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Highlights 

 SHC planning problem for energy management in a residential area is considered. 

 A multi-objective mixed integer linear programming model is developed. 

 Objectives include minimization of peak load and minimization of cost. 

 Simulation results for six different scenarios with different objectives are provided. 

 

Abstract 

    Demand side management (DSM) is one of the most interesting areas in smart grids, and 

presents households with numerous opportunities to lower their electricity bills. There are many 

recent works on DSM and smart homes discussing how to keep control on electricity 

consumption. However, systems that consider minimization of peak load and cost simultaneously 

for a residential area with multiple households have not received sufficient attention. This study, 

therefore, proposes an intelligent energy management framework that can be used to minimize 

both electrical peak load and electricity cost. Constraints, including daily energy requirements 

and consumer preferences are considered in the framework and the proposed model is a multi-
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objective mixed integer linear programming (MOMILP). Simulation results for different 

scenarios with different objectives verified the effectiveness of the proposed model in 

significantly reducing the electricity cost and the electrical peak load.  

Keywords: Demand side management; Smart homes; Load scheduling; Time of use tariffs; 

Optimization 

 

Nomenclature Symbols 

Sets 

A Set of appliances 

H Set of hours (24 hours in a day) 

T  Set of electricity tariff  

𝐶ℎ Set of 𝑐ℎs 

TSAs Set of time-shiftable appliances 

PSAs Set of power-shiftable appliances  

NSAs Set of non-shiftable appliances 

  

Indices  

h Time interval index  

a Household appliances’ index 

s Start time index 

e End time index 

n Number of appliances 

  

Functions 
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f1 Electrical peak load function 

f2 Electricity cost function 

  

Variables 

EPL  Electrical peak load 

𝑐𝑎
ℎ Energy consumption of appliance a in a particular hour h 

𝑐ℎ Total energy consumption in hour h 

𝑢𝑎
ℎ Binary variable: if time-shiftable appliance a operates in hour h,  𝑢𝑎

ℎ = 1; otherwise, 

𝑢𝑎
ℎ = 0 

𝑈𝑎 Binary integer vector of 𝑢𝑎
ℎ 

  

Parameters 

𝐷𝑅𝑎   Daily requirements of energy for appliance a 

ℎ𝑎
𝑠   Operation start time of appliance a 

ℎ𝑎
𝑒    Operation end time of appliance a 

𝑝𝑎
∗  Fixed hourly energy consumption of non-shiftable appliance a 

𝑝𝑎  Minimum energy consumption of power-shiftable appliance a 

𝑝𝑎 Maximum energy consumption of power-shiftable appliance a 

𝑝𝑎
ℎ   Fixed energy consumption of appliance a in hour h 

𝑃𝑎   Fixed energy consumption pattern of time-shiftable appliance a 

𝑃𝑎
𝑡𝑜𝑡𝑎𝑙   Fixed consumption pattern of time-shiftable appliance a   

𝑡ℎ Electricity tariff for hour h 

1. Introduction 
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Increasing population, urbanization, industrialization and technological developments 

throughout the world have increased energy consumption intensively. Increase in energy use has 

caused problems including depleting energy sources and creating pollution due to energy 

production process. For the solution of these basic energy issues, traditional grids are being 

transformed into smart grids (SG), which could be defined as the grid infrastructure that 

optimizes the energy efficiency while lowering both the energy sources' installation expenses and 

pollution effects on the environment (Ozkan, 2016). A research area that has been very popular 

within SGs is demand side management (DSM), as shown by the increasing number of 

publications over the recent years (Galvan-Lopez et al., 2014); More than 2000 scientific papers 

have been published in this area since the 1980s, with more than half in the recent decade 

(Galvan-Lopez et al., 2015). 

DSM technique mainly relies on matching present generation values with demand by 

controlling the energy consumption of appliances and optimizing their operation at the user side 

(for instance, by shifting appliances such as dishwashers, washing machines and dryers from 

peak time to off-peak time).  

