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Highlights

» SHC planning problem for energy management in a residential area is considered.
» A multi-objective mixed integer linear programming model is developed.

» Obijectives include minimization of peak load and minimization of cost.

» Simulation results for six different scenarios with different objectives are provided.

Abstract

Demand side management (DSM) is one of the most interesting areas in smart grids, and
presents households with numerous opportunities to lower their electricity bills. There are many
recent works on DSM and smart homes discussing how to keep control on electricity
consumption. However, systems that consider minimization of peak load and cost simultaneously
for a residential area with multiple households have not received sufficient attention. This study,
therefore, proposes an intelligent energy management framework that can be used to minimize
both electrical peak load and electricity cost. Constraints, including daily energy requirements

and consumer preferences are considered in the framework and the proposed model is a multi-
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objective mixed integer linear programming (MOMILP). Simulation results for different
scenarios with different objectives verified the effectiveness of the proposed model in

significantly reducing the electricity cost and the electrical peak load.

Keywords: Demand side management; Smart homes; Load scheduling; Time of use tariffs;

Optimization

Nomenclature Symbols

Sets

A Set of appliances

H Set of hours (24 hours in a day)
T Set of electricity tariff

ch Set of c''s

TSAs  Set of time-shiftable appliances
PSAs  Set of power-shiftable appliances

NSAs  Set of non-shiftable appliances

Indices

h Time interval index

a Household appliances’ index
S Start time index

e End time index

n Number of appliances
Functions



f1 Electrical peak load function

f2 Electricity cost function

Variables

EPL Electrical peak load

ch Energy consumption of appliance a in a particular hour h

ch Total energy consumption in hour h

ul Binary variable: if time-shiftable appliance a operates in hour h, u = 1; otherwise,
ul =0

U, Binary integer vector of u

Parameters

DR, Daily requirements of energy for appliance a

h} Operation start time of appliance a

h¢ Operation end time of appliance a

Dy Fixed hourly energy consumption of non-shiftable appliance a
Pa Minimum energy consumption of power-shiftable appliance a
Da Maximum energy consumption of power-shiftable appliance a
ph Fixed energy consumption of appliance a in hour h

P, Fixed energy consumption pattern of time-shiftable appliance a

ptotal  Fixed consumption pattern of time-shiftable appliance a

th Electricity tariff for hour h

1. Introduction



Increasing population, urbanization, industrialization and technological developments
throughout the world have increased energy consumption intensively. Increase in energy use has
caused problems including depleting energy sources and creating pollution due to energy
production process. For the solution of these basic energy issues, traditional grids are being
transformed into smart grids (SG), which could be defined as the grid infrastructure that
optimizes the energy efficiency while lowering both the energy sources' installation expenses and
pollution effects on the environment (Ozkan, 2016). A research area that has been very popular
within SGs is demand side management (DSM), as shown by the increasing number of
publications over the recent years (Galvan-Lopez et al., 2014); More than 2000 scientific papers
have been published in this area since the 1980s, with more than half in the recent decade
(Galvan-Lopez et al., 2015).

DSM technique mainly relies on matching present generation values with demand by
controlling the energy consumption of appliances and optimizing their operation at the user side
(for instance, by shifting appliances such as dishwashers, washing machines and dryers from
peak time to off-peak time).

The importance of energy usage optimization in a smart house can be inferred from the
statistical information, which indicates that the electricity consumption in the residential sector
represents over 27% of the global energy consumption in 2014 (Ministry of Energy of Iran,
2016). Therefore, a large number of research efforts have been devoted to the application of
DSMs in the residential sector (Tascikaraoglu, Boynuegri & Uzunoglu, 2014; Esther & Kumar,
2016). For example, a mixed integer linear programming (MILP) model was formulated by Sou
et al. (2011) to minimize the total electricity cost for operating the appliances. The cost
calculation was based on a given 24-hour ahead electricity tariff. Tascikaraoglu et al. (2014) put

forward a scheduling approach of operation and energy consumption of various electrical
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appliances in a grid-connected smart home system, which utilized wind and solar power
predictions, electricity tariff information, states of storage systems and load priorities for deciding
the optimal operation times of appliances. It was aimed to minimize the monetary expenses with
autonomous decisions while avoiding to buy electricity at high-price times by shifting the
deferrable loads to the times with higher renewable energy potential and/or with cheaper
electricity price. Gottwalt et al. (2011) introduced an algorithm that simulated residential load
shifting under time of use (TOU) regimes using previously generated profile data to model
realistic demand response behavior. Different groups of household appliances were included into
the model with their technical and practical usage patterns and operation constraints. Giorgio and
Pimpinella (2012) addressed the design of a smart home controller strategy providing efficient
management of electric energy in a domestic environment. The problem was formalized as an
event driven binary linear programming problem, the output of which specified the best time to
run smart household appliances under a virtual power threshold constraint, taking into account
the real power threshold and the forecast of consumption from non-plannable loads. Ma et al.
(2016) proposed an optimization power scheduling scheme to implement demand response in a
residential unit when the electricity price was announced in advance. Adika and Wang (2014)
presented appliance scheduling and smart charging techniques for household electricity
management. They proposed an intelligent energy management framework that can be used to
implement both energy storage and appliance scheduling schemes. Two variants of evolutionary
algorithms were used by Galvan-Lopez et al. (2014) to search for efficient charging schedules for
fleets of electric vehicles (EVs); they achieved good results in terms of reducing peak demand
and reducing consumers' electricity costs, while maintaining a high overall state of charge of
EVs' batteries. Chavali et al. (2014) described a distributed framework for demand response

