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The shortest path (SP) problem is a network optimization problem with a wide range of applications in
business and engineering. Conventional network problems assume precise values for the weights of the
edges. However, these weights are often vague and ambiguous in practical applications. Several heuris-
tics have been proposed to find the shortest path (SP) weight and the corresponding SP on a network with
fuzzy arc weights. These heuristics largely use a-cuts and the least squares method. We propose an
artificial bee colony (ABC) algorithm to solve the fuzzy SP (FSP) problems with fuzzy arc weights. The
performance of the proposed ABC algorithm is compared with the performance of other competing algo-
rithms with two SP problems taken from the literature. We present a wireless sensor network (WSN)
problem and demonstrate the applicability of the proposed method and exhibit the efficiency of the
procedures and algorithms.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The shortest path (SP) problem is one of the most studied prob-
lems in the fields of combinatorics and network optimization. The
aim of the SP problem is to find a path between two specified
nodes and optimize the weight (cost, time or distance) of the path.
Traditional SP problems assume the arc weights can be specified
precisely. However, the weights of the arcs in most real-life prob-
lems are imprecise and ambiguous. For example, arc weights that
are represented by time or cost can fluctuate with traffic condi-
tions, weather, or payload. In such cases, fuzzy numbers can be
used to represent the imprecision in the arc weights. SP problems
with fuzzy numbers are called fuzzy SP (FSP) problems. Much
research has been carried out on FSP modeling and solution
procedures.

Dubois and Prade [10] were among the first researchers who
extended the classic Floyd and Ford–Moore–Bellman algorithms
to solve FSP problems. Klein [21] discussed the possibility that
the FSP may not correspond to an actual path in the network and
proposed new models based on dynamic programming to avoid
this problem. Lin and Chern [23] proposed an algorithm for finding
the single most vital arc in a network as being the one whose
removal from the path results in the greatest increase in cost.
Okada and Soper [27] proposed an algorithm to obtain all Pareto
optimal paths from a specific node to every other node in a net-
work with fuzzy numbers. Okada [26] developed an algorithm to
determine the degree of possibility for each arc on the SP. Chuang
and Kung [4] proposed a heuristic procedure to find the FSP length
among all possible paths in a network. Chuang and Kung [5] pro-
posed a new algorithm that obtains the FSP length and the corre-
sponding SP in a discrete FSP problem. Hernandes et al. [15]
considered a genetic algorithm (GA) for solving FSP problems
where the decision maker can choose a ranking index that best
suits the problem. Ji et al. [18] proposed a hybrid intelligent algo-
rithm integrating simulation and the GA to solve three types of
models for the FSP problem in a fuzzy environment. Mahdavi
et al. [25] proposed a dynamic programming approach to solve
the shortest chain problem with fuzzy distances for every arc using
a ranking method. Kumar and Kaur [22] presented a new algorithm
for solving the SP problem on a network with imprecise arc
weights. Dou et al. [9] applied an approach to select the SP in a
multi-constrained network using a multi-criteria decision making
method based on a vague similarity measure. Deng et al. [8]
extended the Dijkstra algorithm to solve the SP problem with fuzzy
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Fig. 1. A normal fuzzy number eA ¼ ðm;rÞ.
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Fig. 2. A trapezoidal fuzzy number eA ¼ ða1; a2; a3; a4Þ.
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arc weights. Their proposed method is based on the graded mean
integration representation of fuzzy numbers. Zhang et al. [35] pro-
posed a biologically inspired algorithm called the fuzzy physarum
algorithm for FSP problems based on a path finding model.

These studies assume the arc weights of the network under con-
sideration have the same type of fuzzy numbers. To overcome this
limitation, Tajdin et al. [31] designed an algorithm for computing a
SP in a network with various types of fuzzy arc weights. They used
an a-cut approach to compute the addition of various fuzzy num-
bers as arc weights. Hassanzadeh et al. [14] presented a GA for
finding the SP in the network to overcome the complexity of the
addition of various fuzzy numbers encountered in larger problems.
Ebrahimnejad et al. [11] used a population-based metaheuristic
optimization algorithm, namely particle swarm optimization
(PSO), to approximate the SP on the same network, where arcs
are weighted with different types of fuzzy numbers. In this study,
we design an artificial bee colony (ABC) algorithm to solve the FSP
in the same network using a recently proposed distance function
for comparison of fuzzy numbers. The use of evolutionary compu-
tation techniques and algorithms such as the ABC is increasing in
different measurement applications, due to their capacity to oper-
ate within complex environments and provide accurate solutions
to the optimization problem being considered [3,29,30]. In this
regard, it will be shown that the proposed method significantly
reduces the complexities encountered in the existing methods. In
addition, we demonstrate the applicability of the proposed
approach and exhibit the efficiency of the procedures and algo-
rithms in a wireless sensor network (WSN) problem.