The importance of energy usage optimization in a smart house can be inferred from the 

statistical information, which indicates that the electricity consumption in the residential sector 

represents over 27% of the global energy consumption in 2014 (Ministry of Energy of Iran, 

2016). Therefore, a large number of research efforts have been devoted to the application of 

DSMs in the residential sector (Tascikaraoglu, Boynuegri & Uzunoglu, 2014; Esther & Kumar, 

2016). For example, a mixed integer linear programming (MILP) model was formulated by Sou 

et al. (2011) to minimize the total electricity cost for operating the appliances. The cost 

calculation was based on a given 24-hour ahead electricity tariff. Tascikaraoglu et al. (2014) put 

forward a scheduling approach of operation and energy consumption of various electrical 
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appliances in a grid-connected smart home system, which utilized wind and solar power 

predictions, electricity tariff information, states of storage systems and load priorities for deciding 

the optimal operation times of appliances. It was aimed to minimize the monetary expenses with 

autonomous decisions while avoiding to buy electricity at high-price times by shifting the 

deferrable loads to the times with higher renewable energy potential and/or with cheaper 

electricity price. Gottwalt et al. (2011) introduced an algorithm that simulated residential load 

shifting under time of use (TOU) regimes using previously generated profile data to model 

realistic demand response behavior. Different groups of household appliances were included into 

the model with their technical and practical usage patterns and operation constraints. Giorgio and 

Pimpinella (2012) addressed the design of a smart home controller strategy providing efficient 

management of electric energy in a domestic environment. The problem was formalized as an 

event driven binary linear programming problem, the output of which specified the best time to 

run smart household appliances under a virtual power threshold constraint, taking into account 

the real power threshold and the forecast of consumption from non-plannable loads. Ma et al. 

(2016) proposed an optimization power scheduling scheme to implement demand response in a 

residential unit when the electricity price was announced in advance. Adika and Wang (2014) 

presented appliance scheduling and smart charging techniques for household electricity 

management. They proposed an intelligent energy management framework that can be used to 

implement both energy storage and appliance scheduling schemes. Two variants of evolutionary 

algorithms were used by Galvan-Lopez et al. (2014) to search for efficient charging schedules for 

fleets of electric vehicles (EVs); they achieved good results in terms of reducing peak demand 

and reducing consumers' electricity costs, while maintaining a high overall state of charge of 

EVs' batteries. Chavali et al. (2014) described a distributed framework for demand response 

based on cost minimization. Each user in the system could find an optimal start time and 
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operating mode for the appliances in response to the varying electricity prices. Galvan-Lopez et 

al. (2014) surveyed the use of Monte Carlo tree search in SG technologies with the ultimate goal 

of learning the optimal times to switch electric devices on or off to minimize electricity cost by 

learning and predicting the electricity price based on a pricing history in a dynamic price 

environment. A MILP model was put forward by Steen et al. (2016) to schedule the load demand 

for residential customers with the objective being minimization of their electricity cost. Bae et al. 

(2014) focused on a system architecture and an algorithm for DSM using information and 

communications technology (ICT). As the first step, the objective function was based on 

electricity bill, and the usage pattern was formulated. Then the electricity bill was minimized, and 

the usage similarity was maximized. In the second step, a load balancing algorithm was applied 

to avoid blackout and to minimize rebound peak. Mesaric and Krajcar (2015) developed a mixed-

integer program to reach maximum amount of renewable energy sources, scheduling optimal 

power and operation time for EVs and appliances. Muralitharan et al. (2016) presented a multi-

objective evolutionary algorithm, which resulted in the cost reduction for energy usage and 

minimizing the waiting time for appliance execution. Pallotti et al. (2013) discussed the use of 

genetic algorithm (GA) to find the optimal planning of energy consumption inside 246 smart 

homes in a neighborhood. For this purpose, a multi-objective optimization problem was 

formulated aiming at reducing the peak load as well as minimizing the energy cost and its impact 

on the users’ satisfaction. An appliance control algorithm, called appliance-based rolling wave 

planning, was developed by Ozkan (2016) with the aim of reducing electricity cost and 

improving energy efficiency while maintaining user comfort. Vardakas et al. (2014) presented 

and analyzed four power-demand scheduling scenarios that aimed to reduce the peak demand in a 

smart grid infrastructure. Caprino et al. (2015) addressed an approach to the peak shaving 

problem that leveraged the real-time scheduling discipline to coordinate the 
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activation/deactivation of a set of loads. A multi-objective mixed integer nonlinear programming 

