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This paper proposes an algorithm to analyze the long-term benefits of Wind Turbine (WT) allocation at
the demand side of a power distribution system. The benefits are evaluated based on the wind electricity
generation and the avoidance of CO2 emissions. The objective function includes the investment cost,
maintenance cost, and the cost of loss reduction, subjective to operating limits and line flow constraints.
Taking load growth into account, Particle Swarm Optimization (PSO) with a power flow algorithm is pro-
posed to solve this problem. To enhance the performance of the optimization approach, a load flow model
with Equivalent Current Injection (ECI) is used to analyze the power flow of distribution systems. By con-
sidering the power generation of WTs, electricity prices, and carbon trading prices, the long-term benefits
of the installation of wind turbines in different scenarios are evaluated. Examples of IEEE 69-bus systems
are presented to illustrate the efficiency and feasibility of the proposed algorithm. Simulation results can
help decision makers in selecting the proper installation sites for WTs, as well as in determining the
tradeoff between optimal investment and environmental policy for future electricity and carbon markets.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The greenhouse gas (GHG) emission of electric power sectors
around the world is about 1/3 of the total world GHG emission,
indicating the significance of electric power sectors in the global
warming issue. In recent years, climate change due to greenhouse
gas (GHG) emissions has become a focus of international organiza-
tions and governments. In order to reduce GHG emissions, the aim
has been placed on finding more environmentally friendly alterna-
tives for electricity power generation. Renewable Energy (RE) is re-
quired for local energy markets, as an important alternative energy
production option in the near future [1]. RE technologies may in-
clude solar energy, wind, fuel cells, micro-turbines, etc. Due to ad-
vances in wind energy technologies, wind power is currently
considered one of the most rapidly increasing resources [2]. There
is no doubt that the benefit of WTs is beginning to attract many
utilities in the electricity market [3,4].

Wind energy is expected to play an important role in the future
global energy supply. The policy and challenges of wind power
have been discussed in Taiwan for promoting the wind power
technology industry [5]. Related issues, such as installation plans,
financial incentives, feed-in tariffs, export credit subsidies, R&D,
purchasing rates, and government tendering have been discussed
to promote policy tools, and assist in the early steps of private
investment. The development progress of wind power policy in
ll rights reserved.
China has many similarities to progress in Taiwan [6,7]. It is a uni-
versal problem that the investment of wind power technology re-
quires support and incentives in most economies as long as prices
for fossil fuels fail to reflect the negative externalities on the envi-
ronment [8,9]. The characteristics of wind power include high
capacity cost, and low CO2 emissions as compared to fossil-fuel
plants. If CO2 emissions could be charged in the future electricity
market, the environmental benefits of wind power can be in-
creased significantly [10,11]. Wind Turbines (WTs) are small plants
that are properly located to provide an incremental capacity to
power systems [12,13]. The integration of WTs into an existing dis-
tribution system, depending on the allocation of WTs, can result in
several advantages, such as line loss reduction, peak shaving, emis-
sion reduction, and increased system voltage profile [14]. More-
over, WTs can also relieve congestion and provide grid
reinforcement. As a result, WTs have attracted more interests in
the electricity industries.

In the electricity market, WTs are like small Independent Power
Producers (IPPs), which intend to sell power to utilities for profit
[15]. WTs need to maximize profit instead of minimizing operating
cost. This problem emphasizes the importance of the price signal in
the electricity market. Electricity prices are very volatile, varying
with the level of use at various times of day, thus affecting the
profits received by the IPPs when selling the power to the distribu-
tion network [16]. In addition, as WTs reduce CO2 emissions due to
the use of wind generated electricity, the reduced emissions will
turn into revenues in the carbon market [17]. CO2 emissions can
be traded in the carbon market to gain further benefits [18]. This
paper describes a benefit analysis when WTs are installed to meet
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load growth in a distribution system. A lifetime of 20 years is
assumed for the wind-power installations. The benefits of WTs
are evaluated by considering the power generation of WTs, elec-
tricity prices, and carbon trading prices.