The remainder of this paper is structured as follows. In Section 2,
basic concepts and definitions of fuzzy set theory, a-cut computa-
tions for fuzzy numbers, and the distance between fuzzy numbers
are reviewed. The proposed ABC algorithm for solving the FSP
problem is presented in Section 3. The performance of the pro-
posed heuristic algorithm is investigated on two different SP prob-
lems in Section 4. The application of the proposed method in a
WSN problem is presented in Section 5. In Section 6, we introduce
other practical applications of the FSP networks and in Section 6,
we outline our conclusions and future research directions.

2. Preliminaries

In this section, we present some basic definitions and arith-
metic operations on fuzzy numbers [10,31,14].

Definition 1. Let the universal set be X and define the fuzzy set eA in
X by its membership function leA : X ! ½0;1�, where a real number

leAðxÞ is assigned to each element x 2 X in the interval [0, 1].
Definition 2. The a-cut of a fuzzy set eA is defined as a crisp set ½eA�a
in which the membership degrees of its elements exceed the level

a, i.e. ½eA�a ¼ fx 2 X;leAðxÞ P ag ¼ eAL
a;
eAR
a

h i
.

Definition 3. A fuzzy number is a convex normalized fuzzy set of
the real line R, whose membership function is piecewise
continuous.
Definition 4. A normal fuzzy number is represented by eA ¼ ðm;rÞ;
with the membership function, leA ; defined by the expression

leAðxÞ ¼ e�
x�m
rð Þ2 ; x 2 R ð1Þ

where m is the mean and r is the standard deviation (see Fig. 1).
Definition 5. The a-cut of normal fuzzy number eA ¼ ðm;rÞ is

given by ½eA�a ¼ eAL
a;
eAR
a

h i
¼ m� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnðaÞ

p
;mþ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnðaÞ

ph i
.

Definition 6. A trapezoidal fuzzy number eA is represented byeA ¼ ða1; a2; a3; a4Þ; with the following membership function (see
Fig. 2):

leAðxÞ ¼
x�a1
a2�a1

; a1 6 x 6 a2;

1; a2 6 x 6 a3;
a4�x
a4�a3

; a3 6 x 6 a4:

8><>: ð2Þ

Definition 7. The a-cut of the trapezoidal fuzzy numbereA ¼ ða1; a2; a3; a4Þ is given by ½eA�a ¼ eAL
a;
eAR
a

h i
¼ ½ða2 � a1Þaþ

a1; a4 � ða4 � a3Þa�.
A key issue in SP problems with different types of fuzzy arc

weights is the addition of trapezoidal and normal fuzzy numbers.
Hassanzadeh et al. [14] proposed a step-by-step procedure for
approximating the sum of trapezoidal and normal fuzzy numbers.
In this procedure, Hassanzadeh et al. [14] approximate the sum
and its corresponding membership function by dividing the
a-interval, [0, 1], into n subintervals and letting a0 ¼ 0;
ai ¼ ai�1 þ Dai; Dai ¼ 1

n ; and n ¼ 1;2; . . . ;n.

Let eA ¼ ða1; a2; a3; a4Þ and eB ¼ ðm;rÞ be trapezoidal and normal
fuzzy numbers, respectively. Given ai 2 ð0;1�;1 6 i 6 n, the ai-cut
sum of these fuzzy numbers using Definitions 6 and 7 is obtained
as follows:

½eC �ai ¼ eCL
ai
; eCR

ai

h i
¼ eAL

ai
þ eBL

ai
; eAR

ai
þ eBR

ai

h i
¼ ða2 � a1Þai þ a1 þm� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnðaiÞ

q
; a4 � ða4 � a3Þai

�
þmþ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnðaiÞ

q �
ð3Þ



50 A. Ebrahimnejad et al. /Measurement 93 (2016) 48–56
Eq. (3) can be used to obtain n points for eCL
ai

and n points for eCR
ai

using ai;1 6 i 6 n:
Hassanzadeh et al. [14] approximated the membership function

of the sum using the resulting points via the a –cut and Crammer’s
approach for fitting an exponential membership function for the

sum. Let xi ¼ eCR
ai
and yi ¼ lðeCR

ai
Þ, and for n points ðxi; yiÞ, consider

the fitting model to be y ¼ e�
x�k
bð Þ2 : They proposed a least squares

model to approximate the right membership function for the con-
sidered addition, and determined the unknown parameters k and b
as follows [31,14]:

b ¼
n
P

i xi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p� �
—
P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p
�P

ixi

�n
P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p
�P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p
�P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p ð4Þ

k ¼
P

i ln yið�
P

ixiÞ �
P

iðxi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p
Þ �P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p
�n