(MOMINLP) model was developed by Anvari-Moghaddam and Rahimi-Kian (2015) for optimal 

energy use in a smart home, considering energy saving and a comfortable lifestyle. Elma and 

Selamogullari (2015) introduced a home energy management algorithm for smart home 

environments to reduce peak demand and increase the energy efficiency. A system that produced 

a real time solution to reduce the electricity cost and to avoid the high peak demand problem for a 

smart home which, was equipped with smart electrical appliances, power units, a communication 

network and a main controller was proposed by Ozkan (2015). Bradac et al. (2015) focused on an 

optimal scheduling of domestic appliances by using MILP. The aim of the proposed scheduling 

was to minimize the total energy price paid by the consumer. Missaoui et al. (2014) developed a 

global model based on anticipative building energy management system in order to optimize a 

compromise between user comfort and energy cost by taking into account occupant expectations 

and physical constraints like energy price and power limitations. A mixed-integer nonlinear 

programming (MINLP) approach was used by Lu et al. (2015) to solve the optimal scheduling 

problems of energy systems in the buildings integrated with energy generation and thermal 

energy storage. The optimal scheduling strategy minimized the overall operation cost day-ahead, 

including the cost of operation energy and the cost concerning the plant on/off penalty. Zhang et 

al. (2015) proposed an MILP model to schedule the energy consumption within smart homes by 

coupling the environmental and economic sustainability in a multi-objective optimization with ε-

constraint method that employed electricity tariff and CO2 intensity profiles of UK and obtained 

the Pareto curve for cost and CO2 emissions in order to present the trade-off between the two 

conflict objectives. A smart home energy management model was developed by Shirazi et al. 

(2015) in which electrical and thermal appliances were jointly scheduled. The proposed method 

aimed at minimizing the electricity cost of a residential customer by scheduling various types of 
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appliances considering the residents’ consumption behavior, seasonal probability, social random 

factor, discomfort index and the appliances’ starting probability functions. Ogunjuyigbe et al. 

(2017) suggested a demand side load management technique that was capable of controlling 

loads within the residential building in such a way that the user satisfaction was maximized at 

minimum cost.  

A short review of the existing literature reveals that most of the articles exploring a residential 

DSM model focus on minimizing electricity cost (Ozkan, 2016; Galvan-Lopez et al., 2014; Sou 

et al., 2011; Gottwalt et al., 2011; Giorgio & Pimpinella, 2012; Ma et al., 2016; Adika & Wang, 

2014; Chavali, Yang & Nehorai, 2014; Steen, Tuan & Carlson, 2016; Missaoui et al., 2014; Lu et 

al., 2015; Zhang et al., 2015; Shirazi, Zakariazadeh & Jadid, 2015; Ogunjuyigbe, Ayodele & 

Akinola, 2017) or minimizing electrical peak load (Ozkan, 2016; Galvan-Lopez et al., 2014)  for 

a home energy management unit (Caprino, Vedova & Facchinetti, 2015; Anvari-Moghaddam & 

Rahimi-Kian, 2015; Tascikaraoglu, Boynuegri & Uzunoglu, 2014; Sou et al., 2011; Gottwalt et 

al., 2011; Giorgio & Pimpinella, 2012; Ma et al., 2016; Bae et al., 2014; Mesaric & Krajcar, 

2015; Muralitharan, Sakthivel & Shi, 2016; Caprino, Vedova & Facchinetti, 2015; Anvari-

Moghaddam & Rahimi-Kian, 2015; Elma & Selamogullari, 2015; Ozkan, 2015; Bradac, 

Kaczmarczyk & Fiedler, 2015; Missaoui et al., 2014; Lu et al., 2015; Zhang et al., 2015). In this 

research, we propose an MOMILP model to minimize electrical peak load and electricity cost 

simultaneously considering the users’ preferences and for a residential area with multiple 

households.  

