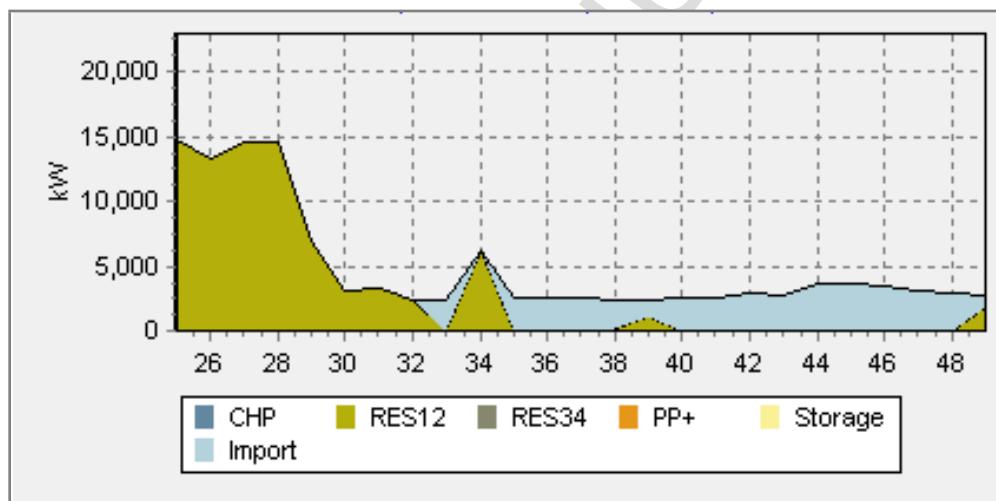

Figure 10 Hourly energy production trend of Altavilla Silentina Municipality expected for

909


2030

910
911
912 Figure 11 Expected electric energy consumption of Altavilla Silentina in 2030.
913

914
915
916 Figure 12 Electric Energy Consumptions and Electric Energy Production by RES of Altavilla
917 Silentina Municipality in the years 2020 and 2030.



918

919

920 Figure 13 Yearly electricity consumption and electricity import from national grid.

921

922

923

924 Figure 14 Electricity production by RES and Electricity import from national grid in a day of
925 January.

926

927

928

929

930

931

932

933

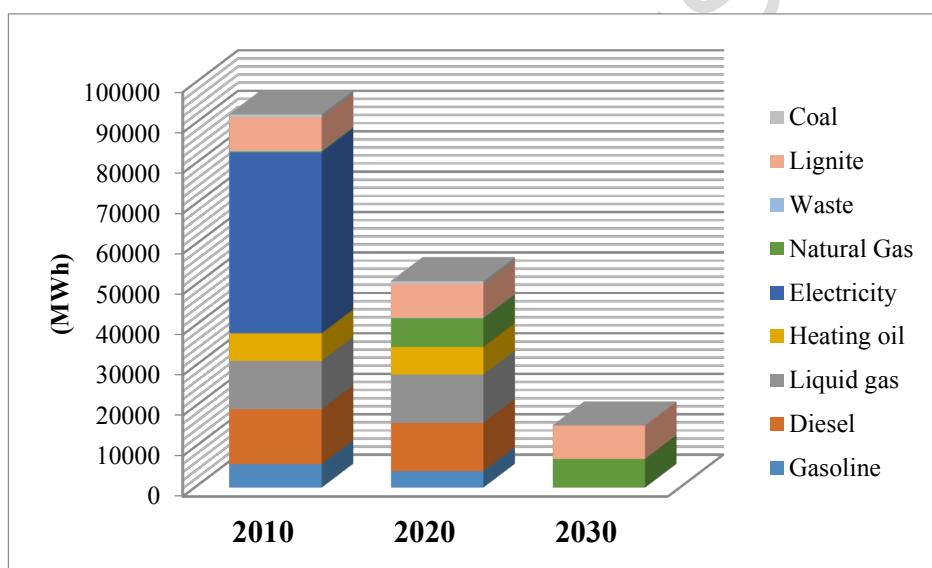
934

935

936

937

Table 9 Installed power plants in the Altavilla Silentina 2030 scenario.


938

Plant	Power
Residential/ Tertiary Heat Pumps	~30.0 MW _e
Industry Heat Pumps	~60.0 kW _e
Wind Farm	15.5 MW _e
Photovoltaic	1.92 kW _e
Biogas CHP	456 kW _e – 261 kW _t *
Residential/ Tertiary Biomass Boilers	~63.1 MW _t
Industry Biomass Boiler	~250 kW _t

* Two biogas plant have been considered: the first one produces only electric energy (256 kW_e) and the second one, to be built for cogeneration (190 kW_e- 261 kW_t)

939

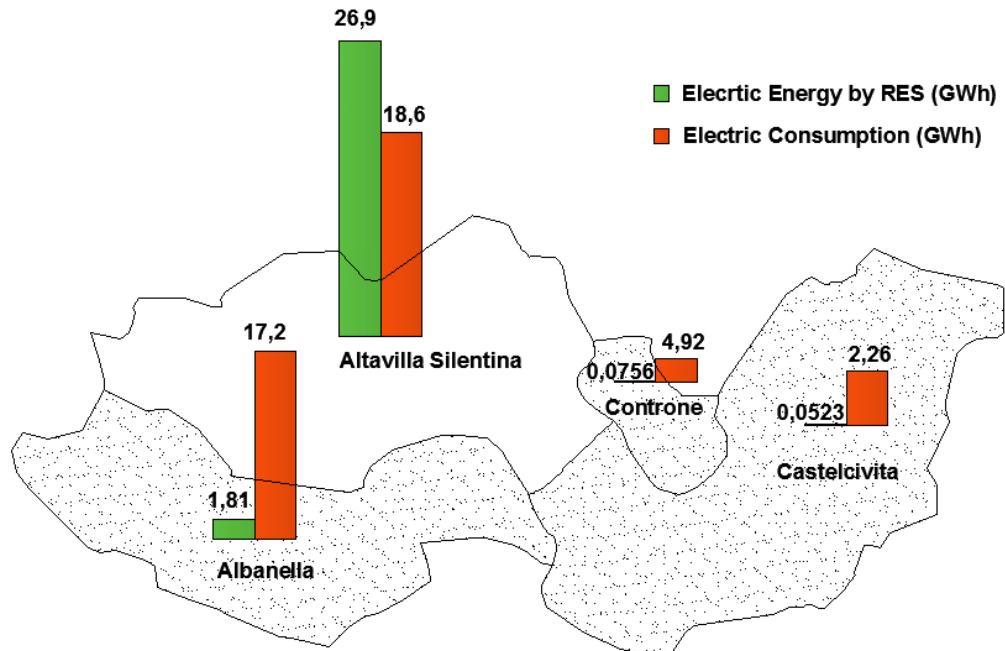
940

941

Figure 15 Primary energy supply Altavilla Silentina in the year 2010, 2020 and 2050.

942

943


944

945

Table 10 Investments cost and operating costs of new plants to be built by 2030

946

Plant	Investment Costs (2020)		Operating Costs	Period
	Unit	€/Unit		
Heat Pump	kW	500	0.98	20
Wind Farm	kW _e	1840	2.97	25
Photovoltaic	kW _e	850	2.09	20
Biogas CHP	kW _e	6400	7.32	20
Biomass Boiler	unit	2500	1.79	20

947

948 Figure 16 Electric consumption and RES production and of the neighbouring territories

949