P
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p
�P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p
�P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p ð5Þ

Similarly, let xi ¼ eCL
ai

and yi ¼ l eCL
ai

� �
, and consider the fitting

model y ¼ e
� x�k0

b0

� �2

. The least squares model for approximating
the left membership function of the considered addition results
in the unknown parameters k0 and b0 as follows [31,14]:

b0 ¼
n
P

i xi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p� �
�P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p
�P

ixi

n
P

i

ffiffiffiffiffiffiffiffiffi
ln yi

p
þP

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p
�P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p ð6Þ

k0 ¼
P

i ln yi �
P

ixi þ
P

iðxi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p
Þ �P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p
n
P

i

ffiffiffiffiffiffiffiffiffi
ln yi

p
þP

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p
�P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln yi

p ð7Þ

Therefore, the approximate membership function for the
approximating sum of trapezoidal and normal fuzzy numbers is
given as follows:

l~cðxÞ ¼
e
� k0�x

b0

� �2

; x < k0;

1; k0 6 x 6 k;

e�
x�k
bð Þ2 ; x > k:

8>>>>>><>>>>>>:
ð8Þ

The other key issue in the SP problem is comparing the distance
between two different paths with mixed fuzzy arc weights. In what
follows, the distance between two fuzzy numbers using the
resulting points from the a-cut is reviewed [31,14].

Given two fuzzy numbers eA and eB, Dp;q, the distance between
them is defined as follows:

Dp;qðeA; eBÞ ¼ ð1� qÞR 1
0 A�

a � B�
a

�� ��pdaþ q
R 1
0 Aþ

a � Bþ
a

�� ��pdah i
; p<1

ð1� qÞ sup
0<a61

A�
a � B�

a

�� ��þ q inf
0<a61

Aþ
a � Bþ

a

�� ��; p¼1

8><>:
ð9Þ

where the first parameter p denotes the priority weight assigned to
the end points of the support (for instance, the A�

a and Aþ
a of the

fuzzy numbers). If the expert has no preference, Dp;12
is used. The

second parameter q determines the analytical properties of Dp;q.

For two fuzzy numbers eA and eB, Dp;q is proportional to:

Dp;qðeA; eBÞ ¼ ð1� qÞ
Xn

i¼1
A�
ai
� B�

ai

��� ���p þ q
Xn

i¼1
Aþ
ai
� Bþ

ai

��� ���ph i1
p ð10Þ

If q ¼ 1
2 and p ¼ 2, we obtain the following:
D2;12
ðeA; eBÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

Xn

i¼1
A�
ai
� B�

ai

��� ���2 þ 1
2

Xn

i¼1
Aþ
ai
� Bþ

ai

��� ���2� �s
ð11Þ

To compare two fuzzy arc weights eA and eB using the ai-cuts, we

compare them to ~0 ¼ ð0;0; . . . ;0Þ because they are supposed to
represent positive values. In fact, Eq. (9) is used to compute

D2;12
ðeA; ~0Þ and D2;12

ðeB; ~0Þ. In this case, we can conclude that eA � eB
if and if D2;12

ðeA; ~0Þ 6 D2;12
ðeB; ~0Þ.
3. ABC algorithm for finding FSP

A large number of heuristic algorithms have been proposed in
the literature to solve combinatorial optimization problems
[2,24]. Some of these algorithms are designed to solve the SP prob-
lems with different types of fuzzy arc weights. Hassanzadeh et al.
[14] proposed a GA for solving SP problems with different types
of fuzzy arc weights where the addition of various types of fuzzy
numbers adds significantly to the computational complexities of
large problems. Ebrahimnejad et al. [11] proposed a PSO algorithm
for finding the SP in a network where the arcs are weighted with
different types of fuzzy numbers.

3.1. Artificial bee colony algorithm

The ABC algorithm was proposed by Karaboga [19] for solving
numerical optimization problems. This simple and powerful algo-
rithm is motivated from the foraging behavior of honey bee
swarms. In this algorithm, the bees are divided into three cate-
gories: the employed bees, the onlooker bees and the scouts. The
employed bees search for the food source. The onlookers are those
who are waiting in the dance area for getting information and
making a decision whether to go towards a food source or not.
The scout bees look for finding a food source in the search area ran-
domly. Every food source is a solution in the optimization problem
and also the amount of nectar in the food source is considered as a
fitness solution. The process begins with the algorithm generating
the initial population with random values of (SN, D) where SN is
the number of members in the population and D is the dimension
of each problem solution. After initializing the population, the
algorithm starts the search process for each bee in a
C ¼ 1;2; . . . ;MCN loop where MCN is the number of iterations. In
other words, the algorithm first performs the employed bees’
actions in each iteration and then depending on the results of their
actions, it then performs the actions of onlookers’ bees, and finally
it performs the actions of scout bees if necessary.

