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Abstract—Non-intrusive load monitoring (NILM) is an im-
portant topic in smart-grid and smart-home. Many energy
disaggregation algorithms have been proposed to detect various
individual appliances from one aggregated signal observation.
However, few works studied the energy disaggregation of plug-
in electric vehicle (EV) charging in the residential environment
since EVs charging at home has emerged only recently. Recent
studies showed that EV charging has a large impact on smart-
grid especially in summer. Therefore, EV charging monitoring has
become a more important and urgent missing piece in energy
disaggregation. In this paper, we present a novel method to
disaggregate EV charging signals from aggregated real power
signals. The proposed method can effectively mitigate interference
coming from air-conditioner (AC), enabling accurate EV charging
detection and energy estimation under the presence of AC power
signals. Besides, the proposed algorithm requires no training,
demands a light computational load, delivers high estimation
accuracy, and works well for data recorded at the low sampling
rate 1/60 Hz. When the algorithm is tested on real-world data
recorded from 11 houses over about a whole year (total 125
months worth of data), the averaged error in estimating energy
consumption of EV charging is 15.7 kwh/month (while the
true averaged energy consumption of EV charging is 208.5
kwh/month), and the averaged normalized mean square error
in disaggregating EV charging load signals is 0.19.

Keywords—Non-intrusive load monitoring (NILM); Electric
Vehicle (EV); Smart Grid; Energy Disaggregation

I. INTRODUCTION

Non-intrusive load monitoring (NILM) or non-intrusive
appliance load monitoring (NIALM) is an important solution
to realize smart-grid and smart-home energy management
benefits. It aims to estimate operation status and energy
consumption of individual electronic appliances by monitoring
aggregated current/voltage/power signals in the main circuit
panel of a house or a building [1]–[3].

Electric vehicle (EV) charging is becoming an important
load element for smart grid analysis [4]–[6] although home
charging EVs recently entered the market. Due to the growing
number of the EV customers, a utility might start to experience
non-marginal impacts on parts of its distribution system.
Particularly, the gravity of this impact will depend on at what
time, for how long, with what utility rate, and in what season
these EVs are being charged [7]. Therefore, it is necessary to
solicit the importance and urgency of monitoring EV charging
load via energy disaggregation.

Another usage of monitoring EV charging load is to
provide house owners the monthly energy consumption of EV
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Fig. 1. (a) An EV power signal. (b) An AC power signal exhibiting two
kinds of waveform patterns, i.e. spike trains and lumps.

charging. This monthly feedback information can help house
owners in bill-management and travel-management in the same
way as monthly gas bill and conventional monthly electricity
bill [8].

There are many algorithms available for the energy disag-
gregation of various residential appliances [1]–[3], [9]–[14],
such as hidden Markov model(HMM) algorithms [10], [11],
[13]. However, these algorithms were not specifically designed
for EV charging, and they require extensive training and a large
computational load. Therefore, for practical implementation
where simultaneously monitoring tens of thousands houses is
required, those algorithms may not be an attractive solution.

In this paper, a novel algorithm for energy disaggregation
of EV charging is presented. It has several desired advantages.
(1) It can mitigate the interference coming from air-conditioner
(AC) power signals. Thus, it could be very helpful for smart
grid load analysis and management during peak load time in
summer. (2) It does not require training, which is an highly
attractive feature toward practical implementation. (3) It de-
mands a light computational load, thus suitable for monitoring
tens of thousands residual houses in large scale. (4) It works
well for data sampled at 1/60 Hz, which aligns with the data
provision capability of many smart-meters. Experiments based
on real-world power data showed that it exhibits far better
performance than state-of-the-art algorithms.

II. CHALLENGES

One big challenge of disaggregating an EV charging load
from aggregated power signals is mitigating interference from
AC. As shown in Fig.1(a), an EV charging load signal can be
characterized as a square wave of a high amplitude (higher
than 3 kW) and a long duration (longer than 30 minutes but
generally shorter than 200 minutes) [5]. AC power signals



usually exhibit two kinds of waveform patterns. One pattern
resembles a spike train with very short durations (e.g. the
train of waves from the 1st to 700-th minutes in Fig.1(b)).
Another waveform pattern resembles a rectangular waveform
of a high and slowly fluctuating amplitude and a long duration
(e.g. the two lumps from the 700-th to 1200-th minutes in
Fig.1(b)). This waveform pattern can seriously affect disag-
gregation performance of EV charging load signals due to
the difficulty of distinguishing the AC waveform pattern from
EV charging load signals, especially in the presence of other
appliances’ power signals and highly fluctuating residual noise.
For notational convenience, this kind of AC waveforms will
be called as AC lumps.

