
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tprs20

Download by: [University of Manitoba Libraries] Date: 14 November 2015, At: 05:21

International Journal of Production Research

ISSN: 0020-7543 (Print) 1366-588X (Online) Journal homepage: http://www.tandfonline.com/loi/tprs20

Solving cell formation and task scheduling in
cellular manufacturing system by discrete bacteria
foraging algorithm

Chunfeng Liu, Jufeng Wang, Joseph Y.-T. Leung & Kai Li

To cite this article: Chunfeng Liu, Jufeng Wang, Joseph Y.-T. Leung & Kai Li (2015): Solving cell
formation and task scheduling in cellular manufacturing system by discrete bacteria foraging
algorithm, International Journal of Production Research, DOI: 10.1080/00207543.2015.1113328

To link to this article: http://dx.doi.org/10.1080/00207543.2015.1113328

Published online: 13 Nov 2015.

Submit your article to this journal

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tprs20
http://www.tandfonline.com/loi/tprs20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207543.2015.1113328
http://dx.doi.org/10.1080/00207543.2015.1113328
http://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00207543.2015.1113328
http://www.tandfonline.com/doi/mlt/10.1080/00207543.2015.1113328
http://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2015.1113328&domain=pdf&date_stamp=2015-11-13
http://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2015.1113328&domain=pdf&date_stamp=2015-11-13

International Journal of Production Research, 2015
http://dx.doi.org/10.1080/00207543.2015.1113328

Solving cell formation and task scheduling in cellular manufacturing system by discrete bacteria
foraging algorithm

Chunfeng Liua, Jufeng Wangb, Joseph Y.-T. Leungcd∗ and Kai Lid

aSchool of Management, Hangzhou Dianzi University, Hangzhou, P.R. China; bDepartment of Mathematics, China Jiliang University,
Hangzhou, P.R. China; cDepartment of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA; d School of

Management, Hefei University of Technology, Hefei, P.R. China

(Received 23 June 2015; accepted 21 October 2015)

We consider a joint decision model of cell formation and task scheduling in cellular manufacturing system under dual-resource
constrained (DRC) setting. On one hand, machines and workers are multi-functional and/or multi-skilled, and they are grouped
into workstations and cells. On the other hand, there is a processing sequence among operations of the parts which needs to
be dispatched to the desirable workstations for processing. Inter-cell movements of parts can reduce the processing times and
the makespan but will increase the inter-cell material handling costs. The objective of the problem is to minimise the material
handling costs as well as the fixed and operating costs of machines and workers. Due to the NP-hardness of the problem,
we propose an efficient discrete bacteria foraging algorithm (DBFA) with elaborately designed solution representation and
bacteria evolution operators to solve the proposed problem. We tested our algorithm using randomly generated instances with
different sizes and settings by comparing with the original bacteria foraging algorithm and a genetic algorithm. Our results
show that the proposed DBFA has better performance than the two compared algorithms with the same running time.

Keywords: cellular manufacturing system; cell formation; group scheduling; bacteria foraging algorithm; operation sequence

1. Introduction

With increasingly short product life cycles and diverse customers in labor-intensive industries, there has been a shift in
demands for mid-volume and mid-variety product mixes. Cellular Manufacturing System (CMS) has emerged to cope with
such production environments. It is a hybrid system that links the advantages of job shops (flexibility in producing a wide
variety of products) and flow lines (efficient flow and high production rate). The CMS has been implemented with favourable
results, including better utilisation of resources, material handling and production efficiency. All of these benefits give rise
to a reduction in operational costs.

There are two important issues for CMS in labor-intensive industries. One issue is the cell formation which includes
the machine (worker) flexibility and assignment, and the other issue is the task scheduling which involves decisions on task
dispatching rules as well as task timetabling methods.

For the cell formation issue, there are two constraining resources that need to be considered. The system will have a
dual-resource constrained (DRC) requirement such that a part can be processed only if both machine and worker resources
are available. Machines and workers need to be multi-functional and/or multi-skilled to perform more than one function. This
is due to the lack of purchased machines as well as the shortage of trained workers. From the machine (or worker) flexibility
point of view, machines (or workers) are different from each other in terms of capability width and depth. The most desirable
capability width is that each machine (worker) is able to process all the tasks. The most common capability depth is that
machines (workers) have a different level of proficiency in performing their assigned tasks. As we know, the classical CMS
considers grouping machines that can produce families of similar parts in cells, but ignore many manufacturing factors such
as human resource and flexibility. Consequently, under the DRC environment, it is more complicated to select appropriate
machines and workers to group workstations and form cells than the classical CMS.

For the task scheduling issue, shop floor managers can dispatch different operations of a part to desirable workstation for
processing since each workstation may have different efficiency. The part movement is likely to reduce its processing time
and the makespan of all the parts, which will result in a reduction of the fixed and operating costs of machines and workers.
This movement, however, may occur in different cells which in turn leads to an increase in the inter-cell material handling
cost. In many situations, there are processing precedence constraints among the operations of the parts. Therefore, managers
often find it difficult to decide whether a part should be moved to another cell for processing the successive operation.

∗Corresponding author. Email: leung@njit.edu

© 2015 Taylor & Francis

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

http://www.tandfonline.com

2 C. Liu et al.

Due to the high complexity of CMS with DRC setting, the above two issues are normally studied independently or
sequentially, in spite of the inter-relationship between them . The optimisation domain will be restrained when making
decision on task scheduling after the completion of cell formation. Consequently, the optimal benefits of the CMS may
not be fully realized. In addition, to the best of our knowledge, there are few studies considering multi-skilled resources
and operation sequence in this kind of problem. Therefore, simultaneous optimisation of cell formation and task scheduling
become a very important area of research in minimising the operational costs.

Ever since Passino (2002) invented the bacteria foraging algorithm (BFA), it has shown a high level optimisation
capability in dealing with very complicated NP-hard problems without significantly increasing the computational time. These
problems involve portfolio asset selection in financial field (Mishra, Panda, and Majhi 2014), bidding strategy of a supplier
(Jain et al. 2015), margin of loading in multimachine power system (Tripathy and Mishra 2015), design strategy of stacked
patch resonator (Jain 2015), workspace volume of a three-revolute manipulator (Panda et al. 2014), etc. One of the main
challenges for the BFA is to broaden its application to diverse optimisation areas, especially for discrete problems.

The major purpose of this paper is to build an integrated model which can simultaneously group machine and worker
resources to cells and schedule parts and operations to minimise the material handling costs as well as the fixed and operating
costs of machines and workers. This paper also attempts to develop a discrete bacteria foraging algorithm (DBFA) combining
Priority Rule Based Parallel Schedule Generation Scheme (PRBPSGS) for solving this intractable problem.

The remainder of this paper is organized as follows. The literature review related to the cell formation and group scheduling
is presented in Section 2. The mathematical model integrating cell formation and task scheduling is formulated in Section 3.
In Section 4, the discrete bacteria foraging algorithm (DBFA) is proposed, and its validity is illustrated by a typical case. A
conventional genetic algorithm for solving this problem is described in Section 5. The performance of the proposed DBFA,
the original algorithm and the conventional genetic algorithm are compared through numerical experiments in Section 6.
Finally, the paper closes with a general discussion of the proposed approach as well as a few remarks on future research
directions in Section 7.

2. Literature review

In this section, we present related literature review of studies about cell formation and group scheduling in designing the
CMS.