Distribution system planners must ensure the adequate capac-
ity that meets the load growth within the planning horizon year.
They are obligated to provide service reliability through planning,
operation, construction, and maintenance with limited resources
[19]. In general, WTs are mostly installed in a demand system,
and connected directly to distribution networks. Inappropriate
locations of WTs may lead to greater system losses [20]. However,
integration of WTs into the distribution systems is a major chal-
lenge to system operators and planners due to the high uncertainty
and variability in the characteristics of WTs. In this paper, a Particle
Swarm Optimization (PSO) [21] based approach is presented to
optimally incorporate WTs into a distribution system. The pro-
posed algorithm combines PSO with a power flow algorithm to find
the best combination of locations. To enhance the performance of
the new approach, a load flow model with Equivalent Current
Injection (ECI) [22] is used to analyze the power flow of distribu-
tion systems. By considering the power generation of WTs, electric-
ity prices, and carbon prices, the benefits of WTs in different
scenarios are evaluated. The IEEE 69-bus distribution system [23]
is used to validate the proposed method. Simulation results can
help decision makers determining the proper installation locations
of WTs in order to reduce system losses and maintain voltage pro-
file. They can also determine the return of investment between
cost and the environment for future electricity and carbon markets.

2. Problem formulation

2.1. WT integrate into a power distribution system

The WT is connected to a power distribution system at node i, as
shown in Fig. 1. The substation (S/S) is equivalent to a voltage-
source and transmission line, and is simplified to lump impedance
R + jX. The load can be expressed by a constant power P + jQ. The
injection characteristic of WT in power flow calculation is regarded
as a PQ node, in which the output of real power can be determined
as following Eq. (1) [24]:

Pwind ¼
1
2
qAV3

wind ð1Þ

where q is the air density, A the swept area of the rotor blades, and
Vwind is the wind velocity. In this paper, the longitude of rotor blade
is 10 m and the range of wind velocity is from 4 m/s to 20 m/s. The
maximal real power output of WT is 200 kW when the wind veloc-
ity is above 13 m/s.

2.2. Objective function and constraints

In order to obtain the maximal benefit from the WT allocation,
the suitable location and sizing must be determined before its
installation. The WT real power output is continuous when WT is
placed in a power distribution system. The optimal size of WT is
determined by making the kW output of WT optimal in the objec-
tive function. The objective function of WT allocation is to find the
S/S

0 1 i-1 i L

Pd1+jQd1 Pdi-1+jQdi-1

Pwind,i+jQwind,i

Pdi+jQdi
WT PdL+jQdL

R1+jX1 Rj+jXj

Fig. 1. The diagram of WT integrate into a power distribution system.
optimal WT installation buses, in order to minimize the total line
losses, thereby satisfying the load growth. Therefore, the objective
problem is expressed as Eq. (2), and is incorporated into ECI to car-
ry out load flow analysis, as described in Section 3.1. The optimal
WT installation buses are determined by the PSO method, which
will be described in Section 3.2. In Eq. (24), the position vector
for each WT is optimized by minimizing the total line losses in:

Min Ploss ¼
1
2

XNB

i¼1

XNB

j¼1

Re½Yij�½jVij2 þ jVjj2 � 2jVijjVjj cos hij� ð2Þ

where Ploss is the total line losses, Yij the admittance of branch i � j,
Re the real part of complex quantity, NB the total number of
branches in the system,Vi the voltage of i-th bus, and hij = hi � hj is
the voltage phase angle difference between bus-i and bus-j.

From Eq. (1), the line losses could be reduced by lowering the
branch currents in the distribution network. In order to reduce
the current in certain parts of the network, WTs are introduced
to the power distribution system.

The constraints considered are described as follows.

1. The equality constraints are the power flow equations in the
power distribution system as follows:
Pi;sch ¼ Pwind;i � Pn
di ¼ jVij

XNB

j¼1

jVjjjYijj cosðhi � hj � dijÞ ð3Þ

Q i;sch ¼ Q wind;i � Q n
di ¼ jVij

XNB

j¼1

jVjjjYijj sinðhi � hj � dijÞ ð4Þ
2. The inequality constraints are the voltage limits imposed on the
power distribution system:
Vmin
i

��� ��� 6 jVij 6 Vmax
i

�� �� ð5Þ
3. The inequality constraints with the WTs real power output are:
Pmin
wind;i 6 Pwind;i 6 Pmax

wind;i ð6Þ
dij is the admittance phase angle of branch i � j, Sij the line flow in
branch i � j, Smax

ij the upper line flow in branch i � j, Pmin
wind;i; P

max
wind;i the

lower and upper real power generation of WT at i-th bus, Pi,sch the
net real power at i-th bus, Qi,sch the net reactive power at i-th bus,
Pwind,i the real power generation for WT at i-th bus, Qwind,i the reac-
tive power generation of WT at i-th bus, Pn

di the real power demand
of i-th bus for n-th horizon year, Q n

di the reactive power demand of
i-th bus for n-th horizon year, and n is the number of year.

