Available online at www.sciencedirect.com

ScienceDirect PrOCQdiCI

Computer Science

CrossMark

Procedia Computer Science 109C (2017) 1092-1097

www.elsevier.com/locate/procedia

Architecture for embedded software in microcontrollers for Internet
of Things (IoT) in fog water collection

José Fernando Mendoza?, Hugo Ordéfiez?, Armando Ordofiez?, Jose Luis Jurado?

@ Universidad de San Buenaventura, Cali , Colombia
b University Foundation of Popayan, 55t 8-58, Popayan, Colombia

Abstract

This paper presents a software architecture for micro-controllers based solutions that run in capture data cards for Internet of
Things (IoT). The present approach describes the components of the software architecture and its interaction. Equally, the
architecture allows the development of modular and configurable applications as is focused on the overall design and system
specification. The evaluation was performed in a Fog Water Collection system.

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Microcontrollers, software architecture, Internet of things, Sensors

1. Introduction

The shortage of clean drinking water in some places is generating several environment, health, and social
problems. This situation occurs because many water sources are contaminated or exhausted !. Due to this shortage,
many remote and rural populations have had to rely on water carts or wells that don't provide the price, quality, and
quantity needed by people. As an alternative to this problem, the fog water collection (FWC) makes it possible to
obtain water in dry or remote zones ? by condensing the fog into droplets of water

On the other hand, the increasing growth of the Internet has led to the interconnection of more and more devices,
thus giving birth to the Internet of Things (IoT) *. IoT refers to an ecosystem in which devices such as sensors,
smartphones, and household appliances are connected to a global network and can be monitored and managed from
anywhere 5. These [oT devices vary widely in use and features but are mainly supported by hardware micro-
controllers. These microcontrollers use embedded software to performs all arithmetic-logic operations to gather,
process and send data °. In this context, software engineering for microcontrollers can contribute to creating more
robust, scalable and maintainable IoT applications ’.

Based on the above, this article proposes a software architecture for micro-controllers based solutions

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2017.05.395

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.395&domain=pdf

José Fernando Mendoza et al. / Procedia Computer Science 109C (2017) 1092—-1097 1093

(Embedded Systems). This architecture describes the interaction between the software and the hardware components
that coexist in the electronic data capture cards. The proposed architecture is used in a FWC system.

The rest of this paper is organized as follows: Section 2 exposes the motivation of the work and Section 3 details
the proposed software architecture. Later in section 4 the evaluation is described. Finally, the conclusions and the
future work are presented.

2. Motivation

Fog contains tiny droplets of suspended water that are condensed when they come into contact with solid bodies
that intercept them. These FWC systems have several advantages, firstly, they don’t require electric energy to
extract or transport the water, besides the risk of contamination is low compared with other techniques. Therefore,
FWC systems constitute a viable alternative in mountain regions where fog is frequent. However, for the proper
operation of FWCs, some variables need to be monitored on the site, and it is here where IoT appears as an
alternative®,

Regarding reference architectures or guidelines, few reference architectural models for embedded software in the
IoT can be found in state of the art %'’ These existing models don't detail the architecture or the software
components necessary for developing these solutions. Thus, there are not standard guidelines or reference models
for building solutions for micro-controllers, and each particular solution must define its own architecture depending
on the domain.

3. Proposed software architecture

The architecture proposed here is divided into layers to model the whole software solution that runs on the
microcontroller. This architecture includes the structure, operation, and interaction of the components of an
embedded system in a data capture card, each of these components are described below °

3.1. Quality attributes considered for the design of the architecture

Quality attributes consider functional and non-functional requirements such as performance, interoperability,
usability, flexibility, maintainability, security and scalability '!,'2. These quality attributes depend on the functional
requirements and technical constraints of the domain (for the case study considered here, the domain is real-time
capture and monitoring of climatic variables).

In addition to the quality attributes, other elements were considered during the design of the architecture such as the
software maintainability 3. This attribute enhances the team’s communication and contributes to the rapid evolution
of the product, the reduction in maintenance cost, and a better documentation ',

3.2. Functional requirements

The architecture integrates the functional requirements of the IoT domain, as shown below:
The System should capture data from sensors connected to analog or digital ports.
The system must normalize the captured data by applying standardization algorithms depending on the sensor.
The system must allow user to change the status (ON / OFF) of the actuators connected to ports.
The System should be able to connect to the Internet using GSM / GPRS, Wifi or Ethernet.
The system should be capable of sending the gathered data to a remote system using a communication protocol
(HTTP, REST, CoAP, MQTT)

e The system must provide a configuration interface (mobile or web).