2.1 Cell formation problem in CMS

Many researchers have studied cell formation problem which determines which part families and machine groups are assigned
to which cells. Meta-heuristics have become very important methods to solve this kind of problem. Kia et al. (2012) proposed
a model which is able to make decisions of cell formation with group layout in a dynamic environment. This model utilized
multi-rows layout to locate machines in the cells configured with flexible shapes, and computed by simulated annealing. Paydar
et al. (2010) applied simulated annealing to solve the part-family and machine-cell formation problem, considering intra-cell
movement of parts with processing sequence simultaneously. Safaei, Saidi-Mehrabad, and Jabal-Ameli (2008) designed a
dynamic cellular manufacturing system considering the batch inter/intra-cell material handling, alternative process plans for
part types and machine replication. They developed a hybrid meta-heuristic based on mean field annealing and simulated
annealing to solve the problem. Karthikeyan, Saravanan, and Ganesh (2012) used Rank Order Clustering Method to identify
products and group cells, and then developed simulated annealing and tabu search methods for processing jobs in order to
minimise the total penalty cost. Hamedi et al. (2012) developed a model to group parts, machines and workers and assign
them to the generated virtual cells. The model is solved through a multi-objective tabu search algorithm to find optimum
or near-optimum solutions. Defersha and Chen (2008) considered cell configuration and lot sizing problem in a dynamic
manufacturing environment. They developed a linear programming method, embedded in a genetic algorithm to minimise
both the production and quality related costs. Nouri and Tang (2013), Nouri and Hong (2012), Nouri et al. (2010) applied
bacteria foraging algorithms to solve cell formation problems in cellular manufacturing systems, considering the cell load
variations, operation time, and sequence data in the three articles, respectively.

Some other methods have emerged for cell formation problems, such as two-phase p-median approach (Won and
Logendran 2015), Mahalanobis distance method (Gupta, Devika, and Panpaliya 2014), fuzzy clustering (Kao and Chen
2013), fuzzy linear programming (Rabbani et al., 2012), branch and bound algorithm (Arkat, Abdollahzadeh, and Ghahve
2012), self-organizing map (Chattopadhyay, Chattopadhyay, and Dan 2011), etc. For instance, Boutsinas (2013) used
bi-clustering method to study cell formation to minimise the sum of the intra-cell voids and inter-cell moves. Egilmez,
Erenay, and Suer (2014) proposed a hierarchical method consisting of four phases to solve the cell loading with products and
manpower allocation problem, considering worker-based probabilistic processing times and probabilistic product demand.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

International Journal of Production Research 3

Some optimisation softwares have been used for intractable cell formation problems. Mahdavi et al. (2010) designed
an integer programming model for the cell formation of dynamic cellular manufacturing system, considering production
planning and worker assignment. They employed LINGO package to minimise the holding and back-order costs, inter-
cell material handling cost, machine and reconfiguration costs and human resource costs. Renna and Ambrico (2015)
proposed a mathematical model developed in LINGO package to support the design and reconfiguration activities in
a CMS. kioon, Bulgak, and Bektas (2009) designed an integrated cellular manufacturing system model with produc-
tion planning and dynamic system reconfiguration. They applied CPLEX to solve small and medium-sized problems.
Sakhaii et al. (forthcoming) presented an integrated dynamic CMS and production planning with unreliable machines. They
applied CPLEX to validate the performance of the proposed robust optimisation approach. Rafiei et al. (2015) addressed
the cell formation problem considering two conflicting objective functions: (1) minimising the sum of machine purchasing,
operating, inter-cell movements, machine relocation, and machine transferring costs, and (2) minimising the work-in-process
in terms of inter-cell batch sizes. The problem is solved by Baron Solver.

2.2 Group scheduling problem in CMS

In comparison with the cell formation problem, there are only a few papers addressing group scheduling, which determines in
which sequence the parts are processed. Sometimes, group scheduling is called parts scheduling in some articles. Taghavifard
(2012) studied cellular manufacturing scheduling problem with sequence-dependent setup times, and solved it using ant
colony optimisation and GA. Halat and Bashirzadeh (2015) suggested a GA-based heuristic for scheduling operations of
manufacturing cells considering sequence-dependent family setup times and intercellular transportation times. Solimanpur
and Elmi (2011) proposed a tabu search method for group scheduling in buffer-constrained flow shop cells to minimise
the makespan. Elmi et al. (2011) suggested a simulated annealing algorithm for the job shop cell scheduling problem with
inter-cell movement and reentrant parts so as to minimise the makespan. Tang et al. (2010) used scatter search for parts
scheduling problem with inter-cell movement to minimise the total weighted tardiness. Saravanan and Haq (2008) used
scatter search to solve a similar problem that minimises the makespan. Tavakkoli-Moghaddam et al. (2010) designed a model
for a multi-criteria group scheduling problem in CMS, and used scatter search to minimise the makespan and the costs
of intra-cell movement, tardiness, and sequence-dependent setup, simultaneously. Venkataramanaiah (2008) addressed the
parts scheduling in flow-line-based CMS with missing operations, i.e. certain parts do not require processing on some of the
machines in a cell, and proposed a simulated annealing algorithm to find a sequence and schedule that minimise the weighted
sum of makespan, flow time and idle time.

2.3 Integrated decision of cell formation and group scheduling

Recently, some researchers started to exploit the integrated decision of cell formation and group scheduling problem.
Tang et al. (2014) used Lagrangian relaxation decomposition with heuristic to solve the problem of minimising the total
tardiness cost. Eguia et al. (2013) suggested a tabu search algorithm for cell formation and parts scheduling to minimise
the reconfiguration and under-utilisation costs. Arkat, Farahani, and Ahmadizar (2012) presented a model to concurrently
identify cell formation with cellular layout and group scheduling with the objective of minimising the total transportation
cost of parts as well as minimising the makespan. They developed a multi-objective genetic algorithm to solve the problem.
Arkat, Farahani, and Hosseini (2012) found that the genetic algorithm that simultaneously solves the above problem is better
than another genetic algorithm that sequentially solves the problem. Wang, Tang, and Yung (2010) addressed a joint decision
of cell formation and parts scheduling in batches, and proposed a scatter search approach with dispatching rules to minimise
the total tardiness cost. Wu et al. (2007) exploited a model to simultaneously make the decision of cell formation with cellular
layout and group scheduling, and proposed a hierarchical genetic algorithm to minimise the makespan.

Many of these researches have considered the impact of intercell transfer of parts on cell formation and group scheduling.
Moreover, their optimisation objectives are related with time, such as transfer time, makespan or tardiness. In this kind of
integrated models few studies, however, have involved multi-skilled human resources, operation sequence and optimisation
objectives related with transfer cost, resource cost and makespan.

3. Problem statement and formulation

In this section, we formulate the cell formation and task scheduling problem as a non-linear 0–1 integer programming. The
objective is to minimise the sum of the inter-cell material handling cost, the fixed and operating costs of machines and
workers. The main constraints are the operational precedence constraints and the availability of machines and workers. The
problem is formulated according to the following assumptions:

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

4 C. Liu et al.

(1) The number of parts is known in advance. All parts should be finished in the planning horizon.
(2) Each part has a number of operations among which there is a chain precedence relation. However, there is no

precedence constraint among different parts.
(3) Each operation of each part is processed at one workstation. All machine types are multi-functional and all worker

types are multi-skilled. Each operation of each part is able to be processed on any machine type with any worker
type, but the processing times may be different. The processing time is known and depends on the assigned machine
and worker type. In addition, each operation of each part only needs one machine with one worker to process.

(4) The number of machine types and the number of machines of each type are known in advance. The number of
machines, the number of workers and the number of workstations are equal. One machine and one worker are
grouped as a pair and assigned to a workstation.

(5) The processing of each operation of each part is not interrupted. The setup time of each part on the machine is ignored.
(6) The base salary of each worker type is known and considered, regardless of whether the worker is active or not.
(7) The maintenance and overhead costs of each machine type are known and considered, regardless of whether the

machine is active or not.
(8) The operating costs of each machine type and worker type are known. These costs depend on the workload assigned

to the machine and worker.
(9) The number of cells to be formed is given and is constant through the production period. The maximum and minimum

of the cell size in terms of the number of grouped workstations are specified in advance. Too many workstations in a
cell may generate cluttered flows in a cell due to many routes, whereas too few workstations in a cell may increase
the movements of parts to other cells for processing.

(10) The material handling devices moving the parts between cells are assumed to carry only one part at a time. Inter-cell
material handing cost of each part is known. The cost is constant for one move between cells regardless of the
distance. Intra-cell material handing cost can be ignored. The time of moving part is trivial in comparison with its
processing time and can be ignored.

Input parameters

M Number of machine types.
�m Number of machines of type m, m is denoted as index for the machine types (m = 1, 2, . . . ,M).

W Number of worker types.
ωw Number of workers of type w, w is denoted as index for the worker types (w = 1, 2, . . . ,W).