2.3. Benefit analysis of WTs allocation

The benefit of WTs over its lifetime is calculated when the WTs
are allocated based on the load growth. The benefit of WTs in-
stalled is determined by the net change in the total cost of electric-
ity generation before and after the installation. The costs include
investment cost and maintenance cost, and the benefits include
the profit of electricity sold, CO2 emissions sold, and loss reduction.
A better planning method is to locate the minimum cost solution
where the total benefits can be maximized. Therefore, costs and
benefits of WT allocation in the network can be expressed as fol-
lows, with the cash flows presented below in Fig. 2.

2.3.1. Investment cost
The investment cost of WT units can be formulated as the fol-

lowing equation:

C1 ¼
Xm

i¼1

Fixi ð7Þ
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Fig. 2. Cash flows of the WT project.
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2.3.2. Maintenance cost
The maintenance cost can be evaluated by:

C2 ¼
Xm

i¼1

CMi ð8Þ

Present value of this annual cost considering inflation rate and
interest rate [25,26] in the lifetime is calculated by:

PWðC2Þ ¼ C2

XT

t¼1

ð1þ IFRÞt�1

ð1þ INRÞt
ð9Þ
2.3.3. The profit of WTs installed
The annual profit of WTs installed includes the profit of line loss

reduction, C3, the profit of power generation, C4, and the profit of
CO2 sold, C5. The formulation is calculated as follows:

C3 ¼ 8760� CF � Pr
loss � Coste ð10Þ

C4 ¼ 8760� CF �
Xm

i¼1

Pi � Coste ð11Þ

C5 ¼ 8760� CF �
Xm

i¼1

Pi � /� Costc ð12Þ

Present value of this annual profit is calculated by:

BPWðBÞ ¼ ðC3 þ C4 þ C5Þ
XT

t¼1

ð1þ IFRÞt�1

ð1þ INRÞt
ð13Þ

The benefits of WTs can be calculated as:

Benefit ¼ BPWðBÞ � C1 � PWðC2Þ ð14Þ

m is the number of WTs installed, T the lifetime of WTs (20 years),
IFR the annual inflation rate, INR the annual interest rate, Pi the
rated real power output of WTs (kW), Coste the electricity price
(NT$), Pr

loss the loss reduction after WTs are installed (kW), u the
carbon exhaust coefficient (0.612 kg CO2 e/kW h) [27], Costc the car-
bon trading price (NT$/ton), Fix the investment cost of WTs installed
(NT$5.2 � 108/unit) [27], CM the maintenance cost of WTs (NT$
1.35 � 107/year) [27], and CF is the capacity factor of WTs.

The factors influencing the energy produced by a WT at a given
location over a period are (1) the power response of the turbine to
different wind velocities, (2) the strength of the prevailing wind re-
gime, and (3) the distribution of wind velocity within the regime.
The total energy generated by WT over a period can be computed
by summing the energy corresponding to all possible wind speeds
in the regime, at which the system is operational. Hence, along
with the power characteristics of the WT, the probability density
corresponding to different wind speeds is included in the energy
calculation.

Various probability functions are fitted with the field data to
identify suitable statistical distributions for representing wind re-
gime. The Weibull and Rayleigh distributions can be used to de-
scribe the wind variations in a regime with an acceptable
accuracy level [26]. Wind energy in Taiwan has been assessed
according to the Weibull function by Cheng [28] using Particle
Swarm Optimization method to find the Weibull parameters.
Capacity factor is one of the important indices for assessing the
field performance of a WT. The capacity, CF, of a WT at a given site
is defined as the ratio of the energy actually produced by the sys-
tem to the energy that could be produced by it, if the machine has
operated at its rated power throughout the time period [26]. In
[28], yearly statistical wind potential for three wind power stations
in Penghu, Dayuan and Hengchun, was assessed; the capacity fac-
tors for the three stations were 0.518, 0.487 and 0.358, respec-
tively. In this paper, the capacity factor is introduced into Eqs.
(10)–(12) to calculate the energy output as well as profits evalua-
tion of WT.