1094 José Fernando Mendoza et al. / Procedia Computer Science 109C (2017) 1092—-1097

3.3. Architectural style

The architecture is composed of different layers and architectural components and is based on the pattern model-
view-controller-communication 2. These layers interact with the hardware components and provide a software-level
abstraction that represents both the business logic and the hardware elements as can be seen in Fig 1.

3.4. Patterns included in the architecture

Fig 1 shows the layers and components of the architecture. The Interface layer enables the communication
between the embedded system and the outside world. This layer implements a Listener (abstract class) that identifies
the incoming requests, decodes the information and assign the request to the appropriate component (Commands).
This layer implements the components depending on the source of the request that can be a serial port, or another
type of port (The communication protocols are implemented in the communication protocols layer).

The Commands sub-layer implements all possible actions that can be triggered by incoming requests or events,
these actions interact with the routines layer of the domain controllers or Use case administrators. These actions
include the sensing of temperature, humidity, noise, radiation, among others. Domains Controllers or use-case
administrators layers manage business logic, sensors, actuators, web client routines for data query on a remote
server, and routines for setting the device in server mode (in this latter case the solution must include an interface or
direct interaction between the user and device acting as a server).

The model layer includes all the logic that directly interacts with the low-level routines of the micro controller
firmware. These low-level routines are implemented in the system abstraction layer in a communication component
(COM). The COM component supports the communication between the microcontroller and the input-output ports.

The System Abstraction Layer is divided into sub-layers that implement low-level or service routines that support
the business logic. To achieve this, the Kernel component use routines that enable the normal execution of the
application in the micro controller, here the initial configuration routine (setup) must be implemented as well as an
infinite cycle routine (loop). This latter loop can only be stopped by a scheduled event or power supply
disconnection.

The Communication Protocols sub-layer, as its name indicates, this layer groups the routines that implement the
protocols to communicate with the outside world. In this layer, it is possible to find protocols wrapped in HTTP
such as REST, CoAP, or MQTT.

The Communication sub-layer implements the communication between the card and the exterior (internet).
These routines of service and its configuration depend on each card and the implemented service. The COM sub-
layer for low-level communication implements the exchange of data to the analog or digital communication ports of
the micro-controller. This implementation enables the systems to interact with sensors, actuators or another external
device (physical world) connected to the card. Finally, the system layer implements a sub-layer in charge of the
Local Store Service of local data in case the application requires it.

4. Evaluation and results

The evaluation of the proposed architecture is divided into two parts, a) Selection of a methodology for the
evaluation of software architectures, b) definition of the variables to be evaluated.

4.1. Evaluation methodology

The evaluation is based on the Architecture Tradeoff Analysis Method (ATAM), This methodology allows to
evaluate Software Architecture according to the quality attributes specified for the system to be developed '°.

José Fernando Mendoza et al. / Procedia Computer Science 109C (2017) 10921097 1095

SERIAL CLI MANAGER | TCP-UDP CLI MANAGER
COMMANDS
DOMAIN CONTROLLERS

SENSOR/ ACTUADOR WEB RUTINES
RUTINES SERVER RUTINES CLIENT RUTINES

DATA
SENSOR | ACTUATOR
MAIN KERNEL SYSTEM
SETUP RUTINE | FINITE LOOP RUTINE
OWN SYSTEM RUTINES

POWER SLEEP WATCHDOG
WAIT INTERRUPT IDLE TIME

COMUNICATIONS SERVICE TX/RX
ETHERNET WiFl GPRS
GPS BLE RF
INPUT/OUTPU SERVICE (COM) DIG/ANA
s | 2c | vt | epo |

AUDIO PORT |VIDEO PORT| DISPLAY PORT| KB PORT
LOCAL STORE SERVICES

EEPROM

Fig. 1. Layers and components of the proposed architecture

oot [

SYSTEM ABSTRACTION LAYER

ATAM provides a characterization for various attributes based on the existing knowledge of quality attributes
such as performance, modifiability, availability and security.