Another challenge lies with the aggregated data themselves
of being real power signals sampled at 1/60 Hz. At this
sampling rate, many useful appliance signatures [15]–[17] such
as transient characteristics available from high sampling rates
no longer exist, which limits pattern recognition tools to render
accurate disaggregation results.

The third challenge is the lack of ground-truth of EV
charging load signals for each house and its large variation
across different houses. To obtain the ground-truth of EV
charging load signals in a given house, it requires to install
sub-meter sensors to record these signals. However, it is
unpractical to install such sub-meter sensors in every house.
Thus, when disaggregating EV charging load from aggregated
power signals in a given house, there is no training set (i.e.,
a collection of ground-truth of EV charging load signals in
the house) available to train an algorithm. On the other side,
EV charging load signals have large variation across different
houses. For example, EV charging load signals could have
different amplitudes (although always higher than 3 kW), dif-
ferent width (i.e., charging duration), and different appearance
time from house to house. As a result, an algorithm working
well for a given house may perform poorly for another house.

In summary, a practical algorithm should work well for
various houses and every season (especially the summer), and
should not require training sets. But due to the above issues,
to achieve high disaggregation accuracy of EV charging load
is truly challenging.

III. PROPOSED ALGORITHM

This section will describe the proposed algorithm in detail.
A one-day aggregated power signal (taken from the Pecan
Street Database [18]) is chosen for illustration purpose (see
Fig.2(a)).

A. Step 1: Thresholding the Aggregated Signal

For a given aggregated signal x(t), first, a threshold Tlow

is applied to obtain a rough estimate of the EV charging load
signal:

x(t) =

{
x(t) x(t) ≥ Tlow

0 x(t) < Tlow
(1)

where Tlow � max
{
2.5, 1

2|x(k)>2|
∑

k: x(k)>2 x(k)
}

, and
|x(k) > 2| counts the number of sampling points whose am-
plitude is larger than 2 kW. After the initial thresholding (see
Fig.3(a)), the segments information of x(t) can be obtained
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Fig. 2. Energy disaggregation by the proposed algorithm. (a) An aggregated
signal of one day. (b) The ground-truth of AC. (c) The ground-truth of
EV (energy consumption is 12.0 kwh). (d) The estimated EV power signal
(estimated energy consumption is 12.7 kwh). The energy estimation error
(defined in Section IV) is 5.8%, and the MSE is 0.178.
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Fig. 3. Results after using the spike-train filter and the fix-value thresholding
method. (a) The aggregated signal after thresholding in Step 1. (b) The ground-
truth of EV power signal, which has two waves. (c) The result after using
our spike-train filter. (d) The result after thresholding using a small fixed
value (20). There were many short AC spikes unremoved. (e) The result after
thresholding using a large fixed value (90). Note that the first EV wave (from
the 510-th to 550-th minute) was also removed.

such as the locations of a start-point and an end-point of each
segment.

B. Step 2: Filtering the Spike-Train

Many AC spikes are present in the thresholding result
(Fig.3(a)), which need to be removed. One may consider
setting a threshold to remove all spikes whose duration is



shorter than the threshold. However, it is not easy to find a
suitable duration threshold to remove all these spikes due to
the varying nature of an AC spike duration (see Fig.2(b)).

Note that the duration of AC spikes gradually increases
from morning to later afternoon and gradually decreases from
later afternoon to midnight. Based on this observation, the
following filter is designed to remove these spikes.

It first finds segments with duration shorter than Tseed = 20
(minutes), which are called ‘seeds’ and labeled as ‘spikes to
remove’. Then, from each ‘seed’, the filter searches the nearest
segment forwardly, checking whether the segment’s duration
is shorter than D � (1+η)Dcur and whether the gap between
the ‘seed’ and the nearest segment is no more than 3Dcur,
where Dcur is the duration of the current ‘seed’ and η is a
duration extension parameter (η = 1.2 in our algorithm). If this
search condition meets, this nearest segment will be labeled as
‘spikes to remove’ and will be set as a new ‘seed’. Now, using
this new ‘seed’, the filter repeats the same forward segment
searching to the nearest segment, checking its condition in the
same prescribed manner. If the search condition is not met,
then jump to another ‘seed’ and check its nearest segment
forwardly as before. Similarly, the filter searches backwardly
as well. In the end, after completing the whole search range,
all segments labeled as ‘spikes to remove’ are removed from
x(t).