P Number of parts, p is denoted as index for the parts (p = 1, 2, . . . , P).
K p Number of operations in part p, k is denoted as index for the operations in part p (k = 1, 2, . . . , K p).

L Number of workstations, l is denoted as index for the workstations (l = 1, 2, . . . , L).
C Number of cells, c is denoted as index for the cells (c = 1, 2, . . . ,C).

δpkmw Processing time (measured in hours) of operation k in part p on machine type m with worker type w.
αm Maintenance and overhead costs (i.e. fixed costs) per unit of machine type m per hour.
α̃m Operating cost per unit of machine type m per hour.
Sw Base salary cost per unit of worker type w per hour.
S̃w Operating salary cost per unit of worker type w per hour.
θp Inter-cell material handling cost of part p.

T Upper bound of finish time of all parts
(

T = ∑P
p=1

∑K p
k=1 max

{
δpkmw|m = 1, 2, . . . ,M;w = 1, 2, . . . ,W

})
.

Bu Upper bound of each cell size (measured in the number of workstations).
Bd Lower bound of each cell size (measured in the number of workstations).

Decision variables

Xml 1 if one unit of machine type m is assigned to workstation l, and 0 otherwise.
Ywl 1 if one unit of worker type w is assigned to workstation l, and 0 otherwise.
Zcl 1 if workstation l is assigned to cell c, and 0 otherwise.

Q pkl 1 if operation k of part p is processed in workstation l, and 0 otherwise.
Spkt 1 if operation k of part p starts to be processed at time instant t , and 0 otherwise (t = 0, 1, . . . , T).

According to the input parameters and decision variables, an intermediate variable is defined as:

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

International Journal of Production Research 5

Jpk The processing time of operation k of part p,

Jpk =
L∑

l=1

M∑
m=1

W∑
w=1

Q pkl · Xml · Ywl · δpkmw.

The problem can be formulated as a non-linear 0-1 integer programming as follows:

Min
P∑

p=1

⎡⎣K p−1∑
k=1

1

2
·

C∑
c=1

∣∣∣∣∣
L∑

l=1

Q pkl · Zcl −
L∑

l=1

Q p,k+1,l · Zcl

∣∣∣∣∣
⎤⎦ · θp

+
[

M∑
m=1

(
L∑

l=1

Xml

)
· αm +

W∑
w=1

(
L∑

l=1

Ywl

)
· Sw

]
· max

p=1,...,P

{
T∑

t=0

t · Sp,K p,t + Jp,K p

}

+
P∑

p=1

K p∑
k=1

L∑
l=1

M∑
m=1

W∑
w=1

Q pkl · Xml · Ywl · δpkmw · (α̃m + S̃w
)

(1)

s.t.
M∑

m=1

Xml = 1,∀l (2)

W∑
w=1

Ywl = 1,∀l (3)

L∑
l=1

Xml = �m,∀m (4)

L∑
l=1

Ywl = ωw,∀w (5)

C∑
c=1

Zcl = 1,∀l (6)

L∑
l=1

Q pkl = 1,∀p, k (7)

L∑
l=1

Zcl ≤ Bu,∀c (8)

L∑
l=1

Zcl ≥ Bd ,∀c (9)

T∑
t=0

Spkt = 1,∀p, k (10)

T∑
t=0

t · Sp,k+1,t −
T∑

t=0

t · Spkt ≥ Jpk,∀p,∀k = 1, 2, . . . , K p − 1 (11)

P∑
p=1

K p∑
k=1

t∑
τ=Max{0,t−Jpk }

Spkτ · Q pkl ≤ 1,∀l, t (12)

Jpk =
L∑

l=1

M∑
m=1

W∑
w=1

Q pkl · Xml · Ywl · δpkmw,∀p, k (13)

Xml , Ywl , Zcl , Q pkl , Spkt ∈ {0, 1},∀m, w, l, c, p, k, t (14)

The objective function (1) consists of three terms defined as follows:

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

6 C. Liu et al.

(The first term) Inter-cell material handling cost: The cost of part movement is incurred when the part in certain cell is trans-
ferred to a more efficient workstation in another cell for processing. The component

∣∣∣∑L
l Q pkl · Zcl −∑L

l Q p,k+1,l · Zcl

∣∣∣
checks whether the consecutive operations k and k +1 of part p are processed in the same cell c. For any operation k of part p,
the component 1

2 · ∑C
c=1

∣∣∣∑L
l Q pkl · Zcl −∑L

l Q p,k+1,l · Zcl

∣∣∣ equaling 1 means that part p is transferred to another cell
for operation k + 1 after completing operation k. Inter-cell part movements complicate production control and decrease the
efficiency of CMS, so it is better to locate two workstations with a small quantity of material flow in different cells, and to
locate two workstations with a large quantity of material flow in the same cell.

(The second term) The fixed costs of machines and workers: The costs refer to the maintenance and overhead costs of
machines as well as the base salary cost paid for workers. The component

∑L
l=1 Xml represents the number of machine type

m, and
∑L

l=1 Ywl represents the number of worker type w. The component max
p=1,...,P

{∑T
t=0 t · Sp,K p,t + Jp,K p

}
denotes the

completion time of all parts (makespan) in the planning horizon.
(The third term) The operating costs of machines and workers: The costs are imposed only when the machines and

workers are active. For instance, if machine type m and worker type w are assigned to workstation l at which operation k of
part p is processed, the operating costs of the machine and worker will be incurred.

Constraints (2) and (3) ensure that each workstation can only receive one machine and one worker. Constraints (4) and
(5) specify the number of each machine type and each worker type, respectively. Constraint (6) ensures that each workstation
only belongs to one cell. Constraint (7) guarantees that any operation k of part p must be assigned to only one workstation
to process. Constraints (8) and (9) specify the upper and lower bounds for the number of workstations allocated to each cell.
Constraint (10) indicates that every operation k of part p must start once. Constraint (11) shows the precedence relationship
between consecutive operations of part p. Constraint (12) ensures that each workstation l is to be occupied by at most one
operation of the parts at a time. Constraint (13) defines an intermediate variable. Constraint (14) ensures that the decision
variables are binary variables.

It is widely recognized in the literature that the whole problem of designing a CMS, taking into account the numerous
phases and criteria involved, belongs to the class of NP-hard problems (Ballakur 1985; King and Nakornchai 1982). The
proposed model has three simultaneous phases. The first phase is to determine the number and types of machines and
workers assigned to workstations and cells. The second phase is to determine the processing routes from possibly multiple
ones (machines and/or workers can perform more than one operation and come in multiple copies). Logendran, Ramakrishna,
and Sriskandarajah (1994) have shown that the problem involved in this phase is NP-hard. The third phase is to determine
the timetable of all parts. So the proposed model is NP-hard since it integrates the problem of cell formation, task scheduling
along with the consideration of resources capability and operation sequence. This rules out the possibility of employing
exhaustive exact algorithms such as branch-and-bound technique, backtracking or dynamic programming. Because these
algorithms would be too time consuming even for a problem with a moderate number of parts, machines, workers and cells.

Since the proposed model has three simultaneous phases, the solution representation might be very complicated and
should be designed as a multi-dimensional structure. Although many metaheuristic algorithms such as genetic algorithm and
particle swarm optimisation can solve the model, the DBFA is more suitable for the multi-dimensional structure to fulfill
a deeper exploration. The reason is that the DBFA possesses chemotactic capability, i.e. the bacterium (corresponding to
solution representation) can tumble in an altogether different dimension and swim in a predefined dimension. Consequently,
a high quality solution may be found during the exploration. In the next section, we will present a novel DBFA algorithm
embedding Priority Rule Based Parallel Schedule Generation Scheme to solve this discrete problem.

4. Discrete bacteria foraging algorithm

The classical bacteria foraging algorithm was first invented based on the foraging strategy of Escherichia coli bacteria in
human intestines, which can be explained by three processes, namely, chemotaxis (including swarming), reproduction, and
elimination-dispersal (Passino 2002).