based on cost minimization. Each user in the system could find an optimal start time and
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operating mode for the appliances in response to the varying electricity prices. Galvan-Lopez et
al. (2014) surveyed the use of Monte Carlo tree search in SG technologies with the ultimate goal
of learning the optimal times to switch electric devices on or off to minimize electricity cost by
learning and predicting the electricity price based on a pricing history in a dynamic price
environment. A MILP model was put forward by Steen et al. (2016) to schedule the load demand
for residential customers with the objective being minimization of their electricity cost. Bae et al.
(2014) focused on a system architecture and an algorithm for DSM using information and
communications technology (ICT). As the first step, the objective function was based on
electricity bill, and the usage pattern was formulated. Then the electricity bill was minimized, and
the usage similarity was maximized. In the second step, a load balancing algorithm was applied
to avoid blackout and to minimize rebound peak. Mesaric and Krajcar (2015) developed a mixed-
integer program to reach maximum amount of renewable energy sources, scheduling optimal
power and operation time for EVs and appliances. Muralitharan et al. (2016) presented a multi-
objective evolutionary algorithm, which resulted in the cost reduction for energy usage and
minimizing the waiting time for appliance execution. Pallotti et al. (2013) discussed the use of
genetic algorithm (GA) to find the optimal planning of energy consumption inside 246 smart
homes in a neighborhood. For this purpose, a multi-objective optimization problem was
formulated aiming at reducing the peak load as well as minimizing the energy cost and its impact
on the users’ satisfaction. An appliance control algorithm, called appliance-based rolling wave
planning, was developed by Ozkan (2016) with the aim of reducing electricity cost and
improving energy efficiency while maintaining user comfort. Vardakas et al. (2014) presented
and analyzed four power-demand scheduling scenarios that aimed to reduce the peak demand in a
smart grid infrastructure. Caprino et al. (2015) addressed an approach to the peak shaving

problem that leveraged the real-time scheduling discipline to coordinate the
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activation/deactivation of a set of loads. A multi-objective mixed integer nonlinear programming
(MOMINLP) model was developed by Anvari-Moghaddam and Rahimi-Kian (2015) for optimal
energy use in a smart home, considering energy saving and a comfortable lifestyle. EIma and
Selamogullari (2015) introduced a home energy management algorithm for smart home
environments to reduce peak demand and increase the energy efficiency. A system that produced
a real time solution to reduce the electricity cost and to avoid the high peak demand problem for a
smart home which, was equipped with smart electrical appliances, power units, a communication
network and a main controller was proposed by Ozkan (2015). Bradac et al. (2015) focused on an
optimal scheduling of domestic appliances by using MILP. The aim of the proposed scheduling
was to minimize the total energy price paid by the consumer. Missaoui et al. (2014) developed a
global model based on anticipative building energy management system in order to optimize a
compromise between user comfort and energy cost by taking into account occupant expectations
and physical constraints like energy price and power limitations. A mixed-integer nonlinear
programming (MINLP) approach was used by Lu et al. (2015) to solve the optimal scheduling
problems of energy systems in the buildings integrated with energy generation and thermal
energy storage. The optimal scheduling strategy minimized the overall operation cost day-ahead,
including the cost of operation energy and the cost concerning the plant on/off penalty. Zhang et
al. (2015) proposed an MILP model to schedule the energy consumption within smart homes by
coupling the environmental and economic sustainability in a multi-objective optimization with &-
constraint method that employed electricity tariff and CO; intensity profiles of UK and obtained
the Pareto curve for cost and CO2 emissions in order to present the trade-off between the two
conflict objectives. A smart home energy management model was developed by Shirazi et al.
(2015) in which electrical and thermal appliances were jointly scheduled. The proposed method

aimed at minimizing the electricity cost of a residential customer by scheduling various types of
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appliances considering the residents” consumption behavior, seasonal probability, social random
factor, discomfort index and the appliances’ starting probability functions. Ogunjuyigbe et al.
(2017) suggested a demand side load management technique that was capable of controlling
loads within the residential building in such a way that the user satisfaction was maximized at
minimum cost.