    The paper is organized as follows: Section 2 introduces system architecture. Multi-objective 

optimization model for appliance scheduling is explained in Section 3. Applicability of the 

proposed model is provided in Section 4. Section 5 shows the simulation results. Finally, 

conclusions are presented in Section 6. 
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2. System architecture 

In this section, we provide smart grid residential system architecture. The overall system 

architecture is depicted in Fig. 1. The predominant component is the smart home controller 

(SHC), which is responsible for managing the appliances inside the house in order to achieve the 

objectives such as minimizing the electrical peak load along with minimizing the electricity cost 

based on TOU tariffs, appliance specifications, and the information collected from the consumer 

preferences. SHC can monitor and control appliances by means of communication networks like 

general packet radio service (GPRS), wireless fidelity (WiFi) or long term evolution (LTE).  

Home appliances are categorized in three classes based on their intrinsic characteristics: 

1) Time-shiftable appliances (TSAs)  

    TSAs such as washing machines can be shifted in time. SHC generates scheduled starting 

commands to turn them on. These loads consume electric power according to their power.  

2) Power-shiftable appliances (PSAs)  

    PSAs consume electric energy in a certain range between their minimum and maximum 

power. Most of rechargeable devices like electric vehicles are included in this category. SHC 

decides how much energy these loads consume in their working period.  

3) Non-shiftable appliances (NSAs)  

    For NSAs such as lights, which have fixed power consumption requirement and working 

period, SHC considers their energy consumption according to the consumer preferences. 

3. Multi-objective optimization model for demand side management 

    The load scheduling mechanism can be described as a MOMILP model, which aims to 

minimize the electrical peak load and the electricity cost simultaneously, as shown below: 

min𝑓1 =𝐸𝑃𝐿 
(4) 
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min𝑓2 = 𝐶ℎ × 𝑇  ,          𝐶ℎ = [𝑐1, 𝑐2, … 𝑐24]  , 𝑇 = [𝑡1, 𝑡2, … , 𝑡24]𝑇 
(5) 

 

s.t:   
 

𝑐ℎ = ∑ 𝑐𝑎
ℎ

𝑛

𝑎=1

 ,           ∀ℎ ∈ 𝐻 (6) 

∑ 𝑐𝑎
ℎ

𝑛

𝑎=1

≤ 𝐸𝑃𝐿, ∀ℎ ∈ 𝐻 (7) 

∑ 𝑐𝑎
ℎ

24

ℎ=1

= 𝐷𝑅𝑎   , ∀𝑎 ∈ 𝐴 (8) 

𝑐𝑎
ℎ ≥ 𝑝𝑎

∗   ,    ∀𝑎 ∈ 𝑁𝑆𝐴𝑠  ,      ∀ℎ ∈ [ℎ𝑎
𝑠 , ℎ𝑎

(𝑠+1)
, … , ℎ𝑎

𝑒] (9) 

𝑝𝑎 ≤ 𝑐𝑎
ℎ ≤ 𝑝𝑎  ,     ∀𝑎 ∈ 𝑃𝑆𝐴𝑠  ,      ∀ℎ ∈ [ℎ𝑎

𝑠 , ℎ𝑎
(𝑠+1)

, … , ℎ𝑎
𝑒] (10) 

𝑃𝑎
𝑡𝑜𝑡𝑎𝑙 =

[
 
 
 
𝑝𝑎

1

𝑝𝑎
2

⋮
𝑝𝑎

24

𝑝𝑎
24

𝑝𝑎
1

⋮
𝑝𝑎

23

⋯
⋯
⋱
⋯

𝑝𝑎
3

𝑝𝑎
4

⋮
𝑝𝑎

2

𝑝𝑎
2

𝑝𝑎
3

⋮
𝑝𝑎

1]
 
 
 
 

(11) 

∑ 𝑢𝑎
ℎ

24

ℎ=1

= 1 ,         𝑈𝑎 ∈ {0,1}, ∀𝑎 ∈ 𝑇𝑆𝐴𝑠 
(12) 

𝑐𝑎
ℎ = 𝑈𝑎  𝑃𝑎

𝑡𝑜𝑡𝑎𝑙,               𝑈ℎ = [𝑢𝑎
1 , 𝑢𝑎

2 , … 𝑢𝑎
24]  , ∀𝑎 ∈ 𝑇𝑆𝐴𝑠 

(13) 