To prevent from removing a segment with a very large
duration, one can adjust a threshold Tspike such that all
removed segments have duration no more than Tspike. For the
proposed algorithm, it is set as Tspike = 90(minutes).

Note that the filter does not remove all segments which
have duration no more than Tspike. It removes a segment
only if its duration does not increase sharply compared to
its surrounding segments’ duration. If a segment with a long
duration is surrounded by very short segments, even if this
long segment has duration shorter than Tspike, it will not be
removed. The reason is that this segment could potentially
indicate a waveform of EV, dryer, or oven. So, it requires
further examination.

Fig.3 shows one example that the proposed spike-train
filter removed all AC spikes. While using a fixed threshold
value to remove these AC spikes, several single spikes were
unremoved due to a small threshold (Fig.3(d)), or a part of
an EV power signal was removed mistakenly due to a large
threshold (Fig.3(e)).

C. Step 3: Removing Residual Noise

Residual noise refers to the mixture of errors from fluctu-
ation of power signals, loss in power lines, and power signals
of appliances with a low amplitude. With location information
of each segment obtained in Step 1, the amplitude of residual
noise can be estimated around each segment. For each segment,
using the minimum value of Nb points immediately before the
segment and the minimum value of Na points immediately
after the segment, the amplitude of the local residual noise
can be estimated by averaging the two minimum values. The
residual noise removal can be obtained by subtracting the
segment by its associated local residual noise amplitude. In
our algorithm Nb = Na = 5.

D. Step 4: Classifying the Type of Each Segment

At this point, there are only a few remaining segments
in the filtered aggregated signal. And every segment can be
classified into one of three types.

Type 0: The segment belongs to a dryer/oven waveform,
or belongs to an EV waveform fully overlapping
with a dryer/oven waveform which has almost the
same duration as the EV waveform. For the former
case, the segment can be simply removed since it
is not an EV waveform. For the latter case, the
segment should have very high amplitude since a
dryer/oven waveform has high amplitude like an
EV waveform (generally higher than 5 kW).

Type 1: The segment belongs to an EV waveform, or an
AC lump, or an EV waveform overlapping with
waveforms of non-AC appliances with relatively
shorter durations, or an AC lump overlapping with
waveforms of other appliances. One can calculate
the approximate width and height of the segment,
decide whether it is an EV waveform, and then
reconstruct the EV waveform.

Type 2: The segment belongs to an EV waveform over-
lapping with an AC waveform, which is probably
also overlapping with other appliances’ wave-
forms. For example, the first two segments shown
in Fig.3(c) are respectively an EV waveform
overlapping with an AC spike train and an EV
waveform overlapping with an AC lump and a
dryer waveform.

To classify a given segment S(t) after Step 3, the following
cumulative counting function is calculated:

f(c) = 〈S(t) > c〉 (2)

where c is an amplitude threshold from 0 to max(S(t)), and
the operator 〈S(t) > c〉 counts the number of sampling points
in S(t) with an amplitude greater than c. For example, if c = 0,
then f(c) is the total number of all nonzero samples in the
segment. If c = max(S(t)), then f(c) = 0.

When calculating the gradient of the cumulative function
f(c), one can find that there are two prominent peaks for Type
2 segments. This is because both an AC waveform and an EV
waveform can be approximated as square waves, and a square
wave can result in sharp drop in f(c) when c is equal to the
height of the square wave. Similarly, there is one prominent
peak in the gradient of f(c) for Type 1 segments and no
prominent peak for Type 0 segments. Thus, the number of
prominent peaks in the gradient of the function suggests which
type an observing segment belongs to.