A short review of the existing literature reveals that most of the articles exploring a residential
DSM model focus on minimizing electricity cost (Ozkan, 2016; Galvan-Lopez et al., 2014; Sou
et al., 2011; Gottwalt et al., 2011; Giorgio & Pimpinella, 2012; Ma et al., 2016; Adika & Wang,
2014; Chavali, Yang & Nehorai, 2014; Steen, Tuan & Carlson, 2016; Missaoui et al., 2014; Lu et
al., 2015; Zhang et al., 2015; Shirazi, Zakariazadeh & Jadid, 2015; Ogunjuyigbe, Ayodele &
Akinola, 2017) or minimizing electrical peak load (Ozkan, 2016; Galvan-Lopez et al., 2014) for
a home energy management unit (Caprino, Vedova & Facchinetti, 2015; Anvari-Moghaddam &
Rahimi-Kian, 2015; Tascikaraoglu, Boynuegri & Uzunoglu, 2014; Sou et al., 2011; Gottwalt et
al., 2011; Giorgio & Pimpinella, 2012; Ma et al., 2016; Bae et al., 2014; Mesaric & Krajcar,
2015; Muralitharan, Sakthivel & Shi, 2016; Caprino, Vedova & Facchinetti, 2015; Anvari-
Moghaddam & Rahimi-Kian, 2015; Elma & Selamogullari, 2015; Ozkan, 2015; Bradac,
Kaczmarczyk & Fiedler, 2015; Missaoui et al., 2014; Lu et al., 2015; Zhang et al., 2015). In this
research, we propose an MOMILP model to minimize electrical peak load and electricity cost
simultaneously considering the users’ preferences and for a residential area with multiple
households.

The paper is organized as follows: Section 2 introduces system architecture. Multi-objective
optimization model for appliance scheduling is explained in Section 3. Applicability of the
proposed model is provided in Section 4. Section 5 shows the simulation results. Finally,

conclusions are presented in Section 6.



2. System architecture

In this section, we provide smart grid residential system architecture. The overall system
architecture is depicted in Fig. 1. The predominant component is the smart home controller
(SHC), which is responsible for managing the appliances inside the house in order to achieve the
objectives such as minimizing the electrical peak load along with minimizing the electricity cost
based on TOU tariffs, appliance specifications, and the information collected from the consumer
preferences. SHC can monitor and control appliances by means of communication networks like
general packet radio service (GPRS), wireless fidelity (WiFi) or long term evolution (LTE).

Home appliances are categorized in three classes based on their intrinsic characteristics:

1) Time-shiftable appliances (TSAS)

TSAs such as washing machines can be shifted in time. SHC generates scheduled starting
commands to turn them on. These loads consume electric power according to their power.

2) Power-shiftable appliances (PSAS)

PSAs consume electric energy in a certain range between their minimum and maximum
power. Most of rechargeable devices like electric vehicles are included in this category. SHC
decides how much energy these loads consume in their working period.

3) Non-shiftable appliances (NSAs)
For NSAs such as lights, which have fixed power consumption requirement and working

period, SHC considers their energy consumption according to the consumer preferences.

3. Multi-objective optimization model for demand side management
The load scheduling mechanism can be described as a MOMILP model, which aims to

minimize the electrical peak load and the electricity cost simultaneously, as shown below:

min f; = EPL )
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The objectives of the above optimization problem are to minimize the hourly load EPL and to
minimize the electricity cost, subject to the constraints (6)-(14). The hourly load should be
greater than or equal to the sum of the scheduled power for all appliances at each hour (constraint
(7)). To make sure that the energy phases fulfill their energy requirements, the constraint (8) is
imposed. For non-shiftable appliances, the hourly power requirement is fixed at p; during its
working period from h} to h¢ (constraint (9)). The household user can set up the time preference

constraints, specifying the time interval a particular appliance must be started and finished within.
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Alternatively, this means that the PSAs cannot be run outside of the time preference interval. The
constraints are written as (10). The constraints (11)-(13) are used to model the TSAs’ power
consumption. A TSA power consumption can be presented as P, = [p} pZ - pZ*]T. The
operation can be postponed but the power consumption pattern should remain the same. Hence,
the scheduling result ¢, has to be exactly the same as one of the cyclic shifts of the pattern p,.
All possible shifts can be put together in a matrix as in Eq. (11). The binary integer vector
U, =[ul u?2 - u2*]7 is defined as switch control for the TSA. There is only one non-zero
element in vector U,, which is equal to one. Vector U, is an optimization parameter that chooses
the appropriate column of Pf°t to optimize the energy consumption. According to constraint
(14), the power consumption c* must be non-negative value.