𝑐𝑎
ℎ ≥ 0 

(14) 

   The objectives of the above optimization problem are to minimize the hourly load 𝐸𝑃𝐿 and to 

minimize the electricity cost, subject to the constraints (6)-(14). The hourly load should be 

greater than or equal to the sum of the scheduled power for all appliances at each hour (constraint 

(7)). To make sure that the energy phases fulfill their energy requirements, the constraint (8) is 

imposed. For non-shiftable appliances, the hourly power requirement is fixed at 𝑝𝑎
∗  during its 

working period from ℎ𝑎
𝑠  to ℎ𝑎

𝑒  (constraint (9)). The household user can set up the time preference 

constraints, specifying the time interval a particular appliance must be started and finished within. 
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Alternatively, this means that the PSAs cannot be run outside of the time preference interval. The 

constraints are written as (10). The constraints (11)-(13) are used to model the TSAs’ power 

consumption. A TSA power consumption can be presented as 𝑃𝑎 = [𝑝𝑎
1 𝑝𝑎

2 ⋯ 𝑝𝑎
24]𝑇. The 

operation can be postponed but the power consumption pattern should remain the same. Hence, 

the scheduling result 𝑐𝑎 has to be exactly the same as one of the cyclic shifts of the pattern 𝑝𝑎. 

All possible shifts can be put together in a matrix as in Eq. (11). The binary integer vector 

𝑈𝑎 = [𝑢𝑎
1 𝑢𝑎

2 ⋯ 𝑢𝑎
24]𝑇 is defined as switch control for the TSA. There is only one non-zero 

element in vector 𝑈𝑎, which is equal to one. Vector 𝑈𝑎 is an optimization parameter that chooses 

the appropriate column of 𝑃𝑎
𝑡𝑜𝑡𝑎𝑙 to optimize the energy consumption. According to constraint 

(14), the power consumption 𝑐𝑎
ℎ must be non-negative value.  

    The model is solved for a residential area with multiple households. However, because of their 

different time of use preferences, their energy consumption behavior varies. The various 

consumption patterns for all households are monitored over discrete hourly intervals h in a total 

observation period H. It is further assumed that every household can define its time of use 

preferences via a smart scheduling device embedded in its smart meter to coordinate the 

appliances’ electricity expenditure. Denoting the hourly electricity requirement for each 

appliance 𝑎 ∈ 𝐴 as 𝑐𝑎
ℎ, the power demand for the customer is computed as an aggregate power 

for all appliances in each time slot over H [9].  

    The SHC planning problem is a MOMILP problem that can be solved by well-established 

methods. Goal programming (GP) has been a popular theoretical method for dealing with 

multiple objective decision making problems. The basic approach of goal programming is to 

establish a specific numeric goal for each objective, and then seeking for a solution that 

minimizes the sum of deviations of these objective functions from their respective goals. 
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Moreover, in the literature, branch-and-cut method is presented as very successful techniques for 

solving a wide variety of integer programming problems providing a guarantee of optimality [8]. 

The above model is solved using both GP and branch-and-cut methods. By using GP method, 

two objectives are converted into a single goal, and by using branch-and-cut method the MILP 

model is solved. 

4. Applicability of the proposed model 

To evaluate the performance of the proposed model, the daily electricity use of four 

households in Tehran (capital of Iran), each with a set of different household appliances as listed 

in Tables 1-4, is simulated. It is worth mentioning each day is divided into 30-minute slots and 

simulations are performed by using GAMS/ CPLEX solver. 

As discussed throughout the paper, we are interested in minimizing the electrical peak load, 

while at the same time minimizing the electricity cost for a residential area. Thus, we focused our 

attention on the performance of the proposed approach by analyzing six scenarios according to 

Table 5. The first scenario is based on minimizing the electrical peak load for each household. 

The second scenario includes minimizing the electricity cost for each household where each user 

independently minimizes his/her own cost. The third scenario is based on minimizing both the 

electrical peak load and the electricity cost for each household. The next three scenarios are 

similar to the first three scenarios except that the model runs for all four households at the same 

time. 