In this algorithm, the first half of the colony consists of
employed bees and the second half constitutes the onlookers.
The number of the employed bees or the onlooker bees is equal
to the number of solutions in the population. In each iteration
every employed bee performs the local search around their corre-
sponding food source and if they find a better food source, they
work on a new food source and ignore the previous one.
Meanwhile, they ignore the new food source if it has less fitness
than the previous source. The employed bees share the information
about the amount of fitness and the location of the corresponding
food source with onlooker bees after they finish their work. Every
onlooker bee chooses a food source for doing a local search. The
selection probability of each food source correlates with the
amount of fitness. This means that the greater the value of fitness
in the food source, the greater the probability of being selected by
the onlookers. The onlooker bee performs a local search after
choosing a food source hoping to find a better food source with
more fitness. The ABC algorithm uses a predetermined value called
the ‘‘limit” for an employed bee in order not to be constrained in
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Fig. 4. Two network paths.
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utilizing a permanent food source. This means that if a bee couldn’t
improve the food source in the local search in several successive
iterations which is determined by the limit variable, it should leave
that food source and the employed bee becomes a scout bee.

The scout bee’s task is to find a new food source by randomly
exploring the problem area. After they finish their work, the algo-
rithm moves on to the next iteration and this procedure continues
until the number of iterations equals to MCN. The performance of
the ABC algorithm is dependent on its local searches, the greedy
selection of employed and onlooker bees, and the global search
done by the onlookers. There are three important control parame-
ters in the ABC algorithm: the number of food sources (SN) that is
equal to the number of employed and onlooker bees, the determi-
native limitation that defines the maximum number of unsuccess-
ful successive local searches for leaving a food source, and the
number of iterations of the algorithm which equals to MCN [20].

3.2. Finding the SP by ABC

In this section we explain how to generate the initial popula-
tion, the activity of the employed, onlooker and scout bees and
how to calculate the fitness.

3.2.1. ABC population initialization
In order to find the SP using the ABC algorithm, an initial pop-

ulation is established. The initial population consists of solutions
that correspond to paths from the origin of the graph to the desti-
nation of the graph. For establishing the path in a graph, the vicin-
ity matrix to that graph is required. First the vicinity matrix is
established for each graph and then the paths for the initial popu-
lation are established [14]. A simple graph and its vicinity matrix
are shown in Fig. 3. Since the lengths of the paths are not equal,
the lengths of the solutions are also not equal. Fig. 4 shows two
paths in the graph of Fig. 3 that can be considered as a solution.

Algorithm 1: Producing the initial population
(1) Determine the vicinity matrix of directed network

G ¼ ðV ; EÞ, give Solution� size and set q ¼ 1.
(2) Set i ¼ 1, m ¼ 1 and pðmÞ ¼ 1.
(3) Define a1ðiÞ ¼ fjjði; jÞ 2 A; aij ¼ 1g and select a member of

it, say j. Let m ¼ mþ 1 and pðmÞ ¼ j.
(4) If j–n then let i ¼ j and go to (3).
(5) Save the produced path using the labels in the labeling

vector p. Let q ¼ qþ 1.
(6) If q 6 Solution� size then go to (2) else stop.
3.2.2. Performance of employed bees
The number of employed bees in the ABC algorithm is equal to

number of solutions of the population. In addition, the employed
bee i is related to solution i in the population. In each iteration,
Fig. 3. A simple network w
each employed bee must make a local search around the corre-
sponding solution. Here, the mutation operator in the GA is used
as local search. If the fitness value of the new path results in a
mutation that is more than that of the current path, the bee uses
the new path and ignores the previous one. Otherwise, the bee for-
gets the new path.

A heuristic approach is used to do a local search since the SP
problem is a discrete optimization problem and consists of a num-
ber of specified paths. This means that the mutation operator is
used as a local search. Local search is defined as the ‘‘random
change of path from the middle of the path to the destination.”
In other words, with random selection of one of the intermediate
nodes of a path, the path will shift to the destination point. Thus,
the new path is identical to the previous path from the origin node
until the node is randomly selected.