The model is solved for a residential area with multiple households. However, because of their
different time of use preferences, their energy consumption behavior varies. The various
consumption patterns for all households are monitored over discrete hourly intervals h in a total
observation period H. It is further assumed that every household can define its time of use
preferences via a smart scheduling device embedded in its smart meter to coordinate the
appliances’ electricity expenditure. Denoting the hourly electricity requirement for each
appliance a € A as c!, the power demand for the customer is computed as an aggregate power
for all appliances in each time slot over H [9].

The SHC planning problem is a MOMILP problem that can be solved by well-established
methods. Goal programming (GP) has been a popular theoretical method for dealing with
multiple objective decision making problems. The basic approach of goal programming is to
establish a specific numeric goal for each objective, and then seeking for a solution that

minimizes the sum of deviations of these objective functions from their respective goals.
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Moreover, in the literature, branch-and-cut method is presented as very successful techniques for
solving a wide variety of integer programming problems providing a guarantee of optimality [8].
The above model is solved using both GP and branch-and-cut methods. By using GP method,
two objectives are converted into a single goal, and by using branch-and-cut method the MILP

model is solved.

4. Applicability of the proposed model

To evaluate the performance of the proposed model, the daily electricity use of four
households in Tehran (capital of Iran), each with a set of different household appliances as listed
in Tables 1-4, is simulated. It is worth mentioning each day is divided into 30-minute slots and
simulations are performed by using GAMS/ CPLEX solver.

As discussed throughout the paper, we are interested in minimizing the electrical peak load,
while at the same time minimizing the electricity cost for a residential area. Thus, we focused our
attention on the performance of the proposed approach by analyzing six scenarios according to
Table 5. The first scenario is based on minimizing the electrical peak load for each household.
The second scenario includes minimizing the electricity cost for each household where each user
independently minimizes his/her own cost. The third scenario is based on minimizing both the
electrical peak load and the electricity cost for each household. The next three scenarios are
similar to the first three scenarios except that the model runs for all four households at the same

time.

4.1. Tariffs

There are two types of demand response mechanisms: one is based on pricing of tariff and the
other is based on incentives for the consumer. In TOU tariffs mechanism, the tariffs are charged
according to the time it is used. In a day, the time slots are divided as peak, off-peak and mid-
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peak. The rate of electricity changes in accordance with the time. This mechanism allows
consumers to shift their activities to off-peak and mid-peak periods, thereby achieving financial
savings. TOU usually leads to changes in consumption patterns. These TOU rates could be
different for summer and winter as the consumption patterns also vary with season, leading to
different peak periods (Thakur & Chakraborty, 2016). In this work, TOU, which is the most
commonly utilized form of time-variant pricing, will be considered. Table 6 shows the
information about the tariff details in Iran. In order to encourage consumers to shift their
consumption from peak hours to mid-peak and off-peak usage times, the electricity price is lower
than the standard electric service rates during the mid-peak and off-peak hours; however, during
the peak hours, the prices are higher. After calculating the cost of electricity based on Table 6, an
extra cost for peak hours or discount for mid-peak and off-peak times is calculated as follows:
Discount for off-peak hours (2 am-10 am)=Electricity consumption (kWh)x0.68 (Cent) (@)
Discount for mid-peak hours (12 am-2 am, 10 am-8 pm)=

Electricity consumption (kWh)x0.27 (Cent) (2)
Extra cost for peak (8 pm-12 am) hours =Electricity consumption (kWh)x1.36 (Cents) 3

It is worthy to mention that in Iran, the electricity price varies in different sectors, cities and
months. In this research, the electricity tariffs of residential sector in Tehran in September of
2015 are considered (Ministry of Energy, 2016). It should be noted that the official currency in
Iran is Rial, and we have assumed one US dollar as equal to 30000 Rials. The TOU tariff is

applied for billing. It is assumed that consumers select an appropriate schedule for the operation

time of their appliance according to above three different tariffs to reduce the energy bill.

5. Simulation results

13



The obtained results have been represented for all scenarios. The first simulation is about
Scenario 1. The aim of this simulation is to show how SHC plans the smart appliances’ start
times assuring overload management for each household separately. The second simulation
concerns Scenario 2. The aim of this simulation is to show how SHC plans the smart appliances’
start times assuring cost management for each household separately. The third simulation is about
Scenario 3. The aim of this simulation is to show how SHC plans smart appliances’ start times in
such a way to optimize cost, while assuring overload management for each household separately.
The next three simulations extend simulations 1-3 to Scenarios 4-6. The aim of these simulations
is to show how SHC reacts to a DSM event by performing a new planning and checking for
consumer convenience, while assuring overload/cost management for all households at the same
time.

The schedules of the hourly electricity consumptions under Scenarios 1-3 are shown in Fig. 2.
According to Scenario 3, the appliance profiles are smoother; while under Scenarios 1 and 2, the
appliance profiles have one or more spikes. Scenario 1 tries to avoid peak hours; hence, it shifts
the start time of appliances to the hours in which the price might be higher. Scenario 2 attempts
to reduce cost; consequently, the start time of appliances shifts to the hours in which the price is
lower. Since avoiding peak load is not important in this scenario, the start time of some
appliances would be the same, causing the peak load to increase in those periods.