It should be noted that INR is the inflation-free interest rate (or
the so-called real interest rate), which is given by the difference be-
tween the market interest rate and the inflation rate, IFR, if either
the real interest rate or the inflation rate is relatively small. The
interest rate, INR, is usually larger than the inflation rate, IFR. It is
rare for the inflation rate to be higher than the interest rate,
although this hyperinflation can sometimes arise, for example in
countries where political instability, overspending by government,
and/or weak in international trade balances, are present [29].

The benefits of WTs installed are evaluated on the basis of re-
duced profit loss, electricity trading profit, and carbon trading prof-
it. In deregulated markets, the electricity and carbon prices vary in
the energy market. To account for these volatilities, the benefits of
WTs installed are calculated in different scenarios.
3. Proposed methodology

3.1. Load flow model with Equivalent Current Injection

Two basic power load flow techniques used in the industrial
application are the Gauss–Seidel and Newton–Raphson based algo-
rithms. The Gauss–Seidel algorithm is a slow convergence, and
uses a full matrix which directly defines the problem to be solved.
The Newton–Raphson algorithm is a gradient technique where the
line parameters are stored in a Jacobian matrix. Ref. [30] presented
a bi-factorized complex Y-admittance matrix Gauss–Seidel meth-
od, which is based on the Equivalent Current Injection, ECI, and
the power components can be modeled in the Y matrix or con-
verted into ECI. In this paper, the load flow with the Newton–Raph-
son method is proposed based on ECI.

For the power-based Newton–Raphson (NR) method, the mis-
match function can be written in the rectangular form as:

DPi

DQ i

� �
¼

@Pi
@ei

@Pi
@fi

@Qi
@ei

@Qi
@fi

2
4

3
5 Dei

Dfi

� �
; ð15Þ

where

DPi ¼ Pi;sch � Pi;cal; DQi ¼ Q i;sch � Q i;cal

Pi,sch = Pwind,i � Pdi, which is the net real power at the i-th bus, in-
cludes the real power demand (Pdi) and the WT’s power generation
(Pwind,i). Pi,cal is the real power, which is calculated by load flow
analysis. Qi,sch = Qwind,i � Qdi, which is the net reactive power at the
i-th bus, includes the reactive power demand (Qdi) and the WT’s
reactive power generation (Qwind,i). Qi,cal is the reactive power,



Calculate the total loss 
using ECI method

Initial particle position

Compute the objective 
function for each particle

Compare the Xbest with 
objective value and record 
current Xbest and Gbest

Update particle 
velocities and positions

Check the stopping 
condition

Output the location and 
generation of WTs

Evaluate the economical 
benefits of WTs

No

Yes

Data preparation
*annual growth rate
*load demand calculated
*system data  *line data
*bus data

Fig. 3. Flowchart of the proposed methodology.
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which is calculated by load flow analysis. The reactive power gener-
ation of WTs is calculated based on the pre-specified power factor.

The Jacobian matrix in Eq. (16) can be given by:

J ¼
@Pi
@ei

@Pi
@fi

@Qi
@ei

@Qi
@fi

2
4

3
5 ð16Þ

The ECI-based load flow uses current instead of power. The mis-
match function can be re-written by:

DIr

DIi

� �
¼

@Ir

@e
@Ir

@f

@Ii

@e
@Ii

@f

2
4

3
5 De

Df

� �
ð17Þ

DI = Ieqv � Ical = DIr + jDIi and DV = De + jDf are the real and
imaginary components of mismatch currents and mismatch volt-
ages, respectively. Ical is obtained from load flow analysis. Ieqv is gi-
ven by:

Ieqv ¼ P þ jQ
V

� ��
¼ ReðIeqvÞ þ jImðIeqvÞ ð18Þ

where P, Q, and V are the constant real power, imaginary power, and
voltage at a specified bus, respectively. P and Q are also the net
power at a specified bus, which include the WT’s power generations
and load demands.

