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Abstract—Microgrids (MGs) are considered as a key
solution for integrating renewable and distributed energy
resources, combined heat and power systems (CHP), as
well as distributed energy-storage systems. This paper
presents a stochastic programming framework for con-
ducting optimal 24-hour scheduling of CHP-based MGs
consisting of wind turbine, fuel cell, boiler, a typical
power only unit and energy storage devices. The objective
of scheduling is to find the optimal set points of energy
resources for profit maximization considering demand
response programs and uncertainties. The impact of
the wind speed, market and MG load uncertainties on
the MG scheduling problem is characterized through a
stochastic programming formulation. The paper studies
three cases in order to confirm the performance of the
proposed model. The effect of CHP-based MG scheduling
in the islanded and grid-connected modes as well as the
effectiveness of applying the proposed DR program are
investigated in the case studies.

Index Terms—Combined heat and power (CHP) sys-
tem, demand response programs, CHP-based microgrid
scheduling, stochastic programming

I. INTRODUCTION

M ICROGRID (MG) can be described as a group
of controllable loads and distributed energy re-

sources (DER) that can be connected and disconnected
from the main grid, and utilized in grid-connected
or islanded modes considering certain electrical con-
straints [1]. The MG concept has recently attracted
significant public attention. Integration of DER (com-
prising renewable sources), combined heat and power
systems (CHP), and energy storage technologies in
the MGs will result in environmentally friendly, low
cost, and reliable energy [2], [3]. Recently, using CHP
systems in microgrids has attracted more attention [4].
The primary motivation for incorporating CHP units
is providing electrical and thermal energy, simultane-
ously. During electricity generation process of CHP
systems, waste heat is employed to provide thermal
energy. This process will result in the improvement
of overall system efficiency as well as a significant
reduction in the cost of thermal energy generation. It
should be mentioned that, in a CHP unit, the power
generation boundaries depend upon the heat generation
of unit and the heat generation boundaries depend on
the power generation of the unit. In [5], [6] the CHP
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economic dispatch problem is solved considering heat-
power dependency characteristics.

In restructured electricity markets, the MG owner
tries to supply the MG electrical and heat demand at
minimum cost from various resources such as self-
generating facilities and pool market purchase. There-
fore, more attention has been attracted on demand
response (DR) programs, which aims to energy pro-
curement cost reduction. Demand response program
according to the U.S. Department of Energy (DOE)
is defined as industrial, residential and commercial
customers capability to change energy-consumption
patterns in response to changes in the price of electrical
energy over time, or to incentive payments in order to
accomplish reasonable prices and network reliability.

Increasing penetration of renewable energy sources
in electric grid entails inevitable challenges both in
operation and management sides due to the uncertain
nature of renewable resources like wind in order to
maintain the electrical energy production and con-
sumption balance [7], [8]. In addition to the volatility
of wind speed, the MG is exposed to market price and
its load uncertainty that need to be predicted. Hence,
an accurate wind speed, price and load forecast has
a decisive influence on the decision making strategies
of the MG master in order to proper scheduling of the
MG.

The management and scheduling of DERs, includ-
ing renewable generation in a MG, have been sur-
veyed in many works [9]–[11]. In [11] a dynamic
control strategy and modeling for a sustainable MG
supplied by wind and solar energy has been presented.
The wind energy and solar irradiance changes in
combination with load power variations have been
envisaged in [11]. Focusing on uncertain nature of
renewable sources, the wind speed and solar irradiance
forecasting problem in a MG has been studied in [12].
An artificial neural network has been used in [12], to
forecast the wind speed. In addition, optimal set points
of DERs and storage devices have been determined
based on the forecasted data in such a way that the total
net emissions and operation cost are minimized, simul-
taneously. In [13], MG intelligent energy management
under cost and emission minimization has been in-
vestigated. The paper proposed an approach that can
handle uncertainties regarding the fuzzy environment
of the overall MG operation and the uncertainty related
to the forecasted parameters. Reference [14] proposed
a stochastic framework based on scenario generation
technique such that the uncertainty associated with the
load forecast error, photovoltaic (PV) and wind turbine
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(WT) power generation as well as market price would
be envisaged in the operation management of MGs.
The grid-connected mode is considered in [14] which
includes WT, PV, micro-turbine, fuel cell and energy
storage devices.

In [15] optimal operation of a MG consisting of
fuel cell power plant as well as CHP system is
studied using a particle swarm optimization algorithm.
Moreover, the effect of different tariff for procuring
and selling electricity in each hour of a day has been
investigated. A mathematical programming for optimal
operation of micro-CHPs in a micro-grid is presented
in [16]. In this framework the microgrid is considered
in grid-connected mode that can interchange the elec-
tricity with the main grid. The objective function of
the model is minimizing of total costs while satisfying
heat demand of the network.