In BFA, through chemotaxis the bacteria try to search for nutrient alternating between ‘tumbling’ and ‘swimming’. If
the bacterium happens to encounter a nutrient gradient (e.g. serine), the change in the concentration of the nutrient triggers
a reaction such that the bacterium will spend more time swimming and less time tumbling. As long as it travels toward
increasing nutrient concentrations, it will tend to swim farther, up to a point. The tumbles can change the direction via flagella
rotating and basically determine the direction of the swim. The bacterium does not change its direction on a swim due to
changes in the gradient. Through reproduction process the unhealthy bacteria die and each fitter bacterium splits into two
bacteria. When the local environment where a population of bacteria live changes either gradually (e.g. via consumption of
nutrients) or suddenly (e.g. due to medicine influence), the group of bacteria is dispersed to a new region or all bacteria in
the area are eliminated.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

International Journal of Production Research 7

The algorithm is suitable for continuous optimisation problem. In this paper a DBFAis suggested to solve the above discrete
optimisation problem. In this DBFA, the solution representation and neighborhood generation operators are elaborately
designed.

4.1 Solution representation

Since our problem is a discrete problem, we should move the bacteria discrete position to find a better solution in terms of
the relationships of machine, worker, workstation, cell and task schedule. Thus, we suggest a schema which consists of five
ingredients as follows:

The first ingredient, related to the assignment of duplicates of machine types to workstations, is named matrix Ma_Lo,
and is shown in Equation (15). The components of this M × L matrix are variables Xml which are either 0 or 1. For example,
the term X34 = 1 means that one duplicate of machine type 3 is assigned to workstation 4. While completing the matrix,
constraints (2) and (4) should be satisfied.

Ma_Lo =

⎡⎢⎢⎢⎣
X11 X12 . . . X1L

X21 X22 . . . X2L
...

...
...

X M1 X M2 . . . X M L

⎤⎥⎥⎥⎦ (15)

The second ingredient, related to the assignment of duplicates of worker types to workstations, is named matrix W o_Lo,
and is shown in Equation (16). The components of this W × L matrix are variables Ywl which are either 0 or 1. For example,
the term Y23 = 1 means that one duplicate of worker type 2 is assigned to workstation 3. While completing the matrix,
constraints (3) and (5) should be satisfied.

W o_Lo =

⎡⎢⎢⎢⎣
Y11 Y12 . . . Y1L

Y21 Y22 . . . Y2L
...

...
...

YW 1 YW 2 . . . YW L

⎤⎥⎥⎥⎦ (16)

The third ingredient, related to the assignment of workstations to cells, is named matrix Ce_Lo, and is shown in
Equation (17). The components of this C × L matrix are variables Zcl which are either 0 or 1. For example, the term
Z24 = 1 means that workstation 4 is assigned to cell 2. While completing the matrix, constraints (6), (8) and (9) should be
satisfied.

Ce_Lo =

⎡⎢⎢⎢⎣
Z11 Z12 . . . Z1L

Z21 Z22 . . . Z2L
...

...
...

ZC1 ZC2 . . . ZC L

⎤⎥⎥⎥⎦ (17)

The fourth ingredient, related to the assignment of part operations to workstations, is named matrix Pa_Op_Lo, and is
shown in Equation (18). The components of this P × K × L matrix are variables Q pkl which are either 0 or 1. For example,
the term Q345 = 1 means that the operation 4 of part 3 is assigned to workstation 5 for processing. While completing the
matrix, constraints (7) should be satisfied.

Pa_Op_Lo =

⎡⎢⎢⎢⎢⎢⎢⎣

Q1K 1 . . . Q1K L
...

. . .
. . .

Q P K 1 Q111 . . . Q11L
. . .

...
...

Q P11 . . . Q P1L

⎤⎥⎥⎥⎥⎥⎥⎦ (18)

The fifth ingredient is named matrix ST _Op and/or FT _Op, and are shown in Equation (19). The components of the
matrices are variables STpk and/or FTpk which are non-negative integers representing the start and/or the finish time of
the part operations. These variables can be computed by Algorithm 1 (Priority Rule Based Parallel Schedule Generation
Scheme). While implementing this algorithm, constraints (10)–(12) should be satisfied.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

8 C. Liu et al.

ST _Op =

⎡⎢⎢⎢⎣
ST11 ST12 . . . ST1K

ST21 ST22 . . . ST2K
...

...
...

STP1 STP2 . . . STP K

⎤⎥⎥⎥⎦ , FT _Op =

⎡⎢⎢⎢⎣
FT11 FT12 . . . FT1K

FT21 FT22 . . . FT2K
...

...
...

FTP1 FTP2 . . . FTP K

⎤⎥⎥⎥⎦ (19)

Combining the five ingredients described above, the solution representation is as shown in (20). The ingredients can
be referred as dimensions or directions, so it is very suitable for the bacterium of DBFA to tumble in a randomly selected
dimension and to swim in the same previous dimension.

(Ma_Lo | W o_Lo | Ce_Lo | Pa_Op_Lo | ST _Op) (20)

The main variables used for Algorithm 1 are summarized as follows:

N Sum of the operations of all parts, N = ∑P
p=1 K p

u Iteration counter.
t Schedule time point.

Il Start idle time of workstation l.
� Completion operation-set up to the schedule time.
D Decision operation-set for the associated workstation, i.e. the operations in the set are available for scheduling at the

associated workstation w.r.t. precedence constraints but have yet unscheduled.
H Scheduled operation-set at each iteration.
V 0 if all decision operation-sets for the associated workstations are empty at the schedule time point, otherwise 1.

Algorithm 1 consists of N iterations. At each iteration, an eligible operation is selected according to its priority and
inserted inside a partial schedule on the earliest eligible workstation (respecting the precedence constraints), while keeping
the start time of the already scheduled operations unchanged. An operation is eligible if its predecessor has already been
scheduled. A workstation is eligible if it is idle from the start of the schedule time point t .

Step 1 initializes some variables u, Il , �, H . Step 2.1 computes the set (T) of start idle times for all workstations. The
binary variable V is initialized in Step 2.2. The scheduled time point t is calculated in Step 2.3.1. All idle workstations at
schedule time t are shown in Step 2.3.2. The completion operation-set � up to the scheduled time t are calculated in Step
2.3.3. In Step 2.3.4, for each idle workstation, the procedure randomly schedules an operation which is the minimum in
terms of the processing time in the associated decision operation-set. Then the start and finish times of the operation are
calculated. Moreover, the idle time of the workstation, the scheduled operation-set and the iteration counter are updated.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

International Journal of Production Research 9

Figure 1. Parameters of the instance using PRBPSGS.

Figure 2. Solution of the instance using PRBPSGS.

Step 2.3.5 implies that the scheduled time point will be postponed to the next minimum start idle time for all workstations
if all decision operation-sets for the associated workstations are empty at the scheduled time point. The procedure will stop
when all operations are scheduled.

To better illustrate the proposed PRBPSGS, let us consider a simple instance. Because the PRBPSGS is used to compute
the fifth ingredient of the solution, the first four ingredients and the processing time of operations should be given before the
PRBPSGS starts. Figure 1 shows these given parameters of this instance. The solution is reached after ten iterations using
the PRBPSGS. Table 1 shows the computational process of each iteration.

For example, during the third iteration u = 4, schedule time point t = 0 is determined in Step 2.3.1. For idle workstation
l∗ = 4, decision operation-set D = {(2, 1), (3, 1), (5, 1)} is computed in Step 2.3.4.1. In Step 2.3.4.2, operation k∗ = 1 of
part p∗ = 5 is selected for processing, started at time STp∗k∗ = 0, and completed at time FTp∗k∗ = 22. The other iterations
are similar to the third iteration. The final solution is presented by Figure 2.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

10 C. Liu et al.

Table 1. Summary of iterations of the instance using PRBPSGS.

t l∗ D = {(p, k)} (p∗, k∗) STp∗k∗ FTp∗k∗ u

0 1 {(4,1)} (4, 1) 0 30 1
0 3 {(1,1)} (1, 1) 0 21 2
0 4 {(2,1),(3,1),(5,1)} (5, 1) 0 22 3
21 2 {(1,2)} (1, 2) 21 45 4
22 4 {(2,1),(3,1)} (3, 1) 22 45 5
30 1 {(5,2)} (5, 2) 30 54 6
45 3 {(1,3)} (1, 3) 45 75 7
45 4 {(2,1),(3,2)} (3, 2) 45 67 8
67 4 {(2,1)} (2, 1) 67 96 9
75 3 {(5,3)} (5, 3) 75 95 10

Start

Initialize variables

Generate initial
bacteria population

Elimination-
dispersal loop

Counter, l:=l+1

Elimination-dispersal
strategyReproduction loop

Counter, k:=k+1

Chemotaxis loop
Counter, j:=j+1

Tumble for each
bacterium i and
compute its cost

J(i(j+1,k,l))

Swimming
counter
m<Ns

J(i(j+1,k,l)) <Ji

Update Ji

j<Nc

Reproduction
strategy

k<Nre

l<Ned

Terminated

Swim
m:=m+1

Figure 3. Flowchart of proposed DBFA algorithm.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

International Journal of Production Research 11

Figure 4. Tumble of bacterium.