From Eq. (17), a constant Jacobian matrix can be obtained,
which has the same matrix dimension as the traditional power-
based Newton–Raphson (NR) algorithm. The constant Jacobian ma-
trix can be written by:

J ¼
G �B

B G

� �
; ð19Þ

where G and B are the conductance and the susceptance matrix,
respectively.

The Jacobian matrix is insensitive to the line parameters, and
the memory requirement is less than the traditional load flow pro-
gram. This formula can be used for ECI-based NR algorithm. NR
algorithm is a gradient minimization problem in solving the non-
linear equations, where the Jacobian matrix provides the optimal
direction to find the root. Due to the use of the constant Jacobian
matrix approximations in ECI-NR algorithm, the computation is
compensated for improving the overall performance. Whether
the ECI-NR algorithm is used in power flow analysis, the final solu-
tion should remain unchanged. The ECI-NR algorithm is also supe-
rior to the other methods developed [22].

3.2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) was proposed by Dr. Eber-
hart and Dr. Kennedy in 1995 [21]. By observing the foraging
behaviors of birds and fish, PSO can apply the activity characteris-
tics of biotic populations to optimization problems. When birds or
fish forage, they not only refer to their own experiences, but also
learn from the most efficient individual in the group. They learn
and exchange their experiences, and pass this experience on until
the whole population reaches the optimum condition. The advan-
tage of PSO algorithm is that individuals can converge the optimal
solution rapidly within permissible range through a small number
of evolution iterations, and it also has a faster convergence rate.
PSO has been successfully applied to many engineering problems
[28,31–33].

PSO is similar to random search methods, but it does not con-
tain complicated mechanisms, such as crossover or mutation.
PSO generates a set of initial solutions, known as particles, through
the initialization mechanism, and then searches for the optimal va-
lue through iteration evolution. More importantly, every particle
has a memory capacity, and can provide a one-way message to
the population. Thus, the search process of PSO is the process of
following the current optimal solution. For example, if the distance
to a food source is known to a population of birds, but its location is
unknown, the simplest way to find the food is to search the periph-
eral regions of the birds that are closest to the food.

In a PSO system, Birds’ (particles) flocking optimizes a certain
objective function. Each particle knows its current optimal position
(pbest), which is an analogy of personal experiences of each parti-
cle. Each particle also knows the current global optimal position
(gbest) among all particles in the population. PSO can have several
solutions at the same time, and particles have a cooperative rela-
tionship for sharing messages. Through specific equations, each
particle adjusts its position and determines the search direction
according to its search memory and those of others. In other words,
it tries to reach compatibility between local search and global
search. The search memory of a particle is the objective function
and the optimum position found by the particle.

In this paper, Particle Swarm Optimization with Constriction
Factor (PSO-CF) [34] is used to trace the pbest value and the gbest
value. Using the PSO-CF, the velocity can be represented under
Eq. (21) in the PSO algorithm. Using Eq. (20), a certain velocity
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Fig. 4. Single diagram of the studied 69-bus power distribution system.

Table 1
Summary of the simulated results.

Horizon year 5 10 15 20

Total real load demand (kW) 4408.476 5110.632 5924.623 6868.262
Total reactive load demand (KVAR) 3123.803 3621.344 4198.130 4866.783
The total power output of WTs (kW) 430.5 1148 2009 3013.5
The worst system loss (kW) 92.37 123.78 154 193.2
The average system loss (kW) 88.69 117.3 144.8 184.1
The best system loss (kW) 84.811 107.63 131 170.1
The worst percentage of loss reduction (%) 12 22.1 29 34.91
The average percentage of loss reduction (%) 15.15 26.4 33.24 37.9
The best percentage of loss reduction (%) 19.23 32.7 39.6 42.7
The number of WTs installed 3 8 14 21
The location of WT (no. of bus) 62, 64, 65 9, 14, 24, 59, 60, 61, 62, 65 19, 26, 40, 49, 50, 55, 57,

59, 61, 62, 63, 64, 65, 67
5, 6, 7, 11, 12, 14, 16, 17, 19, 53, 57,
58, 59, 61, 62, 63, 64, 65, 67, 68, 69

Table 2
Counts of convergence and loss range for each trial test at the 10-th horizon year.