To find prominent peaks, we search peaks with mutual dis-
tance larger than 2 kW and peak height larger than 0.2max(g)
where g is the gradient of f . The Matlab command findpeaks
can finish this task easily. If there is one peak, the segment
is classified as Type 1 (Fig.5). If there are at least two
peaks, further calculate the area under the normalized gradient
function gn � g/max(g). If the area is larger than 35% of
the square area with the same width and height as gn (e.g.
the green square area in Fig.4 and Fig.6), then the segment is
classified as Type 0 (Fig.4); otherwise, it is classified as Type
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Fig. 4. Two typical segments of Type 0. (a) shows a dryer wave. (b) shows
an EV wave completely overlapped by a dryer wave which has the same
duration as the EV wave. For each segment, the gradient of its cumulative
function (shown in the middle plot in (a) and (b)) does not show prominent
peaks (see the right plot in (a) and (b)).
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Fig. 5. Two typical segments of Type 1. (a) shows an EV wave overlapped
by a dryer wave with short duration. (b) shows an EV wave contaminated by
fluctuation of residual noise. For each segment, the gradient of its cumulative
function shows one prominent peak (shown in the right plot in (a) and (b)).
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Fig. 6. Two typical segments of Type 2. (a) shows an EV wave overlapped
by an AC spike train, where the EV wave is the bottom part of the segment.
(b) shows an EV wave overlapped by an AC lump and a dryer wave, where
the EV wave is in the top part of the segment. The two segments are the first
two segments in Fig.3(c). For each segment, the gradient of its cumulative
function shows two prominent peaks (shown in the right plot in (a) and (b)).

2 (Fig.6). Examples of segments of Type 0, Type 1, and Type
2 are given in Fig.4, Fig.5, and Fig.6, respectively.

E. Step 5: Energy Disaggregation

Let us first introduce definitions of the effective width
and the effective height of a segment. The effective width is
defined as the width of a segment at bottom. The effective
height is defined as the height at which the segment’s width
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Fig. 7. (a) Calculation of the effective width and height from a segment. (b)
Calculation of the actual height of sub-segments of the segment in (a). The
sub-segments are obtained by thresholding the segment with Thigh = 6(kw).

becomes only 80% of the bottom width. Fig.7(a) illustrates the
calculation of the effective height and width.

If a segment belongs to Type 0, then we first determine
its effective height. If its effective height is smaller than 5.5
kW, this segment is classified as a wave of dryer/oven (e.g.
Fig.4(a)). If larger than 5.5 kW, the segment is classified as a
fully overlapping waveform of an EV and a dryer/oven (e.g.
Fig.4(b)). For the latter case, it is impossible to accurately
estimate EV waveform’s height. However, considering the fact
that an EV waveform has constant and very stable amplitude
from day to day, the EV waveform height can be assigned with
a height estimate at another time of the same day or another
day. Thus an EV square wave is reconstructed using the height
and the calculated effective width.

If a segment belongs to Type 1, the effective height and
width can be simply calculated, and then its square waveform
can be reconstructed accordingly. However, if the width is
very large, e.g. larger than 250 (minutes), the segment will be
removed since an EV waveform generally exhibits a constant
amplitude for no more than 2-3 hours [5]. More likely, these
long waveforms could be AC lumps (see Fig.2(b)) or other
appliances’ waveforms. Besides, if a candidate waveform has
an effective height lower than 3 kw or is surrounded by a
number of AC spikes, then it is treated as an AC lump as
well.

If a segment belongs to Type 2, this segment can be
considered to include both an EV waveform and an AC
waveform (see the definition of Type 2 Segments). Thus it
needs to be determined whether an EV waveform occupies the
top part or the bottom part of the segment. For the illustration,
see Fig.6. In order to identify and separate two overlapped
waveforms, first an additional threshold Thigh will be used to
obtain the sub-segment information of the top part. For the
proposed algorithm, Thigh = Tlow +2.5(kW) is set. Similar to
Step 1, using this threshold a number of sub-segments in the
top part can be obtained as shown in Fig.7(b).

Next, the effective width of the segment is calculated. If the
width is larger than 250 (minutes), then the bottom part is more
likely to be an AC lump due to the EV duration characteristic
mentioned before. Thus, EV waveforms belong to the top part.
Subsequently, the effective width and the actual height 1 of

1The actual height of a sub-segment is calculated as the effective height of
the sub-segment subtracted by the effective height of the associated segment.
See Fig.7(b) for illustration.



each sub-segment (with duration longer than 20 minutes) are
calculated to reconstruct an EV square waveform.

If the width is less than 250 (minutes), then the sub-
segments are analyzed. The proposed spike-train filter is used
to remove the sub-segments. As a result, the following two
cases are considered. (1) If the filter can remove all sub-
segments, then the top part is an AC spike train, while the
bottom part is an EV waveform 2. We can calculate the
effective height and width of the bottom part to reconstruct
the EV waveform. (2) If the spike-train filter cannot remove
all sub-segments, then each remained sub-segment needs to
be analyzed one by one. The actual height of each remained
sub-segment and the effective height of the segment need
to be calculated. Whichever (sub-segment’s actual height or
the segment’s effective height) is closer to an estimated EV
height at another time of non-overlapping observation, it will
be identified as an EV waveform 3.