4.2 Implementation of the proposed DBFA

Some notations to be used are summarized as follows:

j Index for the chemotactic step.
k Index for the reproduction step.
l Index of the elimination-dispersal event.
S Number of bacteria in a population (the number is assumed to be a positive even integer).

Sr Number of half population of bacteria.
θ i (j, k, l) The i th bacterium position at the j th chemotactic step, kth reproduction step, and lth elimination-dispersal event,

which corresponds to a feasible solution of the problem, θ i ∈ R p, where p is the number of dimensions of the
position (sometimes we drop the indices and refer to the i th bacterium position as θ i).

J (θ i) The ‘cost’ of being in the position θ i (using terminology from optimisation theory) or the nutrient surface (in
reference to the biological connections), which corresponds to the objective function value of the solution.

Nc Length of the lifetime of the bacteria as measured by the number of chemotactic steps they take during their life.
m Counter for swimming steps.

Ns Maximum number of swimming steps.
Nre Number of reproduction steps.
Ned Number of elimination-dispersal events.
ped Probability of elimination-dispersal event for each bacterium.

J i
cur The best cost of each bacterium i in the current generation.

J i
last The last cost of each bacterium i (a better cost may be found via a run).

J i
health Accumulated cost of all the chemotactic steps of bacterium i in the current generation; J i

health = ∑Nc+1
j=1 J (i, j, k, l).

The DBFA simulates the foraging behavior of bacteria which tries to climb up the nutrient concentration (finding lower
and lower values of J (θ i)), avoid the noxious substances, and search for ways out of the neutral media through three nested
loops of chemotaxis, reproduction, and elimination-dispersal. For example, J (θ i) < 0, J (θ i) = 0, and J (θ i) > 0 represent
that the bacterium i at position θ i is in nutrient-rich, neutral, and noxious environments, respectively. The bacterium tends
to avoid being at positions θ i , where J (θ i) ≥ 0. The flowchart of the proposed DBFA algorithm is outlined in Figure 3,
and its detailed procedure is described in Algorithm 2. We refer to the DBFA with Passino’s original operators (including
swimming strategy, reproduction strategy and elimination-dispersal strategy) as DBFA1, and refer to the DBFA with the
modified operators as DBFA2.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

12 C. Liu et al.

A chemotactic step is defined to be a tumble or a tumble followed by at most Ns swimming steps. Tumble refers to the
movement (mutation) of a bacterium in a random direction displayed in Figure 4. For example, Figure 4(a) shows a bacterium
runs a tumble in the first dimension, i.e. two columns of matrix Ma_Lo are selected randomly and their components are
substituted. Similarly, Figure 4(b)–(d) show a bacterium runs a tumble in the second, third and fourth dimension, respectively.
Swim indicates that when the ‘cost’of the above bacterium is better than its specific ‘cost’ J (which is referred to its last ‘cost’
Jlast in Passino’s swimming strategy, or its best historic ‘cost’ in the current generation Jcur in this paper), the bacterium will
move (mutate) further in the same direction. If that movement resulted in a better position according to the above comparison
rules, another movement is taken. This swim is continued as long as it continues to reduce the cost, but only up to a maximum
number of movements, Ns . This represents that the bacterium will tend to keep moving if it is headed in the direction of
increasingly favourable environments. The two swimming rules above are employed in the DBFA1 and DBFA2, respectively.

After Nc chemotactic steps, a reproduction step is taken. In Passino’s reproduction strategy (Passino 2002), the population
is sorted in order of ascending accumulated cost Jhealth of all the chemotactic steps of each bacterium in the current generation.
The Sr = S/2 bacteria with the highest Jhealth values die and the other S/2 bacteria with the lowest values split (each bacteria
split into two bacteria). Each copy made is placed at the same position as its parent. In this paper’s reproduction strategy, the
population is sorted in order of ascending historic ‘cost’ Jcur of each bacterium in the current generation. The Sr bacteria
with the highest Jcur values die. Each of the other Sr bacteria with the lowest values moves to its best position in the current

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

International Journal of Production Research 13

Figure 5. Crossover of bacteria.

generation (associated with the value Jcur). Randomly select two of them to cross over (cf. Algorithm 3 and Figure 5) and
put the offspring bacterium into the current generation until the population size reaches S. The two reproduction strategies
above are employed in the DBFA1 and DBFA2, respectively.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

14 C. Liu et al.

Figure 6. Processing time of operations in the case using DBFA2.

After Nre reproduction steps, an elimination-dispersal event takes place. Each bacterium in the population is subjected
to elimination-dispersal with probability ped . The elimination-dispersal events allow the bacteria to look into more regions
to find good nutrient concentrations. Obviously, if ped is chosen appropriately, the elimination-dispersal events can help
the DBFA jump out of the local optima and into a global optimum. However, if ped is large, the DBFA will degrade to
random exhaustive search. In Passino’s elimination-dispersal strategy (shown in DBFA1), the best bacterium may be subject
to elimination-dispersal. In this paper, the DBFA2 suggests that each bacterium, except the best one, is to be dispersed to
a random position on the optimisation domain with probability ped . This keeps the best bacterium remaining in the next
generation, which may speed up the convergence.

A typical case is given to better demonstrate the optimisation problem and the result using the DBFA2. The parameters
of the case are listed in Table 2. The processing time of operation k of part p on machine type m with worker type w is listed
in Figure 6. The solution of the case is shown in Figure 7. It can also be displayed visually by the Gantt chart in Figure 8.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

International Journal of Production Research 15

Figure 7. Solution of the case using DBFA2.

Table 2. Parameters of the case using DBFA2.

Number of each machine type: �1 = 5,�2 = 2,�3 = 2
Number of each worker type: ω1 = 4, ω2 = 5
Number of parts: P = 7
Number of operations of each part: K1 = 2, K2 = 3, K3 = 2, K4 = 1, K5 = 1, K6 = 2, K7 = 3
Lower and upper bound of each cell size: Bd = 2, Bu = 4
Fixed costs per unit of machine type: α1 = 15, α2 = 14, α3 = 17
Operating cost per unit of machine type: α̃1 = 19, α̃2 = 13, α̃3 = 17
Base salary cost per unit of worker type: S1 = 13, S2 = 15
Operating salary cost per unit of worker type: S̃1 = 22, S̃2 = 10
Inter-cell material handling cost of each part: θ1 = 6, θ2 = 5, θ3 = 5, θ4 = 9, θ5 = 8, θ6 = 8, θ7 = 10

The legend represents that operation k of part p is processed on workstation l which is grouped by machine type m and w.
Workstation l is assigned to cell c. The operation k of part p is started at STpk and completed at FTpk .

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

16 C. Liu et al.

Figure 8. Gantt chart of the solution of the case using DBFA2.

5. Genetic algorithm

Genetic algorithm (GA) is a powerful and broadly applicable stochastic search and optimisation technique based on the
principles of evolution theory. Here, a conventional GA is suggested for solving the problem, so that it can be compared with
the proposed DBFA in the following experiment.

• Chromosome representation: The chromosome representation employs the same solution structure of the DBFA.
This helps to exclude the influence of different solution structures when comparing the DBFA with the GA.