The conception and role of DR in the MG schedul-
ing is very vital, especially in presence of renewable
sources. An overview and a taxonomy for demand
side management, analyzes the various types of de-
mand side management are presented in [17]. In
[18] fast distributed DR algorithm in smart grid has
been provided. In [19], the effect of DR programs
on the voltage stability of power systems has been
studied in the presence of stochastic wind power
generation. A DR energy management scheme for
industrial facilities has been proposed in [20] which
takes advantage of DER. The proposed DR scheme
in [20] is based on the state task network and mixed
integer linear programming. In [21], a system-wide
demand response management model is presented,
which is provided by residential customers in order
to coordinate demand response. An incentive-based
program (IBP) considering the real-time pricing and
bi-directional operation is presented in [22]. Real-
time pricing (RTP) scheme has been proposed for
residential load management in [23] and for large
electric utilities in [24]. In [23], an automatic scheme
for optimal operation of each appliance in households
has been presented in presence of RTP tariff. A game
theoretic consumption scheduling framework has been
proposed in [25], which incorporates renewable energy
generation. The proposed optimization scheme in [25]
is based on the mixed integer programming to schedule
consumption scheme for residential consumers. In [26]
an agent-based demand side management framework
is presented in which customers encouragement is
performed through a priority-based incentive mecha-
nism. A multi-objective MG self-scheduling problem
is investigated in [27], considering DR program. The
paper modeled DR program as a virtual generation
unit. The objective function comprises of minimizing
the total operational cost of the CHP system and the
emission minimization of distributed generation units
in a MG. Moreover, in the proposed DR program
the load is considered to be curtailable in the time
intervals.

The current paper focuses on the optimal scheduling
of CHP-based MGs. The work presents a new scheme

in order to model the DR program in the MG, which
has shown successful executions in CHP-based MG
scheduling. The objective of the scheduling problem
is to satisfy both electrical and heat demand of the
MG as well as take advantage of the opportunity,
to sell any excess electricity to the main grid in
high price hours or to procure the energy from the
grid at low market price time intervals. In addition,
a DR program has been presented to have more
successful participation in the power market. In the
implemented DR program the MG load will be shifted
from high market price time intervals to low market
price time intervals to take the most advantage of grid-
connected mode and market participation. The amount
of responsive load could be different in different time
intervals. The MG is assumed to possess a power-
only unit, three WT units, fuel cell unit, a boiler
unit, two CHP units, a heat buffer tank and electrical
energy storage device. Moreover, the MG scheduling
problem considers the units startup and shutdown costs
as well as operating costs. In addition, the solution of
the scheduling problem complies with the technical
constraints of the units, consisting of minimum and
maximum capacity of units and dual dependencies of
heat and power production in the CHP units. The un-
certainties pertaining to wind turbine generation, MG
demand and market price in the scheduling problems
is characterized via scenarios. In addition, the periodic
or seasonal pattern of load and price processes has
been considered in the scenario generation procedure
using seasonal ARIMA (SARIMA) models. A new
scheme is used to generate wind speed scenarios. In
addition, fast backward reduction method is used as
scenario reduction technique in order to handle the
large scale problem. Three case studies are scrutinized
in the paper. The first case studies the scheduling
problem when MG is in the islanded mode. The second
case evaluates the effect of grid-connected mode in
the CHP-based MG scheduling problem. Finally, third
case studies the scheduling problem by not considering
the DR program in order to highlight the effectiveness
of applying the DR program in maximizing total profit.
The results of all scheduling strategies are discussed
and compared in order to highlight the economic
advantages of implementing the proposed strategy.
The contributions of the paper can be summarized as
follows:

• Short-term scheduling problem of CHP-based
MGs is conducted. In the proposed framework,
the grid-connected and islanded modes of MG
have been studied. Total heat and power demand
of MG has been satisfied with minimum cost.
In the proposed model, the most technical con-
straints of units are taken into account especially
dual dependencies of heat and power production
in the CHP units.

• Wind turbine generation, power demand and
pool prices are considered as stochastic processes
in the scheduling problem. The power demand
and pool prices variables are forecasted using
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SARIMA models.
• Non-convex feasible operation region in different

types of CHP units is formulated as a mixed inte-
ger linear formulation in the scheduling problem
of CHP-based MGs.

• The DR program is implemented in the stochastic
programming problem in order to have more
successful participation of CHP-based MGs in the
power market. In the implemented DR program,
the amount of responsive load can vary in differ-
ent time intervals.

The rest of this paper is organized as follows: In Sec-
tion III, detailed discussions on the proposed method
and problem formulations are presented. Section IV
presents simulation studies and discussions on the
results. Finally, the conclusion is provided in Section
V.

II. PRELIMINARIES

A. Stochastic programming

The stochastic programming approach constitutes a
suitable tool to make decisions under uncertainty and
reveals the fact that new information about the uncer-
tain data becomes known as time evolves along the
planning horizon. In a multi-stage stochastic program-
ming the decisions made for a stage are not affected
with the information arriving in following stages [28].
The probability description about the uncertain data
could be visualized through a scenario tree. A scenario
tree comprises a set of nodes and branches. Node
represents the state of the problem. Branch shows
transition between stages where scenarios are realized.
The first node of the problem is called Root and the
nodes of the last stage are called Leaves. Each way
between the root node and a leaf is a scenario. The
number of nodes in the last stage equals the number
of scenarios.

B. ARMA models

ARMA processes are stochastic processes which are
used to analyze time series. An ARMA(p, q) process
can be expressed as [29]:

yt =

p∑
j=1

φjyt−j + εt −
q∑

j=1

θjεt−j (1)

In which p is the number of autoregressive parameters
φ1, φ2, ..., φp, and q stands for the number of moving
average parameters θ1, θ2, ..., θq . The term εt is the
error term and stands for a normal stochastic process
with mean zero and variance equal to σε2.