As mentioned in the previous section, Scenarios 3-6 are multi-user scenarios when the users
adopt a coalitional approach. Such scenarios are provided to exhibit the scalability potential of
the proposed method. On the other hand, in the present work, we have limited the number of
coordinated households to four to simplify the presentation. Fig. 3. shows the schedules of the
hourly electricity consumptions under Scenarios 4-6. As it can be seen, similar to Scenario 1,

Scenario 4 intends to reduce the peak load with the difference that it tries to reduce the entire
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peak load for all the four households simultaneously. It is clearly beneficial for both the capital
cost reduction and the stability of the power grid. Scenario 5 intends to lower the entire electricity
cost for all the four households. As in this scenario, just cost reduction is important, the peak load
of some households (e.g. household 1) is very high (above 4 kW). Scenario 6 attempts to
decrease electrical peak load and electricity cost simultaneously. In this scenario, the appliance
profiles are smoother, and similar to Scenario 3, there is not any high peak load.

The comparison of peak load (in kW) and cost (in $/month) for all the 6 scenarios is
demonstrated in Fig. 4. Moreover, Fig. 5. illustrates the schedule of the hourly electricity
consumption in a day for all households under Scenarios 1-6. Referring to Fig. 4. under Scenarios
1 and 4, the electricity cost for all the four households is higher than in the other scenarios.
Furthermore, under Scenarios 2 and 5, the peak load of some households increases more than that
of other scenarios. Although under Scenario 3, for some households like household 1, both the
peak load and the electricity cost reduce more compared to Scenario 6, as shown in Fig. 5., the
peak load for all households is reduced significantly under Scenario 6 in comparison to Scenario
3.

Table 7 details the reduction of electrical peak load and electricity cost in each scenario. By
comparing the results of Scenarios 1-6, it can be noticed that the electrical peak load in Scenario
6 is lower than in Scenarios 1, 2, 3 and 5 by 11.2%, 33.8%, 36% and 48.6%, respectively.
Moreover, comparing the results of Scenarios 4 and 6 reveals that the electricity cost for all
households in Scenario 4 is 1.45% higher than that in Scenario 6. Therefore, Scenario 6 is
recommended as the most suitable and the preferred one. By looking at this scenario from the
viewpoint of a utility company, peak load reductions, as well as load shifting from peak hours to

mid-peak and off-peak hours are achieved, and from the viewpoint of customers, substantial cost
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reductions are obtained. It is clear when the number of households in the residential area
increases, more peak load and cost reduction can be achieved by applying this method.

Figs. 2-5 depict optimal schedule for each household according to Scenario 6. They clearly
show how the energy consumption of time-shiftable and power-shiftable appliances is managed
by DSM. Time-shiftable appliances like washing machine and dish washer are postponed from
the afternoon to the morning periods, so the functionality of the household is preserved, since the
work is done. Power-shiftable appliances such as electric vehicles and water pumps are charged
more in the off-peak periods, as the demand is satisfied. Both of the mentioned appliance

categories represent enormous potential to manage electrical peak load and electricity cost.

6. Conclusions

In this paper, the SHC planning problem for energy management in a residential area with
multiple households was considered. The problem was formulated as an event driven binary
linear programming problem, in which the decision variables represented the start times of
appliances. The proposed model takes advantage of lower-cost pricing in the mid-peak and off-
peak hours, and at the same time, reduces peak demand for residential households.

To verify the efficiency and robustness of the proposed model, a number of simulations were
performed under different scenarios using real data, and the obtained results were compared in
terms of total electricity cost and electrical peak load. The simulation results demonstrated the
effectiveness of the mechanism.

In conclusion, this work provides a proof of concept about the advantages coming from the
use of centralized energy management systems in residential areas, showing the possible benefits

for both consumers and utility companies simultaneously.

16



Acknowledgement

This research was supported by Iran National Science Foundation, Tehran, Iran.

References

Adika, C.O0. & Wang, L. (2014). Smart charging and appliance scheduling approaches to
demand side management, Electrical Power and Energy Systems, 57, 232—-240.

Anvari-Moghaddam, A., Rahimi-Kian, A. (2015). Optimal Smart Home Energy Management
Considering Energy Saving and a Comfortable Lifestyle, IEEE Transactions on Smart Grids,
6(1), 324-332.

Bae, H., Yoon, J., Lee, Y., Lee, J., Kim, T., Yu, J. & Cho, S. (2014). User-Friendly Demand
Side Management for Smart Grid Networks, In: Proceedings of International Conference on the
Information Networking (ICOIN), 481 -485.