It should be noted that in the GA proposed by Hassanzadeh
et al. [14], the number of paths for the mutation operator is deter-
mined using a mutation operator’s rate or probability (pm). How-
ever, the ABC algorithm proposed in this study doesn’t use this
variable because each worker bee should have a local search
(mutation operator) on its solution and so the mutation operator
is required on each path.

3.2.3. Performance of onlooker bees
When the employed bees have completed the search process,

they share the obtained information including the nectar amount
of each source and its position (in this algorithm each path and
its fitness value) with onlooker bees in the dance area. Each onloo-
ker bee then chooses one of the paths depending on the probability
associated with the fitness value of each path by using a selection
method such as the Roulette Wheel. The probability of each selec-
tion ðpiÞ is given as follows [20]:

pi ¼
fitiPSN
n¼1fitn

ð12Þ

where fiti is the fitness amount of path i and SN is the number of
paths of the population which is equal to the number of employed
bees. The path with a higher fitness value has a greater probability
to be selected by the onlooker bees. After that, each onlooker bee
selects a path, and does a local search on this path. Recall that we
use the mutation operator as a local search. If the new path
obtained by the mutation operator has a higher fitness value than
the old one, the algorithm forgets the old one and changes the num-
ber of unsuccessful local searches associated with the new path to
ith its vicinity matrix.
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zero. Otherwise, if the new path obtained by the mutation operator
has a lower fitness value than the previous one, the algorithm for-
gets the new path and then the number of unsuccessful local
searches associated with the new path increases by one unit.
3.2.4. Performance of scout bees
In the ABC algorithm, providing that a food source position (a

path) cannot be improved further through a predetermined num-
ber of cycles, that food source (that path) is then assumed to be
abandoned. The number of successive failed iterations is called
the limit for abandonment. For those paths whose failed iterations
are higher than their limits, the corresponding employed bees
become scout bees. Scout bees forget their previous path by mov-
ing in the problem space and generating a new random path. A
new path is then obtained by Algorithm 1 and is replaced with
the previous path in the solution.
3.2.5. Evaluating fitness
The process of fitness evaluation of each solution is the same in

the extended GA [14], in the extended PSO algorithm [11], and in
the extended ABC algorithm proposed in this study. This means
that this value is found by aggregating the arcs included in the
path, where Eq. (3) is applied to sum the various arcs. The result
of the addition is a set of a-cut points. Then, in order to compare
the paths, the distance function D2;12

is used. The values of D2;12
is

the path length and the minimum possible value in the network
is the SP length [14]. The flowchart illustrating the procedure of
the proposed algorithm is shown in Fig. 5.
Fig. 5. Proposed algo
4. Comparative examples

We solve the numerical examples given in Hassanzadeh et al.
[14] and Ebrahimnejad et al. [11] with the algorithm proposed in
this study for comparison purposes.

Example 1. Fig. 6 shows a network with 11 nodes and 25 arcs
having different types of fuzzy weights as given in Table 1. The
number of solutions of the population of the ABC algorithm is 10.
In order to make a fair comparison, the number of solutions of the
ABC algorithm is chosen to be the same as the number of particles
used in the PSO algorithm and the number of chromosomes used in
the GA. The number of iterations in all the algorithms is identical.

The corresponding FSP problem is solved 10 times using the
proposed ABC algorithm, the existing PSO algorithm [11] and the
existing GA [14]. The results are given in Table 2.

The proposed ABC algorithm finds the path 1? 3? 8? 7? 11
as the SP from node 1 to node 11 matching the results of Hassan-
zadeh et al. [14] and Ebrahimnejad et al. [11]. We cite the following
reasons to show that using the ABC algorithm proposed in this
study is preferred to the GA proposed by Hassanzadeh et al. [14]
and the PSO algorithm proposed by Ebrahimnejad et al. [11]:

(a) The convergence curve for Example 1 is shown in Fig. 7. The
curve shows convergence to the SP after 12 iterations of the
existing GA, after 7 iterations of the existing PSO algorithm,
and after 5 iterations of the proposed ABC algorithm. The
number of iterations of the proposed ABC algorithm to con-
vergence is less than that of the GA and the PSO algorithm.
rithm flowchart.



Fig. 6. The network for Example 1.

Fig. 7. Convergence curve of genetic algorithm, PSO and ABC algorithms for
Example 1.
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(b) Table 2 shows the average numbers of iterations to converge
for the GA and the PSO algorithm are 7.1 and 4.0, respec-
tively, while the average number of iterations to converge
for the ABC algorithm is 3.1.