4.1. Tariffs 

There are two types of demand response mechanisms: one is based on pricing of tariff and the 

other is based on incentives for the consumer. In TOU tariffs mechanism, the tariffs are charged 

according to the time it is used. In a day, the time slots are divided as peak, off-peak and mid-
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peak. The rate of electricity changes in accordance with the time. This mechanism allows 

consumers to shift their activities to off-peak and mid-peak periods, thereby achieving financial 

savings. TOU usually leads to changes in consumption patterns. These TOU rates could be 

different for summer and winter as the consumption patterns also vary with season, leading to 

different peak periods (Thakur & Chakraborty, 2016). In this work, TOU, which is the most 

commonly utilized form of time-variant pricing, will be considered. Table 6 shows the 

information about the tariff details in Iran. In order to encourage consumers to shift their 

consumption from peak hours to mid-peak and off-peak usage times, the electricity price is lower 

than the standard electric service rates during the mid-peak and off-peak hours; however, during 

the peak hours, the prices are higher. After calculating the cost of electricity based on Table 6, an 

extra cost for peak hours or discount for mid-peak and off-peak times is calculated as follows:  

Discount for off-peak hours (2 am-10 am)=Electricity consumption (kWh)×0.68 (Cent) (1) 

Discount for mid-peak hours (12 am-2 am, 10 am-8 pm)= 

    Electricity consumption (kWh)×0.27 (Cent) 

(2) 

Extra cost for peak (8 pm-12 am) hours =Electricity consumption (kWh)×1.36 (Cents) (3) 

It is worthy to mention that in Iran, the electricity price varies in different sectors, cities and 

months. In this research, the electricity tariffs of residential sector in Tehran in September of 

2015 are considered (Ministry of Energy, 2016). It should be noted that the official currency in 

Iran is Rial, and we have assumed one US dollar as equal to 30000 Rials. The TOU tariff is 

applied for billing. It is assumed that consumers select an appropriate schedule for the operation 

time of their appliance according to above three different tariffs to reduce the energy bill. 

5. Simulation results 
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The obtained results have been represented for all scenarios. The first simulation is about 

Scenario 1. The aim of this simulation is to show how SHC plans the smart appliances’ start 

times assuring overload management for each household separately. The second simulation 

concerns Scenario 2. The aim of this simulation is to show how SHC plans the smart appliances’ 

start times assuring cost management for each household separately. The third simulation is about 

Scenario 3. The aim of this simulation is to show how SHC plans smart appliances’ start times in 

such a way to optimize cost, while assuring overload management for each household separately. 

The next three simulations extend simulations 1-3 to Scenarios 4-6. The aim of these simulations 

is to show how SHC reacts to a DSM event by performing a new planning and checking for 

consumer convenience, while assuring overload/cost management for all households at the same 

time.  

The schedules of the hourly electricity consumptions under Scenarios 1-3 are shown in Fig. 2. 

According to Scenario 3, the appliance profiles are smoother; while under Scenarios 1 and 2, the 

appliance profiles have one or more spikes. Scenario 1 tries to avoid peak hours; hence, it shifts 

the start time of appliances to the hours in which the price might be higher. Scenario 2 attempts 

to reduce cost; consequently, the start time of appliances shifts to the hours in which the price is 

lower. Since avoiding peak load is not important in this scenario, the start time of some 

appliances would be the same, causing the peak load to increase in those periods.   

As mentioned in the previous section, Scenarios 3-6 are multi-user scenarios when the users 

adopt a coalitional approach. Such scenarios are provided to exhibit the scalability potential of 

the proposed method. On the other hand, in the present work, we have limited the number of 

coordinated households to four to simplify the presentation. Fig. 3. shows the schedules of the 

hourly electricity consumptions under Scenarios 4-6. As it can be seen, similar to Scenario 1, 

Scenario 4 intends to reduce the peak load with the difference that it tries to reduce the entire 
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peak load for all the four households simultaneously. It is clearly beneficial for both the capital 

cost reduction and the stability of the power grid. Scenario 5 intends to lower the entire electricity 

cost for all the four households. As in this scenario, just cost reduction is important, the peak load 

of some households (e.g. household 1) is very high (above 4 kW). Scenario 6 attempts to 

decrease electrical peak load and electricity cost simultaneously. In this scenario, the appliance 

profiles are smoother, and similar to Scenario 3, there is not any high peak load. 