In this paper the stochastic processes describing
wind speed behavior are modeled using ARMA mod-
els. Two major assumptions concerning the use of
ARMA models are to assume that the stochastic pro-
cess is stationary and the associated marginal distribu-
tion is Gaussian. It should be mentioned that there
are some methods to generate ARMA models for
other distributions than the Guassian [29]. In order to

accomplish stationary for the mean, the differencing
procedure would be applied to ARMA model, which
leads to ARIMA models. The ARIMA models are
defined by three parameters (p, d, q), which stand for
the number of autoregressive terms, the differentiating
order, and the number of moving-average terms, re-
spectively. The general statement of an ARIMA model
with parameters (p, d, q) can be as follows.

(1−
p∑

j=1

φjB
j)(1−B)dyt = (1−

q∑
j=1

θjB
j)εt (2)

where, B is the backshift operator. In order to forecast
the price and load processes in the MG scheduling
problem, seasonal autoregressive integrated moving
average models (SARIMA) are required. Therefore,
the SARIMA model, considering seasonality of order
S, with parameters (p, d, q) ∗ (P,D,Q)S is indicated
as:

(1−
p∑

j=1

φjB
j)(1−

P∑
j=1

ΦjB
jS)(1−B)

d
(1−BS)

D
yt

= (1−
q∑

j=1

θjB
j)(1−

Q∑
j=1

ΘjB
jS)εt

(3)
Equation (3) is stated with a seasonal component of
P autoregressive parameters Φ1,Φ2, ...,ΦP , Q moving
average parameters Θ1,Θ2, ...,ΘQ, and a differentia-
tion order D.

III. PROBLEM FORMULATION

A. CHP-based microgrid scheduling model

The objective of the optimal scheduling of the
CHP-based MG is maximizing the profit obtained
from hourly electrical market revenues over 24-hour
time horizon in the presence of DR programs and
uncertainties. The main source of uncertainties in MG
scheduling problem are the wind speed, day-ahead
market price and the MG power load. In this paper, in
order to model the consequence of these uncertainties,
multistage stochastic programming procedure has been
employed.

The scenario set in the problem consists of the
electricity price, the wind speed and the MG load at
each hour of the decision making horizon and their
associated probabilities. Since the power generation
of units, should be determined before realization of
uncertain stochastic processes, they are the first stage
or here-and-now decisions and they do not depend on
the scenario realization. Other state variables such as
state of charge and the power for selling or buying
from the market are second stage decisions or wait-
and-see variables.

B. Uncertain variables in CHP-based microgrid
scheduling

The load forecast is a major source of uncertainty in
MG short term scheduling. The variable load cannot
be easily forecasted as it depends upon variations
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in hourly prices, weather conditions, and consumers
decisions.

Variable renewable generation is another source of
uncertainty. The uncertain nature of the renewable
resources will cause the produced power volatility.
The variable wind speed typically does not follow a
reduplicative pattern in the daily operation of MGs and
depends upon site and weather conditions [30]. Hence,
the precise forecasting of wind turbine generation
requires sophisticated methods. Radiation forecast is
not as volatile as wind speed. Therefore, the current
paper does not deal with this instance as an uncertain
variable, in order to simplify the solving procedure.

The last uncertainty related to MG scheduling is
the pool market price. Pool market price will depend
upon several uncertain factors, including offers by
market participants and participation of consumers
with responsive load. The market price volatility may
cause the commitment and dispatch of units in the MG
scheduling problem.

In this paper, a CHP-based MG scheduling model
considering load, renewable generation, and market
prices uncertainty is proposed.

C. Scenario generation and reduction

a) Pool price and power demand scenarios: The
stochastic processes of pool price and the MGs power
demand are modeled implementing SARIMA models.

Future pool prices and demand scenarios for one day
could be generated considering the daily and weekly
seasonality of both series, by using the SARIMA meth-
ods described in the equations (4) and (5), respectively
[29], [31]:

(1− φpr1 B − φ
pr
2 B

2)(1− φpr24B
24)(1− φpr168B

168) log(λt) =
(1− θpr1 B − θpr2 B2)(1− θpr168B

168)εprt
(4)

(1− φL1B)(1− φL24B
24)(1− φL168B

168) log(load0
t ) =

(1− θL168B
168)εLt

(5)
where, φpr1 , φ

pr
2 , φ

pr
24, φ

pr
168 and φl1, φ

l
24, φ

l
168 are au-

toregressive parameters related to market price and
load, respectively. θpr1 , θpr2 , θpr168 and θl168 are the mov-
ing average parameters of market price and load,
respectively. Moreover, λt and load0

t are the market
price and MG electric load at time t, respectively,
It should be mentioned that, in the ARIMA models
logarithm function is used in order to stabilize the
variance of series. Moreover, the hourly historical data
of load and price are used to model the behavior
of load and price, respectively. The parameters of
SARIMA models (4) and (5) are obtained using ap-
propriate MATLAB function. In order to model the
load and price behavior the adjusted parameters of
SARIMA are computed using MATLAB appropriate
function. Afterwards, these adjusted parameters are
used to forecast the load and price parameters of the
MG.