10-th horizon year Range of loss (kW)

124–122 122–120 120–118 118–116 116–114 114–112 112–110 110–108 108–106 106–104

Counts of convergence 3 2 4 6 5 11 10 7 2 0
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can be calculated as the position of individuals gradually
moves closer to pbest and gbest. The current position can be mod-
ified by:

Vjþ1
i;d ¼ K � Vj

i;d þ c1 � randð0;1Þ � Xbestj
i;d � Xj

i;d

� �h
þc2 � randð0;1Þ Gbestj � Xj

i;d

� �i
ð20Þ

Xjþ1
i;d ¼ Xj

i;d þ Vj
i;d ð21Þ
where

K ¼ 2

j2� c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4c
p

j
; c ¼ c1 þ c2; c > 4

c1, c2 is the acceleration constant, in this paper, c1 = c2 = 2.05,
rand(0,1) the uniform random value with a range of [0,1], Xj

i;d the
dimension d of the position of particle i at iteration j, Vj

i;d the dimen-
sion d of the velocity of particle i at iteration j, Xbestj

i;d the dimension
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Table 3
The conditions of three scenarios in this study.

Electricity price
(NT$/kW h)

Carbon price
(NT$/ton)

Power generation
(kW/unit)

Case-1 1.4–5 924 143.5
Case-2 2.6 0–2000 143.5
Case-3 2.6 924 100–200
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d of the own best position of particle i at iteration j, and Gbestj is the
dimension d of the best particle in the swarm at iteration j.
3.3. Implementing the proposed algorithm

The proposed algorithm can be summarized in the following
steps.

(a) Set the horizon year and calculate the load demand.
Pn
di ¼ Pdið1þ aÞn ð22Þ

Q n
di ¼ Pn

di � tanðcos�1 PFÞ ð23Þ
Pn
di and Qn

di are the real and reactive demand for the n-th horizon
year. Pdi is the real load demand for the current year. a is the load
growth rate. PF is the power factor.

(b) Input system data, the line data, and bus data by considering
the load growth.

(c) Calculate the total line losses using a load flow program with
ECI.

(d) Randomly initialize 30 particles (WTs) with feasible posi-
tions in the system buses. The position vector for each parti-
cle is formed as follows:
Xi ¼ ðPwind;1 Bus No:Þ
WT1

; ðPwind;2 Bus No:Þ
WT2

; . . . ; ðPwind;30 Bus No:Þ
WT30

$ %

ð24Þ
(e) Calculate the value of the objective function for each
particle.

(f) Compare each particle’s objective value with the Xbest. If the
objective value is smaller than Xbest, set the value as the cur-
rent Xbest.
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(g) Determine the best particle associated with the minimal
Xbest of all particles, and set the value of this Xbest as the
current Gbest.

(h) Update velocity and position vectors according to Eqs. (20)
and (21) for each particle.

(i) The terminating condition is the maximal number of itera-
tions. If the preset target is not yet attained, then go back
to step (d) and repeat the step. In this paper, 500 generations
is the set stop condition.

(j) Calculate the benefits with the different electricity prices,
power generation, and carbon prices in the lifetime of WTs.

Fig. 3 shows the flowchart of the proposed methodology.
4. Case study

The proposed algorithm was applied to solve the 69-bus distri-
bution system problem, as shown in Fig. 4 [23]. The total real and
reactive power demand of the 69-bus system were 4408 kW and
3033 KVAR, respectively. The maximal power generation of WTs
is set to 200 kW. The numerical computations were performed
using Matlab on a PIV-2.6 GHz computer with 512 Mb RAM.