(c) As documented in Table 2, the minimum, maximum and
average convergence time spans for the GA are 0.18, 1.55
and 0.75, respectively. These values for the PSO algorithm
are 0.09, 0.54 and 0.29, while the corresponding values for
the ABC algorithm are 0.6, 0.33 and 0.16. Thus, the ABC algo-
rithm is preferred to the GA and the PSO algorithms for find-
ing FSP in terms of time.

(d) In addition, the minimum, maximum and average total
times to convergence using these algorithms are given in
Table 2. The minimum convergence total time for the 10
Table 1
The arc weights for Example 1.

Arc Fuzzy number Arc Fuzzy number Arc Fuzzy number

(1, 2) (800, 820, 840) (3, 5) (730, 748, 870) (8, 4) (710, 730, 835)
(1, 3) (35, 11) (3, 8) (42, 14) (8, 7) (230, 242, 355)
(1, 6) (650, 677, 783) (4, 5) (190, 199, 310) (9, 7) (120, 130, 250)
(1, 9) (290, 300, 350) (4, 6) (310, 340, 460) (9, 8) (13, 4)
(1, 10) (420, 450, 570) (4, 11) (71, 23) (9, 10) (23, 7)
(2, 3) (180, 186, 293) (5, 6) (610, 660, 790) (10, 7) (330, 342, 450)
(2, 5) (495, 510, 625) (6, 11) (23, 7) (10, 11) (125, 41)
(2, 9) (90, 30) (7, 6) (390, 410, 540) (3, 4) (650, 667, 983)
(7, 11) (45, 15)

Table 2
Information corresponding to ten runs of Example 1.

Generation SP Number of iteration to
converge

GA PSO ABC

1 30 1–3–8–7–11 5 4 4
2 30 1–3–8–7–11 9 2 4
3 30 1–3–8–7–11 3 5 2
4 30 1–3–8–7–11 15 4 2
5 30 1–3–8–7–11 6 8 1
6 30 1–3–8–7–11 2 1 3
7 30 1–3–8–7–11 1 2 4
8 30 1–3–8–7–11 9 6 1
9 30 1–3–8–7–11 10 7 3
10 30 1–3–8–7–11 11 3 7
Min – – 1 1 1
Max – – 15 8 7
Mean – – 7.1 4 3.10
cases using the existing GA, the existing PSO algorithm and
the proposed ABC algorithm are respectively 2.54, 1.58 and
1.56. Also, the average convergence total time for the 10
cases using the existing GA, the existing PSO algorithm and
the proposed ABC algorithm are respectively 2.91, 1.69 and
1.66. Thus, the ABC algorithm gives a total convergence time
advantage compared to the genetic and PSO algorithm.
Example 2. Let us consider the network in Fig. 8 with different
types of fuzzy arc weights as given in Table 3. There are 23 nodes
and 40 arcs in the network. The number of solutions of the ABC
algorithm, the number of particles in the PSO algorithm [11], and
the number of chromosomes in the GA [14] are 22. The number
of iterations in both algorithms is identical.

The corresponding FSP problem has been solved 10 times using
the proposed ABC algorithm, the existing GA [14], and the existing
PSO algorithm [11]. The results are given in Table 4.

After implementing the proposed ABC algorithm, the FSP from
node 1 to node 11 is obtained as follows: 1? 5? 12? 15?
18? 23. The result is also consistent with the results in Hassan-
zadeh et al. [14] and Ebrahimnejad et al. [11]. However, using
the ABC algorithm for solving the FSP problem is preferred to the
GA proposed by Hassanzadeh et al. [14] and the PSO algorithm pro-
posed by Ebrahimnejad et al. [11] in terms of time complexity due
to the following reasons:
Convergence time span (s) Total time (s)

GA PSO ABC GA PSO ABC

0.55 0.28 0.21 2.54 1.69 1.57
0.99 0.17 0.22 3.02 1.77 1.68
0.28 0.33 0.09 2.81 1.67 1.61
1.55 0.25 0.09 2.64 1.68 1.59
0.59 0.54 0.08 3.06 1.77 1.56
0.26 0.09 0.17 3.00 1.68 1.66
0.18 0.18 0.19 3.01 1.67 1.56
0.93 0.37 0.06 2.94 1.75 1.88
1.09 0.48 0.33 3.07 1.63 1.75
1.11 0.22 0.19 3.02 1.58 1.69
0.18 0.09 0.06 2.54 1.58 1.56
1.55 0.54 0.33 3.07 1.77 1.88
0.75 0.29 0.16 2.91 1.69 1.66



Fig. 8. The network for Example 2.

Table 3
The arc weights for Example 2.