Since computational requirements for solving the
stochastic programming problems depend upon the
number of scenarios, an effective scenario reduction

Forecast wind speed scenarios 

implementing ARMA models for 

the scheduling horizon

Realized values of wind speed 

for the scheduling horizon

Calculate error between forecasted value and realized value

+

Provide pdf of the fitted weibull distribution

Generate random numbers considering 

Weibull distribution

Apply scenario reduction method

Forecast wind speed scenarios 

implementing ARMA models for 

the scheduling horizon

Fig. 1. Flowchart for wind speed scenario generation process

method is essential for solving large scale problems.
The reduction procedure would be a scenario-based
approximation with a smaller number of scenarios and
close to the original system. In this paper, fast back-
ward reduction method is used as scenario reduction
technique [32]. In the current paper, the SCENRED
tool under GAMS environment has been implemented
for scenario reduction process of day-ahead market
prices and MG power demand.

b) Wind speed scenarios: the wind speed does
not follow a certain trend as pool price or load pro-
cesses. Hence, forecasting the wind speed scenarios
needs a powerful technique to schedule the MG more
practically. The flowchart of scenario generation pro-
cedure for wind speed, which is adopted from [33],
has been presented in Fig.1. To consider the impact
of the wind power production uncertainty on the MG
scheduling problem, the wind speed for each time
period of scheduling horizon is forecasted implement-
ing the ARMA models. Afterwards, the error of the
scenarios would be compared and updated according to
some realized values of wind speed for the scheduling
horizon. This error is added to the forecasted value.
In the next step, the forecasted wind speed frequency
distribution is generated for each time interval of
scheduling horizon, which follows a Weibull distribu-
tion. Next, wind power scenarios for the each hour of
day are generated by using shape and scale parameters
of Weibull distribution. Finally, the reduced scenarios
with corresponding probabilities are generated using
SCENRED tool under GAMS environment.

D. Demand response model

The main aim of the DR program is to shift the load
of MG from high market price time intervals to the
low market price time intervals. In the DR program,
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the MG can shift only the limited portion of the load
which can vary during the scheduling horizon. The
final load after implementing the DR program could
be stated as:

loadωt = (1−DRω
t )× load0,ω

t + SLω
t (6)

where, load0,ω
t and loadωt indicates the load before

and and after applying DR program. DRω
t states for

the percentage of load shifting from hour t, and SLω
t

indicates the shifted load from other hours to hour t
in scenario ω. The portion of the load which can be
shifted to other time intervals can be represented as
following:

DRω
t ≤ DRmax (7)

where, DRmax states for the maximum load the MG
which can be shifted. The following constraint limits
the increased load in each interval and inhibits the
excessive shift of load in the intervals. In other words,
this constraint applies the technical constraints related
to the maximum amount of increased load.

0 ≤ loadω,IL
t ≤ ILω

t × load
0,ω
t (8)

where, ILω
t is the amount of increased load at time t.

loadILω,t could be defined as:

loadω,IL
t = SLω

t − (DRω
t × load

0, ω
t ) (9)

The following constraint limits the incremental load,
ILω

t :
ILω

t ≤ ILmax (10)

In this paper it is considered that the total daily
consumed energy of the MG should be the same
before and after implementing the DR programs. This
constraint can be stated as following:

24∑
t=1

SLω
t =

24∑
t=1

DRω
t × load

0, ω
t ∀ω ∈ Ω (11)

Hence, the MG would be able to supply all its elec-
trical demand with less cost.

E. Objective function

In the CHP-based MG scheduling problem the ob-
jective function (OF) is maximizing the total profit,
while supplying the total power and heat demand of
the MG. The revenue of the MG comes from selling
the excess electricity to the market when it is operated
in the grid connected mode. The cost of the MG
includes the units operational cost and units startup
and shutdown costs as well as cost of buying energy
from the pool in the grid connected mode. It should
be mentioned that in order to reduce the frequently
turning on and off problems of units, a term illustrating
the start-up and shut-down costs is included in the
objective function [16]. It is assumed that the consumer
contains two varieties of CHP units, WT, fuel cell,
typical power only unit, boiler unit, heat buffer tank,
electrical energy storage device and responsive load.

Hence, the corresponding OF can be mathematically
stated as:

OF =
24∑
t=1
{
∑
ω∈Ω

πω{(Pω,sale
t × λωt )− (Pω,buy

t × λωt )}

−
NCHP∑
i=1

Ci(P
CHP , HCHP )−

Np∑
j=1

Cj(P
P )

−
Nb∑
k=1

Ck(HB)−
NF∑
l=1

Cl(P
F )

−
∑

h∈i,j,k,l
(CSUh,t × SUh,t+CSDh ,t × SDh ,t)}

(12)

πω = πpr × πl × πWT (13)

where, πω indicates the probability of scenario ω.
Pω,sale
t and Pω,buy

t are the amount of power sold
and bought to/from the market, respectively. Super-
scripts CHP , P , B and F refers to the CHP unit,
conventional power only, boiler and fuel cell units,
respetively. Indices i, j, k and l are indexes for
cogeneration units, conventional units, boilers and fuel
cell units, respectively. According to equation (13) the
probability of ωth scenario is obtained by multiplying
the probabilities of market price, load and wind tur-
bine generation.The function, Ct,represents the total
operation cost of units. The total operation cost of a
CHP unit could be defined as [34]:

C(PCHP , HCHP ) = a× P 2 + b× P + c
+d×H2 + e×H + f ×H × P (14)

Referring to the Eq. (14), all variables are related to
the CHP units. In addition, a, b, c, d, e and f are cost
function coefficients of CHP units, which is function of
both heat and power production of units. The operation
cost of a conventional power and heat only units
and fuel cell units are considered to be linear and
respectively can be formulated as following:

Cj(P
P ) = ψ × PP (15)

Ck(HB) = γ ×HB (16)

Cl(P
F ) = χ× PF (17)

where,ψ, γ and χ are cost function coefficients of
power and heat only units and fuel cell units, respec-
tively.It should be mentioned that the operation cost
of the wind units are low and could be neglected [35].
The binary variables SUh, t and SDh, t are defined to
model the start-up and shut-down status of the units,
as following:

SUh, t = Vh, t × (1− Vh ,t−1) h ∈ i, j, k, l (18)

SDh,t = (1− Vh,t)× Vh,t−1 h ∈ i, j, k, l (19)
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F. Generation units constrains

1) CHP units: It should be mentioned that the
power and heat generations of the CHP units are
dually dependent and could not be controlled sepa-
rately. There are two types of feasible operating region
(FOR) for CHP units [36]. The first type and second
type FOR of a CHP unit are portrayed in Fig. 7.
The first type FOR can be characterized using linear
representation and Eqs. (20)-(24) model the FOR in
the MG scheduling problem [37].

PCHP
i,t −PCHP

i,A −
PCHP
i,A − PCHP

i,B

HCHP
i,A −HCHP

i,B

(HCHP
it −HCHP

i,A ) ≤ 0

(20)

PCHP
it − PCHP

i,B − PCHP
i,B −PCHP

i,C

HCHP
i,B −HCHP

i,C

(HCHP
it −HCHP

i,B ) ≥
−(1− Vit)×M

(21)

PCHP
it − PCHP

i,C − PCHP
i,C −PCHP

i,D

HCHP
i,C −HCHP

i,D

(HCHP
it −HCHP

i,C ) ≥
−(1− Vit)×M

(22)

0 ≤ HCHP
it ≤ HCHP

iB × Vit (23)

0 ≤ PCHP
it ≤ PCHP

iA × Vit (24)

where, M represents a sufficient large number, and
indices A, B, C and D are four marginal points of
the FOR in the first type of CHP unit. Equation 20
formulates the area under the curve AB. Equation
(21) models the area upper the curve BC, and the
upper area of curve CD is represented implementing
Eq. (22). According to the Eqs. (21) - (22), for a
decommitted unit (Vi,t = 0) the output power would
be zero. Also, the heat and power generation for a
decommitted unit must be set to zero which is imposed
by Eqs. (23) and (24), respectively. As can be seen
from Fig. 3, the FOR of type two is non-convex
which can be divided into two convex sub-regions
I and II, according to Fig. 3. The type 2 FOR is
enclosed by the boundary curve ABCDEFG. In this
case by implementing the traditional formulation, like
as the first FOR type formulation, the gray region
(FEG) would not be envisaged. Hence, this non-convex
region is handled by implementing binary variables X1

and X2 [36]. Therefore, the non-convex FOR would
be divided into two convex sub-regions I and II. the
following equations have been considered to model the
FOR of CHP unit in the MG scheduling problem, [37]:

PCHP
i,t −PCHP

i,B −
PCHP
i,B − PCHP

i,C

HCHP
i,B −HCHP

i,C

(HCHP
it −HCHP

i,B ) ≤ 0

(25)

PCHP
i,t −PCHP

i,C −
PCHP
i,C − PCHP

i,D

HCHP
i,C −HCHP

i,D

(HCHP
it −HCHP

i,C ) ≥ 0

(26)

P(MW)

A
B

F

H(MWth)

C

D

E

G

Sec I Sec II

P(MW)

A

B

C
D

H(MWth)
(a) (b)

Fig. 2. Power-heat feasible region for a CHP units a) type 1 b)
type 2.

PCHP
i,t − PCHP

i,E − PCHP
i,E −PCHP

i,F

HCHP
i,E −HCHP

i,F

(HCHP
it −HCHP

i,E ) ≥
−(1−X1)×M

(27)
PCHP
i,t − PCHP

i,D − PCHP
i,D −PCHP

i,E

HCHP
i,D −HCHP

i,E

(HCHP
it −HCHP

i,D ) ≥
−(1−X2)×M

(28)
HCHP

i,t −HCHP
i,E ≥ −(1−X2t)×M (29)

HCHP
i,t −HCHP

i,E ≤ (1−X1t)×M (30)

X1t +X2t = Vi,t (31)

0 ≤ HCHP
it ≤ HCHP

i,C × Vit (32)

0 ≤ PCHP
it ≤ PCHP

i,A × Vit (33)

In the second type, again indices A, B, C, D, E and
F states the corner points of the FOR pertaining to
Fig. 2-b. Equation (25) introduces the area under the
curve BC. The area upper the curve CD is described
using (26). The upper area of curves EF and DE are
defined using (27) and (28), respectively. In the Eqs.
(27) - (30), X1t = 1 ( X2t = 1) means that the CHP
unit operates in the first (second) convex section of
FOR. According to Eq. (31), the operation region of
CHP unit would be either I or II when the unit is ON
and none of them when the unit is OFF. In addition,
for a decommited unit, Eqs. (32) and (33) will set the
heat and power generation to zero.