F. Remarks

Admittedly, the proposed algorithm uses a number of
default values such as the amplitude and width of EV charging
load signals. However, it is worthy emphasizing that these
default values are based on general knowledge of EV charging
load characteristics, and do not rely on a specific type of
EV. For example, although the amplitude of EV charging
load signals is changing from house to house, the amplitude
is always larger than 3 kW. The proposed algorithm utilizes
the amplitude range information, but not any exact amplitude
number.

In the next section the proposed algorithm will be applied
to a number of houses with robust performance across different
houses and different seasons. This indicates the default values
used in the algorithm do not affect practical use.

IV. EXPERIMENTAL RESULTS

An experiment was carried out to test performance of our
proposed algorithm 4. For comparison, the HMM algorithm
proposed in [10] was used.

The data came from the Pecan Street Database [18],
which collects raw power signals recorded from hundreds of
residual houses in Austin, Texas. Eleven houses using EV were
randomly chosen from the database. Each house data contain
aggregated power signals of about one year. Each aggregated
power signal is generally a combination of about twenty power
signals of various appliances, such as EV, AC, furnace, dryer,
oven, range, dishwasher, cloth-washer, refrigerator, microwave,
bedroom-lighting, and bathroom-lighting. The ground-truth
power signals of these appliances are also available in the
database. Thus the database is very suitable to test algorithms’
performance in practice.

2The bottom part cannot be an AC lump since an AC lump and an AC
spike train cannot be overlapped.

3Of course, this cannot ensure the correct location of the EV waveform,
considering errors in estimating the effective height and the actual height.
However, in most cases, an EV waveform with satisfactory accuracy can be
reconstructed since an EV waveform height is generally ranging from 3 kW
to 4 kW while the height of an AC lump is generally smaller than 3 kW.

4Matlab codes are available at https://sites.google.com/site/
researchbyzhang/nilm.

The eleven houses are listed in Table I. Note that some
houses have wrong ground-truth of EV power signals or bad
recordings of aggregated signals in some months. Thus we
remove the data of these months 5. The remained data have
total 125 months. The sampling rate is 1/60 Hz.

Since the HMM algorithm requires training, for each house
its ground-truth power signals of EV and AC of two weeks
were used as the training set. Note that our proposed algorithm
does not need this training period.

Three performance indexes were used. One is the averaged
estimation error of monthly energy consumption, defined as

Err1 =
1

N

∑
i

∑
j

|Ei,j
true − Ei,j

est|
Ei,j

true

× 100% (3)

where Ei,j
true is energy consumption of the ground-truth EV

power signal in the j-th month of the i-th year, and Ei,j
est

is energy consumption of the estimated EV power signal in
the same month, and N is the total month number in the
calculation.

A related performance index is the averaged estimation
error of monthly energy consumption in kwh, defined as

Err2 =
1

N

∑
i

∑
j

|Ei,j
true − Ei,j

est| (kwh) (4)

The third performance index is the averaged normalized
mean square error (MSE) in estimating EV charging load
signals, defined as

MSE =
1

N

∑
i

∑
j

(Xi,j
true −Xi,j

est)
2

(Xi,j
true)

2
(5)

where Xi,j
true is the ground-truth EV charging load signal in

the j-th month of the i-th year, and Xi,j
est is the estimated EV

charging load signal in the same month.

The results are presented in Table I, which shows that
the proposed algorithm significantly outperforms the HMM
algorithm. For the proposed algorithm, the averaged estimation
error of monthly energy consumption is only 7.5%. Or put in
another way, the error is only 15.7 kwh/month in average.
In this experiment, the averaged monthly energy consumption
of EV charging load is 208.5 kwh/month, and the averaged
monthly total energy consumption of a house is 1109.9
kwh/month. Therefore, the estimation error of the proposed
algorithm is well acceptable.

Using the average US electricity price in 2013 [19], i.e.
$0.117/kwh, the difference between the estimated monthly
energy consumption and the ground-truth is only $1.83/month,
which is a small error, since the monthly energy consumption
of EV charging is $24.39/month in average and the monthly
total energy consumption of a house is $129.86/month in
average.