Bradac, Z., Kaczmarczyk, V. & Fiedler, P. (2015). Optimal Scheduling of Domestic
Appliances via MILP, Energies, 8, 217-232.

Caprino, D., Vedova, M.L.D. & Facchinetti, T. (2015). Peak shaving through real-time
scheduling of household appliances, Applied Energy, 142, 164-178.

Chavali, P., Yang, P. & Nehorai, A. (2014). A Distributed Algorithm of Appliance Scheduling
for Home Energy Management System, In: Proceedings of the IEEE Transactions on Smart Grid,
282-290.

Elma, O. & Selamogullari, U.S. (2015). A new home energy management algorithm with

voltage control in a smart home environment, Energy, 91, 720-731.

17



Esther, B.P. & Kumar, K.S. (2016). A survey on residential Demand Side Management
architecture, approaches, optimization models and methods, Renewable and Sustainable Energy
Reviews, 59, 342-351.

Galvan-Lopez, E., Curran, T., McDermott, J. & Carroll, P. (2015]|). Design of an autonomous
intelligent Demand-Side Management system using stochastic optimisation evolutionary
algorithms, Neurocomputing, 170, 270-285.

Galvan-Lopez, E., Harris, C., Trujillo, L., Rodriguez-Vazquez, K., Clarke, S. & Cahill, V.
(2014). Autonomous Demand-Side Management System Based on Monte Carlo Tree Search, in:
Proceedings of the 2014 IEEE International Energy Conference (ENERGYCON), 1263 — 1270.

Giorgio, A.D. & Pimpinella, L. (2012). An event driven Smart Home Controller enabling
consumer economic saving and automated Demand Side Management, Applied Energy, 96, 92—
108.

Gottwalt, S., Ketter, W., Block, C., Collins, J. & Weinhardt, C. (2011). Demand side
management—A simulation of household behavior under variable prices, Energy Policy, 39,
8163-8174.

Lu, Y., Wang, S., Sun, Y. & Yan, C. (2015). Optimal scheduling of buildings with energy
generation and thermal energy storage under dynamic electricity pricing using mixed-integer
nonlinear programming, Applied Energy, 147, 49-58.

Ma, K., Yao, T., Yang, J. & Guan, X. (2016). Residential power scheduling for demand
response in smart grid, Electrical Power and Energy Systems, 78, 320-325.

Mesaric, P. & Krajcar, S. (2015). Home demand side management integrated with electric
vehicles and renewable energy sources, Energy and Buildings, 108, 1-9.

Ministry of Energy of Iran. (2016). Iran’s energy balance sheet in 2014, Available at:

http://pep,moe.org.ir [Accessed 11 October 2016].
18



Ministry of Energy, Electricity tariffs. Available at: http://tariff.moe.gov.ir/ [Accessed 14
April 2016].

Missaoui, R., Joumaa, H., Ploix, S. & Bacha, S. (2014). Managing energy Smart Homes
according to energy prices: Analysis of a Building Energy Management System, Energy and
Buildings, 71, 155-167.

Muralitharan, K., Sakthivel, R. & Shi, Y. (2016). Multiobjective optimization technique for
demand side management with load balancing approach in smart grid, Neurocomputing, 177,
110-1109.

Ozkan, H.A. (2015). A new real time home power management system, Energy and Buildings,
97, 56-64.

Ogunjuyigbe, A.S.O., Ayodele, T.R. & Akinola, O.A. (2017). User satisfaction-induced
demand side load management in residential buildings with user budget constraint, Applied
Energy, 187, 352-366.

Ozkan, H.A. (2016). Appliance based control for Home Power Management Systems, Energy,
114, 693-707.

Pallotti, E., Mangiatordi, F., Fasano, M. & Vecchio, P.D. (2013). GA strategies for optimal
planning of daily energy consumptions and user satisfaction in buildings, In: Proceedings of 12th
International Conference on Environment and Electrical Engineering (EEEIC), 440-444.

Shirazi, E., Zakariazadeh, A. & Jadid, S. (2015). Optimal joint scheduling of electrical and
thermal appliances in a smart home environment, Energy Conversion and Management, 106,
181-193.

Sou, K.C., Weimer, J., Sandberg, H. & Johansson, K.H. (2011). Scheduling Smart Home

Appliances Using Mixed Integer Linear Programming, In: Proceedings of the 50th IEEE

19



Conference on Decision and Control and European Control Conference (CDC-ECC), 5144 -
5149.

Steen, D., Tuan, L.A. & Carlson, O. (2016). Effects of Network Tariffs on Residential
Distribution Systems and Price-Responsive Customers Under Hourly Electricity Pricing, IEEE
Transactions on Smart Grid, 7(2), 617-626.

Tascikaraoglu, A., Boynuegri, A.R. & Uzunoglu, M. (2014). A demand side management
strategy based on forecasting of residential renewable sources: A smart home system in Turkey,
Energy and Buildings, 80, 309-320.