2) Power only, heat only and fuel cell units con-
straints: The capacity limits of power and heat only
units and fuel cell unit can be expressed as below:

PP,min
j × Vj,t ≤ PP

j,t ≤ P
P,max
j × Vj,t (34)

Hb,min
k × Vk,t ≤ Hb

k,t ≤ H
b,max
k × Vk,t (35)

PF,min
l × Vl,t ≤ PF

l,t ≤ P
F,max
l × Vl,t (36)

3) Wind power constraint: The total available wind
power of a WT is a function of the wind speed and
turbine characteristics and can be modeled by Eq. (37)
as follows [35].

P
′ ω,WT
m,t =


0 Vt < V CI , Vt > V CO

m

PWT
max ×

(
Vt−V CI

V R−V CI

)
V CI ≤ Vt ≤ V R

PWT
max V R ≤ Vt ≤ V CO

(37)
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in which, V CI
m , V CO

m , V R
m and V ω,WT

t are, cut-in,
cut-out, rated and instantaneous wind speed. Also,
P

′ ω,WT
m,t and PWT

max are available and maximum wind
power, respectively. The generated power of the wind
turbine m at time period t is restricted to the available
wind power. Also wind power spillage is allowed. The
algorithm decides about utilizing renewable generation
considering the total cost, the operational constraints
and the MG power and heat demands. The following
constraint enforces this restriction:

P ω,WT
m,t ≤ P

′ω,WT
m,t (38)

4) Electrical energy storage device: Energy balance
constraint of the storage can be explained as:

Eω
t = Eω

t−1 + ηchaP
ω,cha
t ∆t− 1

ηdisch
Pω,disch
t ∆t

(39)
In which, ηcha and ηdisch are charge and discharge
efficiency of the battery, respectively. The limits of
charging power, Pω,cha

t , discharging power, Pω,disch
t ,

and storage capacity, Eω
t , are enforced using the

following constraints.

E
¯
≤ Eω

t ≤ Ē (40)

P
¯

cha.αt
ω,cha ≤ Pω,cha

t ≤ P̄ cha.αt
ω,cha (41)

P
¯

disch.βt
ω,dsch ≤ Pω,disch

t ≤ P̄ disch.βt
ω,dsch (42)

αt
ω,cha + βt

ω,dsch = 1 (43)

It should be noted that the battery does not charge and
discharge simultaneously because of the additional and
unnecessary cost of charge and discharge efficiency
deterioration. Therefore, binary variables αt

ω,cha and
βt

ω,dsch are implemented to model the status of en-
ergy storage. In the Eqs. (41)-(43), αt

ω,cha = 1
(βtω,dsch = 1) means that the energy storage is
charging (discharging) at time interval t related to the
scenario ω. These limitations will force the storage
device to buy and charge energy at low market price
hours and sell it at high market price hours.

5) Heat buffer tank: The heat buffer tank has been
developed from the model introduced in [16]. The heat
buffer tank is disposed to the CHP units and the boiler
units. In the proposed facility, the heat storage is also
possible. The total produced heat H̄t could be stated
as:

H̄t =

NCHP∑
i=1

HCHP
i,t +

Nb∑
k=1

Hb
k,t (44)

As the heat disposed to the heat buffer tank is effected
by the loss (βloss) and extra heat generation (βgain)
during shut-down and start-up periods, respectively,
the real heat, Ht, which the buffer would be supplied,
is as following [16]:

Ht = H̄t − βlossSUh,t + βgainSDh,t h ∈ i, k
(45)

Hence, the available heat in the heat buffer tank, Bt,
could be calculated as:

Bt = (1− η)Bt−1 +Ht −HD
t (46)

where, η is the heat loss rate for the heat buffer tank.
Moreover, the capacity of heat storage is restricted as:

Bmin ≤ Bt ≤ Bmax (47)

In the paper, the practical state of heat storage sys-
tem is simulated by considering the ramping up/down
rates as follow:

Bt −Bt−1 ≤ Bch arg e
max (48)

Bt−1 −Bt ≤ Bdisch arg e
max (49)

G. Power balance

The following constraint expresses that the supplied
power by all of the units and the one supplied by
network would satisfy the total demand considering
DR programs, in each scenario and every hours of the
scheduling horizon.

Pω,buy
t +

NCHP∑
i=1

PCHP
i,t +

NP∑
j=1

PP
j,t +

NF∑
l=1

PF
l,t +

NWT∑
m=1

Pω,WT
m,t

+Pω,disch
t = Pω,Sale

t + {(1−DRω
t )× load0,ω

t

+SLω
t } + Pω,cha

t ∀t, ω
(50)

IV. SIMULATION STUDIES

In this section, at first the structure of the considered
microgrid is illustrated and after that the simulation
results of optimal operation scheduling is presented.

A. Microgrid structure

In the paper, three case studies have been scruti-
nized:

Case 1: CHP-based MG scheduling in islanded
mode considering volatility of market price, MG load
and wind speed

Case 2: CHP-based microgrid scheduling in grid
connected mode

Case 3: Impact of DR program on the MG schedul-
ing

In the case studies 2 and 3 the MG is able to
exchange (sell or procure) the power with the network
according to the pool market prices. The proposed
stochastic programming model is applied to a typical
microgrid depicted in Fig. 3. According to Fig. 3
the considered MG in the case studies, comprises
WT units, two cogeneration units with deferent FORs,
one boiler unit, a power only unit, an energy storage
device and a heat buffer tank unit along with the fixed
and responsive electrical demand and a fixed thermal
demand. Both DRmax and incmax are assumed to
be 30%. Characteristics of the energy storage device
and heat buffer tank are presented in Tables I and II,
respectively. The startup and shutdown cost of units
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TABLE I
CHARACTERISTICS OF ENERGY STORAGE DEVICE.