Arc Fuzzy number Arc Fuzzy number Arc Fuzzy number

(1, 2) (12, 13, 15, 17) (1, 3) (40, 11) (1, 4) (8, 10, 12, 13)
(1, 5) (7, 8, 9, 10) (2, 6) (35, 10) (2, 7) (6, 11, 11, 13)
(3, 8) (40, 11) (4, 7) (17, 20, 22, 24) (4, 11) (6, 10, 13, 14)
(5, 8) (29, 9) (5, 11) (7, 10, 13, 14) (5, 12) (10, 13, 15, 17)
(6, 9) (6, 8, 10, 11) (6, 10) (35, 11) (7, 10) (9, 10, 12, 13)
(7, 11) (6, 7, 8, 9) (8, 12) (5, 8, 9, 10) (8, 13) (50, 5)
(9, 16) (6, 7, 9, 10) (10, 16) (40, 13) (10, 17) (15, 19, 20, 21)
(11, 14) (8, 9, 11, 13) (11, 17) (28, 9) (12, 14) (13, 14, 16, 18)
(12, 15) (12, 14, 15, 16) (13, 15) (37, 12) (13, 19) (17, 18, 19, 20)
(14, 21) (12, 12, 13, 14) (15, 18) (8, 9, 11, 13) (15, 19) (25, 7)
(16, 20) (38, 12) (17, 20) (7, 10, 11, 12) (17, 21) (6, 7, 8, 10)
(18, 21) (15, 17, 18, 19) (18, 22) (16, 5) (18, 23) (15, 5)
(19, 22) (5, 16, 17, 19) (20, 23) (13, 14, 16, 17) (21, 23) (12, 15, 17, 18)
(22, 23) (20, 5)
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(a) Fig. 9 shows the convergence curve for Example 2. The curve
shows convergence to the SP after 10 iterations of the exist-
ing GA, after 8 iterations of the existing PSO algorithm and
after 5 iterations of the proposed ABC algorithm.

(b) As shown in Table 4, the average numbers of iterations to
converge for the GA and the PSO algorithm are 7.6 and 2.7
iterations, while this value for the ABC algorithm is 2.6
iterations.
Table 4
Information corresponding to ten runs of Example 2.

Generation SP Number of iteration to
converge

GA PSO A

1 30 1–5–12–15–18–23 5 4 2
2 30 1–5–12–15–18–23 3 2 3
3 30 1–5–12–15–18–23 8 3 1
4 30 1–5–12–15–18–23 4 1 5
5 30 1–5–12–15–18–23 2 5 3
6 30 1–5–12–15–18–23 10 1 1
7 30 1–5–12–15–18–23 17 8 2
8 30 1–5–12–15–18–23 12 4 1
9 30 1–5–12–15–18–23 9 6 6
10 30 1–5–12–15–18–23 6 1 2
Min – – 2 1 1
Max – – 17 8 6
Mean – – 7.6 2.7 2
(c) As documented in Table 4, the average convergence time
spans for the GA and the PSO algorithm are 2.13 and 1.36,
respectively, while the corresponding time for the ABC algo-
rithm is 0.95.

(d) Table 4 shows the average time for 10 cases using the exist-
ing GA and the existing PSO algorithm are respectively 9.5
and 7.39, while this value is only 5.39 for the ABC algorithm.
Thus the ABC algorithm gives a total convergence time
advantage over the GA and the PSO algorithm.

5. Application in wireless sensor networks

WSNs are being utilized increasingly in critical applications and
consequently many researchers have chosen to study this area
[7,13,17,34]. A WSN consists of a number of self-powered devices
that can sense and communicate with other devices for the pur-
pose of gathering local information to make global decisions about
a physical environment [28]. Data gathered may include a variety
of environmental conditions such as temperature, humidity, pres-
sure, and early fire detection [16]. The most restrictive constraint
imposed by these networks is energy sources. The energy source,
which limits the lifetime of the network, has received considerable
attention by researchers in recent years. Energy aware protocols,
which are designed to save as much energy as possible, extend
the lifetime of the network [32].
Convergence time span (s) Total time (s)

BC GA PSO ABC GA PSO ABC

1.76 1.80 0.69 9.19 7.44 5.33
1.61 1.00 0.98 9.63 7.33 5.26
2.15 1.41 0.46 9.88 7.41 5.54
1.68 0.51 1.97 9.55 7.29 5.41
1.35 1.91 1.03 9.42 7.65 5.28
2.88 0.55 0.47 9.81 7.31 5.21
4.87 2.12 0.63 9.34 7.55 5.61
3.13 1.78 0.41 9.30 7.34 5.42
2.64 1.97 2.14 9.35 7.11 5.51
2.11 0.52 0.68 9.51 7.47 5.31
1.09 0.51 0.41 9.19 7.11 5.21
4.62 2.12 2.14 9.88 7.65 5.61

.6 2.13 1.36 0.95 9.50 7.39 5.39



Fig. 9. Convergence curve of genetic algorithm, PSO and ABC algorithms for
Example 2.