Thakur, J. & Chakraborty, B. (2016). Demand side management in developing nations: A
mitigating tool for energy imbalance and peak load management, Energy, 114, 895-912.

Vardakas, J.S., Zorba, N. & Verikoukis, C.V. (2014). Performance evaluation of power
demand scheduling scenarios in a smart grid environment, Energy and Buildings, 75, 133-148.

Zhang, D., Evangelisti, S., Lettieri, P. & Papageorgiou, L.G. (2015). Energy Consumption
Scheduling of Smart Homes with Microgrid under Multi-objective Optimisation, Computer

Aided Chemical Engineering, 37, 2441-2446.

20



ACCEPTED MANUSCRIPT

Power-shiftable

appliances
User Non-shiftable Smart home
preferences appliances controller
Time-shiftable
appliances

Fig. 1. System architecture.

21



25

N

Power (kW)
=
(4]

[N

05

Power (kW)

Fig. 2. Schedule of the hourly electricity consumption in a day for each

Household 1

Scenario 1
Scenario 2
Scenario 3

I_LI
|

2 4 6 8 10 12 14 16 18 20 22 24
Time (hours)
Household 3
Scenario 1
T Scenario 2
J ‘ Scenario 3
2 4 6 8 10 12 14 16 18 20 22 24

Time (hours)

Scenarios 1-3.

22

25

Power (kW)
=
(S, N

[

o
3

25

Power (kW)
i
= o N

o
3

Household 2
Scenario 1
i Scenario 2
Scenario 3
0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hours)
Household 4
Scenario 1
] Scenario 2
Scenario 3
0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hours)

household under



Household 1 Household 2

45 25
4 Scenario 4 Scenario 4
Scenario 5 2 Scenario 5
35 Scenario 6 —I Scenario 6
g 3 s
< 25 A < 15 1 u
= -—— = —
2 C 1 : | | ]
& 15 [_ & 1 LI » —
1 A |
05 A
05 - L] | |
0 o 4

0o 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hours) :
Time (hours)

Household 3 Household 4
2 3
18 A Scenario 4 Scenario 4
16 1 Scenario5 25 4 Scenar!os
) Scenario 6 Scenario 6

L AR | E I N
s 1P N O;jJ-_'_IJuWi]W

0 2 4 6 8 10 12 14 16 18 20 22 24 0o 2
Time (hours)

Power (kW)

Power (|

4 6 8 10 12 14 16 18 20 22 24
Time (hours)

Fig. 3. Schedule of the hourly electricity consumption in a day for each household under
Scenarios 4-6.

23



-
-
c
O
w
=
=
=
=
1l
=
o
i
3
g

Household 2

Household 1

(puowy$)1s00

0 N~ ©o n <t o™ o — o
© o ©o o © o ©o o ©
[ 1 1
£g
|
[e) '
[ [,
;
|
|
|
"
......... -
;
:
......... L
;
|
|
:
|
......... -
;
|
1
......... -
;
1
|
|
|
m “ _
o™ o~ - o
(A1) peop yesd
(Uruow/$) 1500
[Te) < o™ N — o
o o o o o o
- - Ll - - Ll
+ + t
!
|
N IR Y AP R —
1 1 1 1
1 1 1 1
1 1
1 1
1 1
||||| L
1 1 1 1
1 1
1 1
1 1
1 1 1
1 1 1
n <t o N i o

(M) peo)>ead

Scenarios

Scenarios

Household 4

Household 3

(ysuow/$) 1500
~ © [Te) <
o o ©o ©
2 m ;
% 1
I m R |“| ||||||||||||||||
o o~ — o
(M) peojesd
(Yruowys) 1800
[ee] ~ o
< < <
£z
% ]
R T AU
......... -
o N — o

(M) peoj>ead

Scenarios

Scenarios

Fig. 4. Peak load and cost comparison among different scenarios.

24



ACCEPTED MANUSCRIPT

[
o

scenario 1
scenario 2
scenario 3
scenario 4
scenario5
cms sceNario 6

e

Power (kW)

o P N W A~ OO0 O N 0 ©
TR TR TR S S N S T

=

gl

10 12 14 16 18 20 22 24
Time (hours)

o
[a ]
S~ A
»
[ee]

Fig. 5. Schedule of the hourly electricity consumption in a day for all households under
Scenarios 1-6.