Characteristics Value Characteristics Value
P̄ cha (MW) 3 E

¯
(MW h) 0

P
¯

cha (MW) 0 Ē (MW h) 6

P̄ disch (MW) 3 ηcha 0.9
P
¯

disch(MW ) 0 ηdisch 0.9

TABLE II
CHARACTERISTICS OF THE HEAT BUFFER TANK.

βgain βloss η Bch arg e
max Bdisch arg e

max Bmax Bmin

0.3 0.6 1% 2 2 7 0

are provided in Table III. The minimum and maximum
power generation of fuel cell are considered to be
3 and 30kW, respectively [14]. Table IV provides
the cost function coefficients of cogeneration units.
The cost functions of heat-only, power-only and fuel
cell units are supposed to be linear and expressed
in Eqs. (51) - (53), respectively. The forecasted heat
demand of MG is illustrated in Fig. 4. The FOR of
cogeneration units is depicted in Fig. 5. The WTs
parameters are VCI = 3.5 (m/s) , VCO = 25 (m/s)
and VR = 11.9 (m/s) [38] with maximum power
output of 0.7, 0.8 and 0.9 MW. The uncertain nature
of MG scheduling problem is modeled through a multi
stage stochastic process. The uncertainty related to
wind speed is modeled through the proposed method.
Moreover, the stochastic processes of market price and
MG load are modeled through the SARIMA models.
The hourly historical data of load, price [39] and wind
speed [40] are used to model the stochastic behavior of
these parameters. In addition, 200 scenarios have been
generated for each uncertain parameter. Implementing
the scenario reduction method, 5 scenarios have been
used in the studied cases for each parameter, which
will result in total 125 scenarios, considering three
uncertain parameters in the problem. Finally, mathe-
matical modeling of the CHP-based MG scheduling
problem under stochastic process is solved by using
SBB/CONOPT solver [41] under General Algebraic
Modeling System (GAMS) environment [42].

CB
k,t = 23.4×H

b

k,t 0 ≤ Hb
k,t ≤ 5MWth (51)

CP
j,t = 50× P

p

j,t 0 ≤ P p
j,t ≤ 1.5MW (52)

CF
1,t = 40× P

F

1,t 0.003 ≤ PF
1,t ≤ 0.03MW (53)

B. Simulation results

1) Case study 1: CHP-based MG scheduling in
islanded-mode: In this case the MG scheduling prob-
lem is solved using proposed stochastic formulation.
The scenario generation methods have been employed

TABLE III
ECONOMIC DATA OF GENERATION UNITS.

Unit/ characteristic CSU CSD
CHP unit 1 20 20
CHP unit 2 20 20
Power-Only 12 12

Heat-Only unit 9 9
Fuel cell 0.0207 0.0207

TABLE IV
CHARACTERISTICS OF THE HEAT BUFFER TANK.

Unit a b c d e f
CHP unit 1 0.0435 36 12.5 0.027 0.6 0.011
CHP unit 2 0.0345 14.5 26.5 0.03 4.2 0.031

Market

Power only unit

max

min

30

3

P kW

P kW





max 1.5P MW

MG 3 wind turbines
max

1

max

2

max

3

0.7

0.8

0.9

P MW

P MW

P MW







P

H

1

nP

H

P

2

nP
CHP units

1

2

2.15

1.102

n

n

P MW

P MW





Boiler
max 5H MWth

Heat buffer tank
max 7B MWth

Power storage
max 6E MW h

Fuel cell 

Fig. 3. Typical microgrid test system.

Fig. 4. Forecasted heat demand.

P(MW)

H(MWth)

1.258

0.44
0.4

0.159 0.324 0.75 0.1356

1.102

H(MWth)

2.47

0.988

1.81.048

0.81

P(MW)

Fig. 5. Power-heat feasible region for CHP units a) unit 1 b) unit
2.
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TABLE V
SIMULATION RESULTS OF CASE STUDIES.

Generation Revenue from Cost of buying Value of
cost the sale of power power objective function

Case 1 $2,255.709 —- —- -$2,255.709
Case 2 $3,754.529 $6,248.144 $68.961 $2,424.654
Case 3 $3,641.380 $5,939.722 $112.243 $2,186.1

to generate the proper scenarios of hourly load, mar-
ket price and wind energy generation. The MG is
considered in islanded mode. Moreover, all technical
and economic constraints have been envisaged. Table
V summarizes the results of case 2. According to
Table V, the cost of MG energy supply would be
$2,255.709. The CHP units and WTs will supply about
96% and 4% of total demand, respectively. In this
case, wind power generators will not produce power in
their maximum capacity at all hours, in spite of their
zero operation cost. This fact is due to the MG heat
demand. The CHP units will produce heat to supply
the demand. Hence, the CHP units FOR will cause the
units to produce power as well as thermal energy.