Regarding performance, the architecture supports parallelism, decomposing work into different processes that
can be executed in parallel and cooperate with each other. This functionality optimizes the communication between
processes, the network use and the frequency of access to data. For example, the data can be retrieved from the
mobile or Web application. Besides, it is also possible to capture data from several variables at the same time, such
as temperature and humidity. The modifiability by its part allows decomposing the application in layers so that its
development has greater modularity and scalability. Thus the portability of the developed solution increases. On the
other hand, the security contributes elements to control, monitor and audit the actions that can be executed by the
various components of the data capture card. Also, it provides the possibility of detecting and recovering faults
during the data capture or transmission. Finally, the availability measures the capacity of use and execution of the
software during intervals of time (one month). For example, in the case study, the capture of agroclimatic data was
evaluated. During this period, the software evidenced stability and security. These results allowed us to claim that
the proposed architecture complies with the quality attribute.

4.2. Definition of the variables to measure

The prototype was built using the proposed architecture to monitor temperature, relative humidity, and quantity
of water collected. The prototype is part of the "Implementation of an alternative technological prototype for the
capture Of water using the fog" project of the Latin American Center of Small Species CLEM. The prototype was
built using C ++ and Atmel Studio programming environment. The software implements the layers described in Fig
1. The sub-layers of the System Abstract Layer interact with the hardware of the card (I/O ports, memory, eternal
communication Kernel) and the implementation of the HTTP protocol for the information exchange. Regarding
Logic Layer, the MVC pattern was used.

1096 José Fernando Mendoza et al. / Procedia Computer Science 109C (2017) 10921097

Average Hour Behavior

- - o b s i

Dec 13 12:00 Dec 14 2700 Dec 15 ~12:00 Dec 16 12300 Dec 17

110
15| chart by amCharts a Show all
100 288, aiepey g g iobey 8 o ey gegt Aog® g8 8 e
Foo”*enee b ._.o.t & L o ' Y L at L o F il e 0, VA
..‘i \ L \ & L] 1Y
/ t L I o) | \
%0 of L4 Sy \ 7 Y ¥
:‘_o(as W\ \
.]
12:00 Dec 14 12:00 Dec 15 12:00 Dec 16 12:00 Dec 17

ACTUAL HUMIDITY

o Min 454 Down 15

81 9 %HR Max 99.9 Top 30
- Avg 98 Allow 30

2016-12:17 11:24:25 Critical 27 Alert 30

Fig. 2. Temperature and humidity — average hour to hour

The prototype used an IoT card MediaTeck's LinkIt One (Wifi, GSM), with an ARM7 EJ-S micro-controller, 32-
bit RISC architecture, 260Mhz, 4M RAM and Flash 16M. All the C++ libraries of the provider are publicly
available, and a rapid implementation is possible. Besides, these cards are easily accessible. The gathered data are
managed using a Web application (OpenlO Enterprise) and a mobile App (OpenlO Mobile for Android 4.3 or higher
shown in Fig. 2) that uses Web services to interact with the Database. With OpenlOMobile, the current state of the
sensors can be known in real time, and some alerts are triggered when predefined thresholds (allowed/alerted /
critical) are exceeded. The prototype measured temperature, relative humidity, and quantity of water collected an
FWC system. Some behavior curves were generated to determine the best conditions for collecting water.

The prototype integrates a DHT22 sensor. This device consists of a capacitive sensor and a thermistor to
measure temperatures (-40 to 80 °C, accuracy of = 0.5 °C) and humidity (0% to 100%, accuracy of 2%) [26].
Equally, an Ultrasonic sensor SRF05 was used to measure the water level (3cm to 400cm). Knowing the height of
the water inside a 200 liters tank makes is possible to calculate the volume of the water collected by each FWC.

Fig 3 shows the humidity, temperature, and volume of collected water (liters), between 5 pm and 8 am. The data
were collected in the village of Montailitas (Yumbo, Valle del Cauca, Colombia). Motaiitas is located 17 Km away
from the municipal seat of Yumbo, in the Central mountain change, at the height of 1500 meters above the sea level.
The average temperature of this location oscillates between 19 ° C and 23 ° C, the climate is warm-humid tropical,
and there are winds from the Colombian Pacific with condensed water in the form of non-stationary circulating fog.
The average relative humidity is between 80% and 100%. As can be seen in Fig 3, the average volume of collected
water in each FCW is 87 liters per day. Between 1 and 4 a.m., the temperature reaches the lowest level (13.5 © C)
and the humidity reaches the highest level (99%). The water collected is potable as it contains a higher level of
purity than rainwater, because of its low mineral content. Also, this water can be used in other agricultural activities.