• Fitness function: Let Fk
g denote the fitness value of the kth chromosome in generation g before selection. It is

computed as Fk
g = ξ + max

i∈{1,...,E}ψ
i
g − ψk

g , where ψ i
g is the objective function value of the i th chromosome in

generation g, E is the number of chromosomes in generation g before selection, and ξ is a small constant (say 3).
Obviously, the smaller the objective function value of chromosome, the greater its fitness value.

• Initial population: Randomly generate E = 10 chromosomes to form the initial population.
• Crossover: All chromosomes in the parent generation are mutually crossed over. The crossover mechanism is similar

to Algorithm 3. If the fitness value of offspring is greater than the average fitness value of its parent generation, the
offspring will be accepted for the new generation; otherwise, it will be thrown out.

• Mutation: Each chromosome will mutate according to a given mutation probability Pm = 0.1. The mutation
mechanism is to make the first four ingredients to tumble similar to Figure 4. The last ingredient is then computed
using Algorithm 1. All offsprings from the mutation are accepted for the new generation.

• Selection: The most common method ‘roulette wheel’ sampling is applied in the selection. Each chromosome is
assigned a slice of the circular roulette wheel and the size of the slice is proportional to the selection value (i.e.
fitness value) of the chromosome. The wheel is spun E times. On each spin, the chromosome under the wheel’s
marker is selected to be in the pool of parents for the next generation.

• Stopping rule: The GA is stopped when its runtime reaches the DBFA2’s.

6. Computational experiments

We compare the performance of DBFA1, DBFA2 and GA through the following numerical experiments. To compare the
solution quality of the DBFA1 with the DBFA2 within the same CPU time, we modify the stopping rule of the DBFA1.
Let Ned of DBFA1 be a sufficient large integer. The DBFA1 is terminated if its runtime reaches the DBFA2’s runtime after
reproduction.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

International Journal of Production Research 17

0 10 20 30 40 50 60
4.6

4.8

5

5.2

5.4

5.6

5.8
x 104

CUP time (s)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

DBFA2
DBFA1
GA

Figure 9. Typical convergence of DBFA1, DBFA2 and GA within the same runtime.

The experiments are performed on a Pentium-based Dell-compatible personal computer with 2.30 GHz clock-pulse and
4.00 GB RAM. The DBFA1, DBFA2 and GA algorithms are coded in C++, compiled with the Microsoft Visual C++ 6
compiler, and tested under Microsoft Windows 7 operating system.

The performance of the three algorithms is to be evaluated by the use of six impact factors, including the number of
machine types (M), the number of worker type (W), the number of parts (P), the upper bound of operations for each part
(K̃), the number of workstations (L), and the number of cells (C). Six sets of sub-experiments are conducted. The instances
(including small, medium and large size) have been randomly regenerated to verify the proposed algorithm. In the first
set (displayed in Table 4), M is allowed to vary to test its impact effect, given W = 6, P = 15, K̃ = 5, L = 16 and
C = 4. The other five sets (displayed in Tables 5–9) test the effects of varying W , P , K̃ , L and C , respectively. The other
parameters for the randomly generated instances are listed in Table 3. Bu and Bd are given definite values, and the other
parameters are given corresponding random integers between the minimum and the maximum. Given a typical instance with
M = 2,W = 3, P = 10, K̃ = 4, L = 9, and C = 3, Figure 9 shows the respective convergence of DBFA1, DBFA2 and
GA within the same runtime.

Each entry of Tables 4–9 represents the average of its associated 10 randomly generated instances. Let O FVB F1,
O FVB F2 and O FVG A denote the average objective function values (OFV) using the DBFA1, DBFA2 and GA, respectively.
Let �O FV B F2

B F1 denote the declining percentage of O FVB F2 over O FVB F1, and let �O FV B F2
G A denote the declining

percentage of O FVB F2 over O FVG A. Figure 10(1)–(24) show the convergence for an instance of each entry of Tables 4–9,
respectively.

As can be seen from Tables 4–9, �O FV B F2
B F1 reaches 14.73–21.86% regardless of the variation of the six impact factors

M,W, P, K̃ , L and C . There exists the following condition: Through one or more chemotactic steps, a bacterium may find a
worse position than its best position in the current generation. So in the swimming strategy of DBFA1, a bacterium probably
wastes many swimming steps but still results in a worse position than its best position in the current generation. In the
swimming strategy of DBFA2, J i

cur , instead of J i
last , is used as a criterion for further swimming. Consequently, many invalid

swimming steps can be avoided.
In addition, for the accumulated cost scheme of reproduction of DBFA1, it may not retain the fittest bacterium for

subsequent generation. In the reproduction strategy of DBFA2, the bacterium with the best historic position in the current
generation will be moved to the above position, and produce its offspring replacing inferior bacterium. So the best bacterium

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

18 C. Liu et al.

Figure 10. Convergence for an instance of each entry of Tables 5–9.

Table 3. Parameters for randomly generated instances.

Parameter Value Min Max

Bu : Upper bound of each cell size �(L/C)/1.2�
Bd : Lower bound of each cell size �(L/C)× 1.2� + 1
K p: Number of operations of part p 1 K̃
δpkmw: Processing time of task 20 30
αm : Fixed costs per unit of machine type m 10 20
α̃m : Operating cost per unit of machine type m 20 40
Sw: Base salary cost per unit of worker type w 5 15
S̃w: Operating salary cost per unit of worker type w 10 30
θp: Inter-cell material handling cost of part p 4 10

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

International Journal of Production Research 19

Table 4. Performance comparison between the DBFA1, DBFA2 and GA for different number of machine types (M).

W = 6, P = 15, K̃ = 5 �O FV B F2
B F1 �O FV B F2

G A C PU
L = 16,C = 4 O FVB F1 O FVB F2 O FVG A (%) (%) (s)

M 2 104425.6 87681.6 93151.4 16.10 5.98 852.91
6 108538.0 89358.0 95675.9 17.58 6.68 959.44

10 104173.4 84426.6 91230.5 18.88 7.27 908.34
14 102004.4 81432.5 89377.7 20.19 8.59 777.75

Table 5. Performance comparison between the DBFA1, DBFA2 and GA for different number of worker types (W).

M = 6, P = 15, K̃ = 5 �O FV B F2
B F1 �O FV B F2

G A C PU
L = 16,C = 4 O FVB F1 O FVB F2 O FVG A (%) (%) (s)

W 2 106015.0 87922.7 94707.0 16.91 6.81 907.27
6 107739.1 87421.8 93899.5 19.01 7.25 880.97

10 96585.9 79234.7 86207.3 17.87 8.01 718.22
14 102149.8 82629.1 92741.9 19.12 10.81 853.37

Table 6. Performance comparison between the DBFA1, DBFA2 and GA for different number of parts (P).

M = 6,W = 6, K̃ = 5 �O FV B F2
B F1 �O FV B F2

G A C PU
L = 10,C = 4 O FVB F1 O FVB F2 O FVG A (%) (%) (s)

P 10 69690.8 56183.3 60748.5 19.39 7.47 152.72
15 100037.2 83521.3 87793.1 16.69 4.83 385.47
20 114262.0 95851.7 101387.4 15.97 5.51 604.32
25 144406.3 123115.0 131115.5 14.73 6.04 1120.99

Table 7. Performance comparison between the DBFA1, DBFA2 and GA for different number of parts K̃ .

M = 6,W = 6, P = 10 �O FV B F2
B F1 �O FV B F2

G A C PU
L = 12,C = 4 O FVB F1 O FVB F2 O FVG A (%) (%) (s)

K̃ 3 48570.8 38007.1 41082.1 21.86 7.60 60.41
5 72035.8 58681.1 63873.6 18.47 8.27 207.16
7 92483.8 75555.4 81817.1 17.89 7.47 387.09
9 112524.1 94235.8 100523.1 16.51 6.53 715.46

Table 8. Performance comparison between the DBFA1, DBFA2 and GA for different number of workstations (L).