5The removed data are: House 545 in June 2013, House 1782 in July to
September of 2012 and June to July of 2013, House 1801 in June to July of
2013, House 3036 in September to October of 2012 and June to July of 2013,
House 3367 in June of 2013, House 7863 in June of 2013, and House 8669
in June of 2013.



TABLE I. PERFORMANCE COMPARISON OF OUR PROPOSED ALGORITHM AND THE HMM ALGORITHM IN [10]. THE LAST ROW OF THE TABLE GIVES
THE PERFORMANCE (MEAN ± STANDARD VARIANCE) AVERAGED OVER ALL MONTHS AND ALL HOUSES.

House Month Range Err1 (new) Err2 (new) MSE (new) Err1 [10] Err2 [10] MSE [10]
370 2012-10 to 2013-09 8.0% 11.7 (kwh) 0.31 135.5% 192.2 (kwh) 1.51
545 2012-09 to 2013-09 5.6% 10.8 (kwh) 0.13 89.1% 156.8 (kwh) 1.06

1782 2012-05 to 2013-09 7.0% 13.9 (kwh) 0.17 28.8% 79.3 (kwh) 0.42
1801 2012-07 to 2013-08 11.7% 24.5 (kwh) 0.29 76.2% 156.5 (kwh) 0.96
2335 2012-06 to 2013-05 9.6% 20.3 (kwh) 0.30 26.0% 58.0 (kwh) 0.47
3036 2012-08 to 2013-09 5.9% 20.3 (kwh) 0.12 3.9% 12.9 (kwh) 0.17
3367 2012-11 to 2013-10 5.9% 9.9 (kwh) 0.16 47.6% 81.3 (kwh) 0.63
6139 2012-10 to 2012-05 10.1% 20.9 (kwh) 0.05 2.5% 5.0 (kwh) 0.09
7863 2012-09 to 2013-09 9.2% 21.1 (kwh) 0.08 101.2% 236.0 (kwh) 1.02
8669 2012-09 to 2013-08 3.1% 8.6 (kwh) 0.15 26.7% 78.4 (kwh) 0.30
9934 2012-10 to 2013-10 7.0% 12.3 (kwh) 0.27 38.8% 73.1 (kwh) 0.46

Total 125 months 7.5% ± 6.2% 15.7 ± 13.3 (kwh) 0.19 ± 0.15 55.6% ± 86.9% 107.4 ± 163.5 (kwh) 0.68 ± 0.97

TABLE II. PERFORMANCE (MEAN ± STANDARD VARIANCE) OF THE
PROPOSED ALGORITHM AND THE HMM ALGORITHM IN [10] AVERAGED

OVER ALL HOUSES AND THE SUMMER MONTHS (JUNE, JULY, AUGUST,
AND SEPTEMBER).

Err1 Err2 MSE
New Algorithm 7.4% ± 6.6 % 16.1 ± 15.7 (kwh) 0.28 ± 0.19

HMM [10] 152.7% ± 114.4% 291.5 ± 213.5 (kwh) 1.81 ± 1.21

In contrast, for the HMM algorithm, the averaged esti-
mation error of monthly energy consumption is 55.6%, or
$12.56/month.

In fact, the poor performance of the HMM algorithm is
mainly due to the estimation error in summer, when AC
becomes the strongest interference. To clearly see this, Table
II shows the performance averaged over all houses and the
four summer months, namely June to September. From the
results, one can see the HMM algorithm does not provide
any meaningful estimation for these four months; the averaged
estimation error of monthly energy consumption of EV charg-
ing is 152.7%, or $34.11/month, and the averaged normalized
MSE is 1.81. (A meaningful disaggregation result should have
normalized MSE much smaller than 1.)

Fig.8 shows an example of the estimated EV charging
load signals by the two algorithms. One can see the HMM
algorithm treats some AC lumps as parts of the EV signal, and
thus makes large errors. In contrast, the proposed algorithm
correctly identifies and disaggregates the EV charging load
signals from the aggregated signals.

V. CONCLUSIONS

In this paper, a new algorithm was proposed for non-
intrusive energy disaggregation of electric vehicle charging
given a real aggregated power signal. The new algorithm does
not require training, demands a light computational load, and
renders a high energy estimation accuracy. These advantages
were illustrated by experiments on the real world data with a
low sampling rate (1/60 Hz) delivering superior performance
even under the presence of air-conditioners.
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