The comparison of peak load (in kW) and cost (in $/month) for all the 6 scenarios is 

demonstrated in Fig. 4. Moreover, Fig. 5. illustrates the schedule of the hourly electricity 

consumption in a day for all households under Scenarios 1-6. Referring to Fig. 4. under Scenarios 

1 and 4, the electricity cost for all the four households is higher than in the other scenarios. 

Furthermore, under Scenarios 2 and 5, the peak load of some households increases more than that 

of other scenarios. Although under Scenario 3, for some households like household 1, both the 

peak load and the electricity cost reduce more compared to Scenario 6, as shown in Fig. 5., the 

peak load for all households is reduced significantly under Scenario 6 in comparison to Scenario 

3. 

Table 7 details the reduction of electrical peak load and electricity cost in each scenario. By 

comparing the results of Scenarios 1-6, it can be noticed that the electrical peak load in Scenario 

6 is lower than in Scenarios 1, 2, 3 and 5 by 11.2%, 33.8%, 36% and 48.6%, respectively. 

Moreover, comparing the results of Scenarios 4 and 6 reveals that the electricity cost for all 

households in Scenario 4 is 1.45% higher than that in Scenario 6. Therefore, Scenario 6 is 

recommended as the most suitable and the preferred one. By looking at this scenario from the 

viewpoint of a utility company, peak load reductions, as well as load shifting from peak hours to 

mid-peak and off-peak hours are achieved, and from the viewpoint of customers, substantial cost 
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reductions are obtained. It is clear when the number of households in the residential area 

increases, more peak load and cost reduction can be achieved by applying this method.   

Figs. 2-5 depict optimal schedule for each household according to Scenario 6. They clearly 

show how the energy consumption of time-shiftable and power-shiftable appliances is managed 

by DSM. Time-shiftable appliances like washing machine and dish washer are postponed from 

the afternoon to the morning periods, so the functionality of the household is preserved, since the 

work is done. Power-shiftable appliances such as electric vehicles and water pumps are charged 

more in the off-peak periods, as the demand is satisfied. Both of the mentioned appliance 

categories represent enormous potential to manage electrical peak load and electricity cost.  

6. Conclusions 

In this paper, the SHC planning problem for energy management in a residential area with 

multiple households was considered. The problem was formulated as an event driven binary 

linear programming problem, in which the decision variables represented the start times of 

appliances. The proposed model takes advantage of lower-cost pricing in the mid-peak and off-

peak hours, and at the same time, reduces peak demand for residential households.  

To verify the efficiency and robustness of the proposed model, a number of simulations were 

performed under different scenarios using real data, and the obtained results were compared in 

terms of total electricity cost and electrical peak load. The simulation results demonstrated the 

effectiveness of the mechanism. 

In conclusion, this work provides a proof of concept about the advantages coming from the 

use of centralized energy management systems in residential areas, showing the possible benefits 

for both consumers and utility companies simultaneously. 
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Fig. 1. System architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Smart home 

controller 

Power-shiftable 

appliances

Non-shiftable 

appliances

Time-shiftable 

appliances

User 

preferences



22 

 

  

  

Fig. 2. Schedule of the hourly electricity consumption in a day for each household under 

Scenarios 1-3. 
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Fig. 3. Schedule of the hourly electricity consumption in a day for each household under 

Scenarios 4-6. 
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Fig. 4. Peak load and cost comparison among different scenarios. 
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Fig. 5. Schedule of the hourly electricity consumption in a day for all households under 

Scenarios 1-6. 
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Fig. 6. Optimal schedule for households. 
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Table 1 

Appliances and power consumption patterns for household 1. 