M = 6,W = 6, P = 10 �O FV B F2
B F1 �O FV B F2

G A C PU
K̃ = 7,C = 4 O FVB F1 O FVB F2 O FVG A (%) (%) (s)

L 10 90901.5 73505.3 81558.1 19.26 9.96 300.03
12 96628.0 80328.4 87421.6 16.79 8.14 468.56
14 102253.5 84053.2 90937.7 17.52 7.20 604.41
16 107753.3 90154.9 97534.9 16.27 7.60 828.15

can be passed on to the next generation. This speeds up the convergence. Similarly, in the elimination-dispersal strategy of
DBFA1, the best bacterium may be dispersed to an inferior position, whereas in the elimination-dispersal strategy of DBFA2,
the best bacterium is kept unchanged and transferred to the subsequent stage. This also speeds up the convergence and will
not trap the solution into the local optima, because the tumble of chemotactic can modify the position of each bacterium in
a random dimension and helps to jump out of the local optima.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

20 C. Liu et al.

Table 9. Performance comparison between the DBFA1, DBFA2 and GA for different number of cells (C).

M = 6,W = 6, P = 15 �O FV B F2
B F1 �O FV B F2

G A C PU
K̃ = 5, L = 12 O FVB F1 O FVB F2 O FVG A (%) (%) (s)

C 2 90995.7 74790.2 81742.0 17.76 8.44 405.14
4 99162.4 80933.0 88035.2 18.19 7.89 511.82
6 95202.3 75990.8 81672.0 19.94 6.73 438.19
8 94611.0 78953.0 84577.9 16.57 6.62 493.81

We can also observe from Tables 4–9 that �O FV B F2
G A reaches 4.83–10.81% in despite of the variation of the six impact

factors. The reason can be demonstrated as follows: There are some similarities and differences between the DBFA2 and GA.
The reproduction strategy of DBFA2 is similar to the selection plus crossover of GA, and the elimination-dispersal strategy
of DBFA2 is similar to the mutation of GA. The DBFA2, however, has its unique chemotactic strategy. It is the tumble and
the following swimming steps that lead to a deeper exploration of DBFA2 for the solution than the GA.

7. Conclusions

In this paper a new optimisation model of cellular manufacturing system (CMS) under DRC setting is introduced along with
a DBFA embedding Priority Rule Based Parallel Schedule Generation Scheme (PRBPSGS). The advantage of the proposed
model is simultaneously considering cell formation and task scheduling by assuming multi-skilled resources and operation
sequence. Main constraints are the machine and worker time-capacity as well as the minimal and maximal cell sizes. The
objective is to minimise the sum of inter-cell material handling cost, fixed costs of machines and workers, and operating costs
of machines and workers. The PRBPSGS helps to generate a high quality initial solution through calculating task timetable.

The main difference between the DBFA1 and DBFA2 is that the former applies Passino’s swimming strategy, reproduction
strategy and elimination-dispersal strategy, and the latter uses these modified strategies. The performance of DBFA2 is
evaluated and compared with the performance of DBFA1 and conventional genetic algorithm (GA) in terms of objective
function values within the same runtime. It is observed that the quality of results obtained by DBFA2 is better than DBFA1 and
GA regardless of the variation of some important parameters. The superiority of DBFA2 over DBFA1 lies in that the former
may avoid many invalid swimming steps and transfer the fittest bacterium to subsequent generation. So the DBFA2 pays
more attention to the efficiency of exploitation and convergence than the DBFA1. The advantage of DBFA2 over GA can be
explained in that the DBFA2 has unique chemotactic strategy besides the characteristics of crossover, mutation and selection
which the GA possesses. So the DBFA2 does well in balancing the depth of exploitation and the width of exploration, and
pays more attention to the depth of exploitation than the conventional GA and even most efficient GA. An important research
direction that may be pursued in the future is to extend chain precedence constraints of operations to arbitrary precedence
constraints of parts and operations. The other potential interest would consider multi-level flexibility of resources, i.e. each
machine or worker has a different number of functions or skills. In addition, this paper proposes the non-linear binary integer
programming (NLBIP) which is a special case of mixed integer programming. From a formulation point of view, the NLBIP
has the flexibility of being converted to constraint programming (CP) that may seem to be succinct apparently. For example,
the binary variable in the NLBIP can be easily converted to the global all-different constraint which is often used in the CP.
It is worthwhile to compare the characteristics and properties of NLBIP and CP (e.g. using IBM ILOG CPLEX software)
according to optimisation success performance and computational processing time.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This research was supported by the Humanities and Social Sciences Youth Foundation of the Ministry of Education [grant number
14YJC630089]; Zhejiang Provincial Natural Science Foundation of China [grant number LY14G020014]; China Scholarship Council,
Zhejiang Provincial Key Research Base of Humanities and Social Sciences in Hangzhou Dianzi University [grant number ZD03-201501],
the Research Center of Information Technology & Economic and Social Development, and the National Natural Science Foundation of
China [grant number 71471052]. The authors are grateful for the financial supports.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

International Journal of Production Research 21

References

Arkat, J., H. Abdollahzadeh, and H. Ghahve. 2012. “A New Branch and Bound Algorithm for Cell Formation Problem.” Applied
Mathematical Modelling 36 (10): 5091–5100.

Arkat, J., M. H. Farahani, and F. Ahmadizar. 2012. “Multi-objective Genetic Algorithm for Cell Formation Problem Considering Cellular
Layout and Operations Scheduling.” International Journal of Computer Integrated Manufacturing 25 (7): 625–635.

Arkat, J., M. H. Farahani, and L. Hosseini. 2012. “Integrating Cell Formation with Cellular Layout and Operations Scheduling.” The
International Journal of Advanced Manufacturing Technology 61 (5–8): 637–647.

Ballakur, A. 1985. “An Investigation of Part Family/Machine Group Formation in Designing a Cellular Manufacturing System.” PhD
thesis, University of Wisconsin, Madison, WI.

Boutsinas, B. 2013. “Machine-part Cell Formation Using Biclustering.” European Journal of Operational Research 230 (3): 563–572.
Chattopadhyay, M., S. Chattopadhyay, and P. K. Dan. 2011. “Machine-part Cell Formation through Visual Decipherable Clustering of

Self-organizing Map.” The International Journal of Advanced Manufacturing Technology 52 (9–12): 1019–1030.
Defersha, F. M., and M. Chen. 2008. “A Linear Programming Embedded Genetic Algorithm for an Integrated Cell Formation and Lot

Sizing Considering Product Quality.” European Journal of Operational Research 187 (1): 46–69.
Egilmez, G., B. Erenay, and G. A. Suer. 2014. “Stochastic Skill-based Manpower Allocation in a Cellular Manufacturing System.” Journal

of Manufacturing Systems 33 (4): 578–588.
Eguia, I., J. Racero, F. Guerrero, and S. Lozano. 2013. “Cell Formation and Scheduling of Part Families for Reconfigurable Cellular

Manufacturing Systems Using Tabu Search.” Simulation 89 (9): 1056–1072.
Elmi, A., M. Solimanpur, S. Topaloglu, and A. Elmi. 2011. “A Simulated Annealing Algorithm for the Job Shop Cell Scheduling Problem

with Intercellular Moves and Reentrant Parts.” Computers & Industrial Engineering 61 (1): 171–178.
Gupta, N. S., D. Devika, and V. Panpaliya. 2014. “Some Clarifications on the Use of Mahalanobis Distance for the Machine-part Cell

Formation Problem.” The International Journal of Advanced Manufacturing Technology 73 (5–8): 783–794.
Halat, K., and R. Bashirzadeh. 2015. “Concurrent Scheduling of Manufacturing Cells Considering Sequence-dependent Family Setup Times

and Intercellular Transportation Times.” The International Journal of Advanced Manufacturing Technology 77 (9–12): 1907–1915.
Hamedi, M., G. R. Esmaeilian, N. Ismail, and M. K. A. Ariffin. 2012. “Capability-based Virtual Cellular Manufacturing Systems Formation

in Dual-resource Constrained Settings Using Tabu Search.” Computers & Industrial Engineering 62 (4): 953–971.
Jain, A. K., S. C. Srivastava, S. N. Singh, and L. Srivastava. 2015. “Bacteria Foraging Optimization Based Bidding Strategy under

Transmission Congestion.” IEEE Systems Journal 9 (1): 141–151.
Jain, S. K. 2015. “Optimization of Dual Resonance Stacked Patch Resonator by Neural Hybridized Bacteria Foraging Algorithm.”