2) Case study 2: CHP-based MG scheduling in
grid-connected mode: In the second case the effect of
exchanging the electrical energy with the grid in the
grid connected MG is studied. The MG scheduling
problem is solved considering all technical and eco-
nomic constraints as well as DR program. The results
regarding case 2 are presented in Table V. According
to Table V the MG revenue from the market partici-
pation, would be $6,179.183. This revenue is due to
selling the power to the main grid. The generation
cost regarding to case 2 has been increased about
66.5% in comparison with the case study 1. The excess
generated power will be sold to the main grid which
will cause about $2,424.654 overall profit to the MG.
Figure 6 shows the produced power of units at the
scheduling horizon. It should be mentioned that the
expected values for the sold and bought energy as well
as wind power generations are illustrated in the Fig.
6, due to their stochastic nature. According to Fig. 6
the wind power generators will produce power in their
maximum capacity. Therefore, the excess generated
power of units will be sold to the market. Table V
and Fig. 6 shows that the MG will supply energy from
the main grid only for a few hours of the day, which
is as a result of low operation cost of CHP units, in
comparison with the market price. Figure 7 shows the
generated heat results of CHP units and boiler unit.
According to Fig. 7 the boiler unit will not take part
in supplying the heat demand due to its high cost
function, in comparison with the CHP units.

In this case another study has been investigated in
order to give an intuition about the deterministic and
stochastic schedulings. In order to scrutinize this study
three methods have been utilized: i) Resource problem
(RP): The resource problem also known as stochastic
solution (SS) is achieved by explicitly envisaging all
of the scenarios. The value of objective function of
this solution is called RP.

ii) Expected value (EV): The expected value of a
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Fig. 6. generated power results of the case 2.
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Fig. 7. generated heat results of the case 2.

problem can be achieved by considering the expected
value of all random parameters. The objective function
value corresponding to deterministic problem indicates
the EV solution.

iii) Expected outcome of using the expected value
(EEV): The solution of this case is obtained by fixing
the decisions of the first stage variables with the results
achieved from the deterministic solution, and solving
the stochastic program by considering all scenarios. It
should be mentioned that, this solution presents the
true profit of the deterministic solution. The value of
stochastic solution (VSS) is computed by subtracting
the solution of RP from the EEV as follows [43]:

V SS = RP − EEV (54)

The comparison of obtained best compromise solution
using the three mentioned methods is presented in
Table VI. The VSS for profit is equal to $220.654
which indicates the extra profit of using a stochastic
model instead of the deterministic method. This obser-
vation is due to the RP and EEV methods difference
in solving the problem. The EEV method considers
the scenarios after deciding about first stage variables,
however, the RP method considers all scenarios while
solving the problem and deciding about first stage
variables as well as second stage variables.

3) Case study 3: Impact of DR program on the MG
scheduling: This case studies the scheduling problem
without considering DR program, in order to illustrate
the effect of applying the proposed DR program in the
CHP-based MG scheduling problem. Table V presents
the results regarding to case 3. In comparison with the

TABLE VI
TOTAL PROFIT USING DIFFERENT UNCERTAINTY
CONSIDERATION METHODS RELATED TO CASE 2.

Method EV RP EEV
Total profit $2,488.012 $2,424.654 $2,204.00
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Fig. 8. generated power results of the case 3.

second case, the total profit has been decreased, how-
ever the production cost has decreased nevertheless. As
obvious from Table V, the MG profit will be $2,186.1
that has decreased about 10% in comparison with
the case which applies DR program. This decrement
in the total profit value confirms the effectiveness
of applying the proposed DR program in the CHP-
based MG scheduling problem. Figure 8 depicts the
generated power and provided energy from the grid.
According to the Fig. 8 the provided energy from the
grid is non zero only for a few hours of the day. In
addition, according to the simulation results the boiler
unit will produce the heat at hours 21:00 to 23:00. In
spite of the CHP unit 1 power generation at hours 7:00
to 9:00, it will not generate heat , therefore, the CHP
unit 2 and stored heat in the heat bffer tank are the
only suppliers of heat demand at these hours.

V. CONCLUSION

This paper presented a stochastic programming
framework for optimal scheduling of a CHP-based
MG, comprising four types of thermal power gener-
ation units, two types of cogeneration units, energy
storage systems, and demand response programs. In
the optimal scheduling problem of a MG, the objec-
tive is maximizing total profit of MG, in the case
of grid-connected operation mode, also, minimizing
total cost of thermal and electrical energy supply in
the case of islanded mode. In order to achieve this
objective, DR program is implemented in the proposed
framework. In addition, the CHP units with heat-
power dual dependency characteristic is modeled using
mixed-integer linear programming formulation in the
MG scheduling problem. In the paper, the stochastic
processes describing the price behavior in day-ahead
market and the MGs power demand are modeled using
SARIMA models. The weekly and daily seasonalities
of MG load and market prices have been modeled in
the scenario generation technique. The stochastic wind
speed process is modeled using proposed scenario
generation procedure which employs ARMA model.
Moreover, in order to handle the large scale stochastic
programming problem, fast backward scenario reduc-
tion technique has been implemented. The results show
that the proposed model can cover the total electrical
and thermal demands with respect to economic criteria.
In addition, by implementing the DR program the

total profit has been increased noticeably. According
to the results of the case studies, although integrating
DR programs will increase 3.1% of daily operation
cost from $3,641.38 to $3,754.529, however, it will
increase total profit more than 9.8% , up to $2,424.654,
comparing to the base case (case without DR program)
with total profit of $2,186.1. In addition, the case
studies illustrated that by implementing the proposed
framework the MG can obtain a meaningful profit
in the grid-connected mode in comparison with the
islanded-mode, as well as supplying total electrical and
heat demand.
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