25



Household 1

2
WM DW Miron
EV mwp AC
MRefrigerator’ Oven mTV
) | T ] T
g
g,
&
1
0
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (hours)
Household 2
15 T T T T T T T T T
WM vC Ewp
MiRefrigerator ~ Light Miron
||
g
]
s
o
o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (hours)
Household 3
15 T I
: : : WM MHairdryer EWP
MRefrigerator M Treadmill Light
Light BMixer TV
\
= 17 ‘ v
2
=3
g
o
o
51T % BB & B 8K < B
0 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (hours)
Household 4
15 T T T i H i
A Wi ve
MRefrigerator IPC
Miron @Hairdryer
g
)
s
o
o
0.5 A

1 2 3 4 5 6 7 8

9 10 11 12 13 14
Time (hours)

15 16

Fig. 6. Optimal schedule for households.

26

17 18 19 20 21 22 23 24




Table 1

Appliances and power consumption patterns for household 1.

TSAS

Preferred time range

Duration (hour)

Power range (kW)

Washing machine (WM) 24 hours 2 For the 1% hour: 1
For the 2" hour: 1
Dish washer (DW) 24 hours 2 For the 1% hour: 1
For the 2" hour: 0.8
Iron 6 am-6:30 am or 0.5 1.4
6 pm-11 pm
NSAs Preferred time range  Duration (hour) Power range (kW)
Air conditioner (AC) 10 am-8 pm 10 15
Refrigerator 12 am-12 pm 24 0.104
Oven 6 am-6:30 and 1 0.9
8 pm-8:30 pm
TV 9 pm-12 pm 3 0.16
PSAs Preferred time range  Daily energy requirement  Power range (kW)

Electric vehicle (EV)

Water pump (WP)

8 pm-9 am

24 hours

4 kWh

7 kWh

0.1-1.6

0.125-0.9
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Table 2

Appliances and power consumption patterns for household 2.

TSAS

Preferred time range

Duration (hour)

Power range (kW)

Washing machine

Vacuum cleaner (VC)

11 am-12 pm or
12 pm-1 pm
10 am-10:30 am or

11 am-11:30 pm

1

0.5

1.3

1.2

NSAs Preferred time range Duration (hour) Power range (kW)
Refrigerator 12 am-12 pm 24 0.13
Light 6 am-10 am and 9 0.6
5 pm-10 pm
Iron 6 am-6:30 am and 0.5 1.25
1 pm-1:30 pm
TV 9 pm-11 pm 2 0.15
PSAs Preferred time range Daily energy requirement Power range (kW)
Water pump 24 hours 10 kW 0.2-1.2
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Table 3

Appliances and power consumption patterns for household 3.

TSAs Preferred time range Duration (hour) Power range (kW)
Washing machine 2 pm-8 pm 0.5 1.5

Vacuum cleaner 3 pm-7 pm 0.5 0.5

Hairdryer 3 pm-5pm 0.5 1.8

NSAs Preferred time range Duration (hour) Power range (kW)
Refrigerator 12 am-12 am 24 0.14

Treadmill 9 pm-10 pm 1 0.28

Light 1 6 am-9 am 3 0.1

Light 2 6 pm-11 pm 5 0.2

Mixer 5 pm-5:30 pm 0.5 0.25

PSAs Preferred time range Daily energy requirement  Power range (kW)
Water pump 24 hours 10 kW 0.2-1.2
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Table 4

Appliances and power consumption patterns for household 4.

TSAS

Preferred time range

Duration (hour)

Power range (kW)

Washing machine

Vacuum cleaner

8 am-11 am

8 am-11 am

0.5

0.5

1.5

1.1

NSAs Preferred time range Duration (hour) Power range (kW)
Refrigerator 12 am-12 am 24 0.13

PC 8 am-1pm 5 0.2

Light 5 pm-11 pm 6 0.76

Iron 9 am-10 am 1 0.5

Hairdryer 4 pm-4:30 pm 0.5 1

TV 5 pm-10 pm 5 0.14

PSAs Preferred time range Daily energy requirement  Power range (kW)
Water pump 24 hours 10 kW 0.2-1.2
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Table 5

The specifications of scenarios.

Scenario Households Peak load Cost Peak load and cost

Individually  All together ~ minimization = minimization  minimization

1 * *
2 * *

3 * *
4 * *

5 * *

6 * *
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Table 6

Electricity tariffs in Tehran (September 2015) [25].

Electricity consumption  Electricity prices

(kWh/month) (Cents/kWh)
0-100 1.36
100-200 1.59
200-300 3.41
300-400 6.14
400-500 7.05
500-600 8.87
>=600 9.78

32



Table 7

A summary of simulation results.

Electrical peak load Electricity costs for each
Electricity costs for all
Scenario for all  households household ($/month)
households ($/month)
(kW) 1 2 3 4
1 5.10 279.63 102.56 64.96 46.90 65.20
2 6.84 276.37 100.61 64.77 46.43 64.56
3 7.08 276.82 101.06 64.77 46.43 64.56
4 4.53 281.65 102.01 65.74 47.68 66.22
5 8.82 276.37 100.61 64.77 46.43 64.56
6 4.53 277.63 101.47 64.86 46.49 64.80
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