4.1. Optimal locations of WTs

The PSO parameter used in this paper was 30 particles, and 500
generations was set as the stopping criterion. The power output for
each WT ranged from 100 kW to 200 kW, while all network bus
voltage magnitudes remained within 0.95–1.05/unit. The power
factor for each WT was 0.82. The load growth rate was 3% in the
distribution system, and the horizon years were set at 5, 10, 15
and 20 years. Table 1 shows the summary of the simulation results.
Due to the load growth, the number of WTs installed was 3, 8, 14
and 21 at 5, 10, 15 and 20 horizon years in order to meet the load
growth and operational constraints. The total power output of WTs
was 430.5 kW, 1148 kW, 2009 kW and 3013.5 kW at the different
horizon years. The results suggested that the WTs installed signif-
icantly improved on the system losses. Because the executed char-
acteristics of PSO might converge at different solutions for each
test, the problem was solved 50 times by the proposed method.
The best and worst system losses were found from the 50 trial
tests. The counts of convergence and loss range at the 10-th hori-
zon year are shown in Table 2. The best percentage of loss reduc-
tion ranged from 19.23% to 42.7% at the various horizon years.
Fig. 5 shows the voltage profiles before and after the WTs were in-
stalled at the 10-th horizon year. As shown in Fig. 5, the voltage
profile was clearly improved after the WTs were installed, almost
satisfying the voltage limits along the feeder. Fig. 6 shows the con-
vergent characteristics of the proposed method at the 10-th hori-
zon year. The convergent generation was about the 260-th
generation.

4.2. Benefits sensitivity analysis of WTs

The benefits sensitivity analysis of WTs contained three scenar-
ios which varied with the electricity price, carbon price, and power
generation after the WTs were installed. Table 3 shows the condi-
tions of three scenarios in this study. In Case-1, the electricity price
varied from NT$1.4/kW h to NT$5/kW h, if the carbon price and
power generation of WTs were maintained at 924 NT$/ton and
143 kW/unit, respectively. Similarly, Case-2 and Case-3 varied with
the carbon price and power generation of WTs. A lifetime of
20 years was assumed for the WTs installed.

Fig. 7 shows the benefits of WTs installed in Case-1. In this
study, the return time of WTs was 20 years. Based on different
horizon years, the benefits of WTs installed were evaluated based
on different electricity prices. In Fig. 7, when the electricity price
was about NT$2.6/kW h, the investment of WTs arrived at econom-
ical equilibrium. The benefits of the WT investment were directly
proportional to the electricity price.

Fig. 8 shows the benefits analysis of WTs installed in Case-2. The
largest positive contribution to the WTs’ benefit was from the
reduction in CO2 charges. The investment in WTs arrived at eco-
nomical equilibrium when the carbon prices were sold at
NT$1000/ton in this case. When the carbon price was high, the
benefits of the WT investment would increase.

Fig. 9 shows the benefits of WTs installed in Case-3. As seen,
when the power generation for each WT was about 145 kW, the
investment in WTs could arrive at economical equilibrium. When
the power generation of WTs increased, the benefits of the WT
investment were also higher.
5. Conclusion

This study successfully solved the WT allocation problem in dis-
tribution systems by combining load flow and PSO. To enhance the
performance of the proposed algorithm, a load flow model with
Equivalent Current Injection (ECI) was used to analyze the power
flow of distribution systems. By considering electricity price and
carbon price, the economical benefits of the installation of WTs
were evaluated in three different scenarios. The effectiveness of
the proposed algorithm was demonstrated and tested on the IEEE
69-bus distribution system. This study found that electricity price
or carbon price is a key parameter in the development of WTs. Sim-
ulation results also showed that incorporating the WTs in the dis-
tribution system can reduce system losses, as well as improve the
voltage profiles. It is noted that the tradeoff between investment
cost and environmental policy can be clearly shown for future elec-
tricity and carbon markets.

The wind power generator and its production are still in the
stages of rapid growth and development. It has been proved that
the optimal location of WTs can improve system reliability, reduce
losses, and improve voltage profiles [35]. Some government strat-
egies, such as financial incentives, feed-in tariffs, export credit sub-
sides, and purchasing rates, have been proposed to promote wind
power technology in different countries. New WT installations
seem to be a political compromise between consumer interest in
lower electricity prices and producer interest in making profits.
In a deregulated power system, each IPP may wish to decide the
costs and benefits of WTs from different points of view [36]. There
are unprecedented volatility and risk in the deregulated markets
[37]. It is difficult to forecast the energy and emissions over a
long-term horizon to satisfy all IPPs [38]. This study took the ben-
efits and costs of WT allocation into account, and attempted to find
a compromise between an IPP’s investments and government pol-
icies. Any variations including electricity price, carbon price, and
generation output of WTs will affect the long-term benefits for
IPPs. The results of this study can provide risk management in fu-
ture WT investment, and intensify competition among IPPs.
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