TSAs Preferred time range Duration (hour) Power range (kW) 

Washing machine (WM) 24 hours 2 For the 1st hour: 1 

For the 2nd hour: 1 

Dish washer (DW) 24 hours 2 For the 1st hour: 1 

For the 2nd hour: 0.8 

Iron 6 am-6:30 am or 

6 pm-11 pm 

0.5 1.4 

NSAs Preferred time range Duration (hour) Power range (kW) 

Air conditioner (AC) 10 am-8 pm 10 1.5 

Refrigerator 12 am-12 pm  24 0.104 

Oven  6 am-6:30 and 

8 pm-8:30 pm 

1 0.9 

TV  9 pm-12 pm  3 0.16 

PSAs Preferred time range Daily energy requirement Power range (kW) 

Electric vehicle (EV) 8 pm-9 am 4 kWh 0.1-1.6 

Water pump (WP)                 24 hours 7 kWh  0.125-0.9 
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Table 2 

Appliances and power consumption patterns for household 2. 

TSAs Preferred time range Duration (hour) Power range (kW) 

Washing machine  11 am-12 pm or 

12 pm-1 pm 

1 1.3 

Vacuum cleaner (VC) 10 am-10:30 am or 

11 am-11:30 pm 

0.5 1.2 

NSAs Preferred time range Duration (hour) Power range (kW) 

Refrigerator 12 am-12 pm  24 0.13 

Light 6 am-10 am and 

5 pm-10 pm 

9 0.6 

Iron 6 am-6:30 am and  

1 pm-1:30 pm 

0.5 1.25 

TV  9 pm-11 pm  2 0.15 

PSAs Preferred time range Daily energy requirement Power range (kW) 

Water pump                 24 hours 10 kW  0.2-1.2 
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Table 3 

Appliances and power consumption patterns for household 3. 

TSAs Preferred time range Duration (hour) Power range (kW) 

Washing machine  2 pm-8 pm  0.5 1.5 

Vacuum cleaner 3 pm-7 pm   0.5 0.5 

Hairdryer 3 pm-5 pm  0.5 1.8 

NSAs Preferred time range Duration (hour) Power range (kW) 

Refrigerator 12 am-12 am  24 0.14 

Treadmill 9 pm-10 pm 1 0.28 

Light 1 6 am-9 am 3 0.1 

Light 2 6 pm-11 pm 5 0.2 

Mixer 5 pm-5:30 pm 0.5 0.25 

PSAs Preferred time range Daily energy requirement Power range (kW) 

Water pump                 24 hours 10 kW  0.2-1.2 
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Table 4 

Appliances and power consumption patterns for household 4. 

TSAs Preferred time range Duration (hour) Power range (kW) 

Washing machine  8 am-11 am  0.5 1.5 

Vacuum cleaner 8 am-11 am  0.5 1.1 

NSAs Preferred time range Duration (hour) Power range (kW) 

Refrigerator 12 am-12 am  24 0.13 

PC 8 am-1 pm  5 0.2 

Light 5 pm-11 pm 6 0.76 

Iron 9 am-10 am 1 0.5 

Hairdryer 4 pm-4:30 pm 0.5 1 

TV  5 pm-10 pm  5 0.14 

PSAs Preferred time range Daily energy requirement Power range (kW) 

Water pump                 24 hours 10 kW  0.2-1.2 
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Table 5 

 The specifications of scenarios. 

Scenario Households Peak load  

minimization 

Cost 

minimization 

Peak load and cost 

minimization  Individually All together 

1 *  *   

2 *   *  

3 *    * 

4  * *   

5  *  *  

6  *   * 
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Table 6 

Electricity tariffs in Tehran (September 2015) [25]. 

Electricity consumption 

(kWh/month) 

Electricity prices  

(Cents/kWh)  

0-100 1.36 

100-200 1.59 

200-300 3.41 

300-400 6.14 

400-500 7.05 

500-600 8.87 

>=600 9.78 
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Table 7 

A summary of simulation results. 

Scenario 

Electrical peak load 

for all households 

(kW) 

Electricity costs for all 

households ($/month) 

Electricity costs for each 

household ($/month)  

1 2 3 4 

1 5.10  279.63 102.56 64.96 46.90 65.20 

2 6.84  276.37 100.61 64.77 46.43 64.56 

3 7.08  276.82 101.06 64.77 46.43 64.56 

4 4.53  281.65 102.01 65.74 47.68 66.22 

5 8.82  276.37 100.61 64.77 46.43 64.56 

6 4.53  277.63 101.47 64.86 46.49 64.80 

 

 