Microwave and Optical Technology Letters 57 (5): 1191–1199.
Kao, Y., and C. C. Chen. 2013. “A Differential Evolution Fuzzy Clustering Approach to Machine Cell Formation.” The International

Journal of Advanced Manufacturing Technology 65 (9–12): 1247–1259.
Karthikeyan, S., M. Saravanan, and K. Ganesh. 2012. “GT Machine Cell Formation Problem in Scheduling for Cellular Manufacturing

System Using Meta-Heuristic Method.” Procedia Engineering 38: 2537–2547.
Kia, R.,A. Baboli, N. Javadian, R. Tavakkoli-Moghaddam, M. Kazemi, and J. Khorrami. 2012. “Solving a Group Layout Design Model of a

Dynamic Cellular Manufacturing System with Alternative Process Routings, Lot Splitting and Flexible Reconfiguration by Simulated
Annealing.” Computers & Operations Research 39 (11): 2642–2658.

King, J. R., and V. Nakornchai. 1982. “Machine-component Group Formation in Group Technology: Review and Extension.” International
Journal of Production Research 20 (2): 117–133.

kioon, S.A.,A.A. Bulgak, and T. Bektas. 2009. “Integrated Cellular Manufacturing Systems Design with Production Planning and Dynamic
System Reconfiguration.” European Journal of Operational Research 192 (2): 414–428.

Logendran, R., P. Ramakrishna, and C. Sriskandarajah. 1994. “Tabu Search-based Heuristics for Cellular Manufacturing Systems in the
Presence of Alternative Process Plans.” International Journal of Production Research 32 (2): 273–297.

Mahdavi, I., A. Aalaei, M. M. Paydar, and M. Solimanpur. 2010. “Designing a Mathematical Model for Dynamic Cellular Manufacturing
Systems Considering Production Planning and Worker Assignment.” Computers and Mathematics with Applications 60 (4): 1014–
1025.

Mishra, S. K., G. Panda, and R. Majhi. 2014. “Constrained PortfolioAsset Selection Using Multiobjective Bacteria Foraging Optimization.”
Operational Research 14 (1): 113–145.

Nouri, H., and T. S. Hong. 2012. “A Bacteria Foraging Algorithm Based Cell Formation Considering Operation Time.” Journal of
Manufacturing Systems 31 (3): 326–336.

Nouri, H., and S. H. Tang. 2013. “Development of Bacteria Foraging Optimization Algorithm for Cell Formation in Cellular Manufacturing
System Considering Cell Load Variations.” Journal of Manufacturing Systems 32 (1): 20–31.

Nouri, H., S. H. Tang, B. T. Hang Tuah, and M. K. Anuar. 2010. “BASE: A Bacteria Foraging Algorithm for Cell Formation with Sequence
Data.” Journal of Manufacturing Systems 29 (2–3): 102–110.

Panda, S., D. Mishra, B. Biswal, and M. Tripathy. 2014. “Revolute Manipulator Workspace Optimization Using a Modified Bacteria
Foraging Algorithm: A Comparative Study.” Engineering Optimization 46 (2): 181–199.

Passino, K. M. 2002. “Biomimicry of Bacterial Foraging for Distributed Optimization and Control.” IEEE Control Systems Magazine 22
(3): 52–67.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

22 C. Liu et al.

Paydar, M. M., I. Mahdavi, I. Sharafuddin, and M. Solimanpur. 2010. “Applying SimulatedAnnealing for Designing Cellular Manufacturing
Systems Using MDmTSP.” Computers & Industrial Engineering 59 (4): 929–936.

Rabbani, M., F. Jolai, N. Manavizadeh, F. Radmehr, and B. Javadi. 2012. “Solving a Bi-objective Cell Formation Problem with Stochastic
Production Quantities by a Two-phase Fuzzy Linear Programming Approach.” The International Journal of Advanced Manufacturing
Technology 58 (5–8): 709–722.

Rafiei, H., M. Rabbani, B. Nazaridoust, and S. S. Ramiyani. 2015. “Multi-objective Cell Formation Problem Considering Work-in-process
Minimization.” The International Journal of Advanced Manufacturing Technology 76 (9–12): 1947–1955.

Renna, P., and M. Ambrico. 2015. “Design and Reconfiguration Models for Dynamic Cellular Manufacturing to Handle Market Changes.”
International Journal of Computer Integrated Manufacturing 28 (2): 170–186.

Safaei, N., M. Saidi-Mehrabad, and M. S. Jabal-Ameli. 2008. “A Hybrid Simulated Annealing for Solving an Extended Model of Dynamic
Cellular Manufacturing System.” European Journal of Operational Research 185 (2): 563–592.

Sakhaii, M., R. Tavakkoli-Moghaddam, M. Bagheri, and B. Vatani. Forthcoming. “A Robust Optimization Approach for an Integrated
Dynamic Cellular Manufacturing System and Production Planning with Unreliable Machines.” Applied Mathematical Modelling.

Saravanan, M., and A. Noorul Haq. 2008. “A Scatter Search Method to Minimise Makespan of Cell Scheduling Problem.” International
Journal of Agile Systems and Management 3 (12): 18–36.

Solimanpur, M., and A. Elmi. 2011. “ATabu Search Approach for Group Scheduling in Buffer-constrained Flow Shop Cells.” International
Journal of Computer Integrated Manufacturing 24 (3): 257–268.

Taghavifard, M. T. 2012. “Scheduling Cellular Manufacturing Systems Using ACO and GA.” International Journal of Applied
Metaheuristic Computing 3 (1): 48–64.

Tang, J., X. Wang, I. Kaku, and K. Yung. 2010. “Optimization of Parts Scheduling in Multiple Cells Considering Intercell Move Using
Scatter Search Approach.” Journal of Intelligent Manufacturing 21 (4): 525–537.

Tang, J., C. Yan, X. Wang, and C. Zeng. 2014. “Using Lagrangian Relaxation Decomposition with Heuristic to Integrate the Decisions of
Cell Formation and Parts Scheduling Considering Intercell Moves.” IEEE Transactions on Automation Science and Engineering 11
(4): 1110–1121.

Tavakkoli-Moghaddam, R., N. Javadian, A. Khorrami, and Y. Gholipour-Kanani. 2010. “Design of a Scatter Search Method for a Novel
Multi-criteria Group Scheduling Problem in a Cellular Manufacturing System.” Expert Systems with Applications 37 (3): 2661–2669.

Tripathy, M., and S. Mishra. 2015. “Coordinated Tuning of PSS and TCSC to Improve Hopf Bifurcation Margin in Multimachine Power
System by a Modified Bacteria Foraging Algorithm.” Energy Systems 66: 97–109.

Venkataramanaiah, S. 2008. “Scheduling in Cellular Manufacturing Systems:An HeuristicApproach.” International Journal of Production
Research 46 (2): 429–449.

Wang, X., J. Tang, and K. Yung. 2010. “A Scatter Search Approach with Dispatching Rules for a Joint Decision of Cell Formation and
Parts Scheduling in Batches.” International Journal of Production Research 48 (12): 3513–3534.

Won, Y., and R. Logendran. 2015. “Effective Two-phase p-median Approach for the Balanced Cell Formation in the Design of Cellular
Manufacturing System.” International Journal of Production Research 53 (9): 2730–2750.

Wu, X., C. H. Chu, Y. Wang, and D. Yue. 2007. “Genetic Algorithms for Integrating Cell Formation with Machine Layout and Scheduling.”
Computers & Industrial Engineering 53 (2): 277–289.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
M

an
ito

ba
 L

ib
ra

ri
es

]
at

 0
5:

21
 1

4
N

ov
em

be
r

20
15

	Abstract
	1. Introduction
	2. Literature review
	2.1. Cell formation problem in CMS
	2.2. Group scheduling problem in CMS
	2.3. Integrated decision of cell formation and group scheduling

	3. Problem statement and formulation
	4. Discrete bacteria foraging algorithm
	4.1. Solution representation
	4.2. Implementation of the proposed DBFA

	5. Genetic algorithm
	6. Computational experiments
	7. Conclusions
	Disclosure statement
	Funding
	References