100 — N P —
90
80 -
70 -
0 +—1+ 1+ [I | { _*
50 L —E-Temperature

Unities

40 ! 1 1 1 1 1 - : 1 Humidity
30 A - ===Volume liters

20 w g LI v B R At A A Sy
10 *. X
0 ¢ o 0
17 18 19 20 21 22 23 O 1 2 3 4 5 6 7
Collection chedule

José Fernando Mendoza et al. / Procedia Computer Science 109C (2017) 1092—-1097 1097

Fig. 3. Temperature, Humidity and collected water vs. Hours of the day

5. Conclusions and future work

This paper presents a software architecture for the development of embedded systems running on microcontrollers.
The architecture doesn't depend on the specific domain and focuses on the functional requirements of the software,
emphasizing on quality attributes. The layered design of the architecture provides the possibility of identifying the
components that the software must contain and how each of them must interact with the elements of the data capture
cards. The evaluation process allowed to identify that the use of the architecture makes it possible to comply with
quality attributes such as maintainability, security, scalability, among others. During the evaluation, the quality of
availability attribute is largely fulfilled because the data were captured consistently over a period of 2 months. On
the other hand, the data capture enabled the CLEM - SENA researchers to perform their research regarding the
manual of construction of the cloud collectors. Future work is oriented towards the evaluation of the proposed
architecture in other domains, such as water quality measurement, river flow control, air quality management, etc.

References

Prada, S., Menezes, M., Sequeira, D., Figueira, C. & Oliveira, M. Agricultural and Forest Meteorology Fog precipitation and rainfall
interception in the natural forests of Madeira Island (Portugal). 149, 1179-1187 (2009).

Regalado, C. M. & Ritter, A. Agricultural and Forest Meteorology The performance of three fog gauges under field conditions and its
relationship with meteorological variables in an exposed site in Tenerife (Canary Islands). Agric. For. Meteorol. 233, 80-91 (2017).
Harb, O. M., Salem, M. S., El-hay, G. H. A. & Makled, K. M. Fog water harvesting providing stability for small Bedwe communities
lives in North cost of Egypt. Ann. Agric. Sci. 61, 105-110 (2016).

Ashton, K. That ‘Internet of Things’ Thing. RFiD J. 4986 (2009).

Dorsemaine, B., Gaulier, J. P., Wary, J. P., Kheir, N. & Urien, P. Internet of Things: A Definition and Taxonomy. Proc. - NGMAST
2015 9th Int. Conf. Next Gener. Mob. Appl. Serv. Technol. 72-77 (2016). doi:10.1109/NGMAST.2015.71

Lipovski, G. J. Introduction to Microcontrollers. Introd. to Microcontrollers 379-414 (2004). doi:10.1016/B978-012451838-4/50016-9
Jararweh, Y. et al. SDIoT: a software defined based internet of things framework. J. Ambient Intell. Humaniz. Comput. 6, 453461
(2015).

Quwaider, M., Al-Alyyoub, M. & Jararweh, Y. Cloud Support Data Management Infrastructure for Upcoming Smart Cities. Procedia
Comput. Sci. 83, 1232-1237 (2016).

Bauer, M. et al. Introduction to the Architectural Reference Model for the Internet of Things. Internet-of-Things Archit. — loT-A Deliv.
D1.3 — Updat. Ref. Model IoT v1.5 (2012).

Misra, P., Simmhan, Y. & Warrior, J. Towards a Practical Architecture for the Next Generation Internet of Things. Arxiv 1-6 (2015).
doi:10.1109/TIT.2016.2527683

Clements, P. & Kazman..., R. Evaluating software architectures: methods and case studies .

Bass, L., Clements, P. & Kazman, R. Sofiware Architecture in Practice. Vasa 2nd, (2003).

Graaf, B. Maintainability through architecture development. Sofiw. Archit. 206-211 (2004). doi:10.1007/978-3-540-24769-2_16
Clements, P. & Garlan, D. Software Architectures. 1-6 (2002).

Patidar, A. & Suman, U. A survey on software architecture evaluation methods. 49, 967-972 (2015).