Table 5
Information corresponding to WSN.

Arcs Membership function Arcs Membership function

(1, 2) (14, 22) (5, 6) (21, 29)
(1, 3) (24, 32, 35, 36) (5, 9) (24, 32, 35, 36)
(1, 4) (27, 35) (6, 7) (38, 46, 49, 50)
(2, 7) (33, 41, 44, 45) (6, 8) (22, 30)
(3, 2) (20, 28, 31, 32) (6, 9) (13, 21, 24, 25)
(3, 6) (27, 35, 38, 39) (7, 8) (41, 49)
(3, 7) (32, 40) (8, 10) (28, 36)
(4, 5) (40, 48, 51, 52) (9, 10) (24, 32, 35, 36)
(4, 6) (41, 49, 52, 53)
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One of the best options for reducing energy consumption of the
nodes and increasing their life time is multi hop. This means, in
contrast to the case where sensors send their data directly over
long distances towards the base station (Fig. 10), here, they send
their data to a neighboring node in the path towards the base sta-
tion. Therefore, much less energy is wasted. Thus, it is necessary to
find the SP between every node and the destination base station.
Fig. 10. A wireless sensor network.

Fig. 11. A WSN with fuzzy lengths.
However, in many cases, the sensor nodes possess mobility.
Consequently, the distance between the sensors is not a crisp
value. In such a case, fuzzy numbers can be used to represent the
distance between the sensors. Fig. 11 shows an example of a
WSN with nine sensor nodes and a base station (number 10).
Table 5 shows the arc length between the nodes. The SP from
sensor node 1 to the base station can be easily achieved by the pro-
posed ABC algorithm. The path 1–3–6–9–10 with fitness of 391.79
is the SP.
6. Other practical applications

There are a number of transportation applications that use SP
algorithms. In some applications SPs need to be quickly identified
because of the need for repeated recalculation of the SPs (e.g., vehi-
cle routing and scheduling) or the need for an immediate response
(e.g., in-vehicle route guidance systems) [12]. A number of heuris-
tic approaches have been proposed in transportation engineering
to decrease the computation time of the SP algorithm for vehicle
routing and scheduling or in-vehicle route guidance systems. These
conventional transportation engineering algorithms assume pre-
cise values for the weights of the edges in the transportation net-
work. The approach proposed in this study could be applied to
situations where the information about the weights of the edges
is imprecise due to incomplete or uncertain information.

Another application for the SP algorithms is traffic-light net-
works where the goal is to find the SPs in a transportation system
with traffic-light controls in a number of road intersections [6]. In
this transportation system, the network represents the city, the
nodes correspond to the intersections and the arcs correspond to
the roads in the city. The goal in this transportation network is
to find a SP from one node to another node, where some nodes
are constrained to the traffic-light controls. Fuzzy set theory and
the approach proposed in this study can be used to solve SP
traffic-light network problems where the time to travel through
the road fluctuates with traffic conditions.

The third example for the SP algorithms is motion planning for
car-like robots in a dynamic environment [33]. In a decentralized
system, the goal is to independently determine a SP for each robot
to avoid collisions among them. These problems often assume each
robot moves with a fixed velocity and each obstacle has a fixed and
known geometry. Fuzzy set theory and the approach proposed in
this study can be used to solve SP car-like robot problems where
robots move with variable velocity.
7. Conclusions and future research directions

In this study, we proposed an ABC as a simple and robust opti-
mization technique for obtaining the FSP weight and the corre-
sponding SP in a network with various types of fuzzy arc
weights. The performance of the proposed ABC algorithm has been
evaluated with two comparative examples. The results were
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compared with two existing methods, the GA and the PSO algo-
rithm. We showed the convergence speed of the proposed ABC
algorithm is higher than the existing GA and the PSO algorithm.
In sum, the results show the ABC algorithm can be successfully
applied to solve SP problem with different types of fuzzy arc
weights in large problems. Developing a full fuzzy version of the
proposed method to the problem of speeding-up the SP in
continuous-time dynamic networks [1] would be an interesting
stream for future research. FSP problems can emerge from a variety
of practical applications. In addition to the application of FSP in
WSN problems, we see three other possibilities for future research
in traffic-light networks, car-like robots, and in-vehicle route guid-
ance systems.
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