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To improve ATMs’ cash demand forecasts, this paper advocates the prediction of cash demand for groups
of ATMs with similar day-of-the week cash demand patterns. We first clustered ATM centers into ATM
clusters having similar day-of-the week withdrawal patterns. To retrieve “day-of-the-week” withdrawal
seasonality parameters (effect of a Monday, etc.) we built a time series model for each ATMs. For cluster-
ing, the succession of seven continuous daily withdrawal seasonality parameters of ATMs is discretized.
Next, the similarity between the different ATMs’ discretized daily withdrawal seasonality sequence is
measured by the Sequence Alignment Method (SAM). For each cluster of ATMs, four neural networks
viz., general regression neural network (GRNN), multi layer feed forward neural network (MLFF), group
method of data handling (GMDH) and wavelet neural network (WNN) are built to predict an ATM center’s
cash demand. The proposed methodology is applied on the NN5 competition dataset. We observed that
GRNN yielded the best result of 18.44% symmetric mean absolute percentage error (SMAPE), which is
better than the result of Andrawis, Atiya, and El-Shishiny (2011). This is due to clustering followed by
a forecasting phase. Further, the proposed approach yielded much smaller SMAPE values than the
approach of direct prediction on the entire sample without clustering. From a managerial perspective,
the clusterwise cash demand forecast helps the bank’s top management to design similar cash replenish-
ment plans for all the ATMs in the same cluster. This cluster-level replenishment plans could result in

saving huge operational costs for ATMs operating in a similar geographical region.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The importance of accurate forecasting of the withdrawal
amounts in ATMs has the following motivation. Cash demand in
ATMs needs to be forecasted accurately similar to other products
in vending machines, as an inventory of cash needs to be ordered
and replenished for a priory set period of time. If the forecasts
are wrong, they induce costs. If the forecast is too high unused cash
is stored in the ATM incurring costs to the bank. The bank pays dif-
ferent refilling costs depending on its policy with the money trans-
portation company. In the first policy type, the bank pays a
significant fixed fee for the refilling, independently of the amount,
plus a small extra cost for each fraction of the transported money
amount. In the second policy type, the bank pays a small fixed fee
for refilling while the staircase costs are significant (Castro, 2009).
According to Simutis, Dilijonas, Bastina, Friman, and Drobinov
(2007) such cash-related costs represent about 35-60% of the over-
all cost of running an ATM. Wagner (2007) estimated a 28% cost
saving as a result of improving the inventory policies and cash
transportation decisions for an ATM network for a financial
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institution ranked among the world top 700 banks. On the other
hand, if the ATM runs out of cash, profit is lost and customers are dis-
satisfied due to bad service (www.neural-forecasting-competition.
com/NN5/motivation.htm). Osorio and Toro (2012) minimized
the cost of a cash-management system for a Colombian financial
services institution without negatively affecting the service level.

It is obvious that daily cash withdrawal amounts are time ser-
ies. Hence, typical cash demand forecast models will have to use
time series prediction methods. Recognizing the need, Lancaster
University came up with a NN5 timeseries competition, wherein
daily cash withdrawal amounts over 2 years from 111 ATM centers
across the UK are posted as the input data sets and several
researchers proposed various models for the task (www.neural-
forecasting-competition.com/NN5). In this study, the available
data from NN5 time series competition (Crone, 2008) is used. For
each of the 111 time series we forecast the next cash demands
as a trace forecast for a forecasting horizon of 1 week.

This paper advocates the use of clusterwise cash demand pre-
diction as it might have two advantages: (1) improved accuracy
of the cash demand forecasts due to reduction in computational
complexity when predicting an ATMs daily cash demand for
groups of ATM centers with similar day-of-the week cash with-
drawal seasonality patterns and (2) potentially huge savings in
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operational costs as similar cash replenishment models can be
used for ATM centers belonging to the same cluster.

To facilitate the cash demand forecasts, the ATM centers are (1)
clustered into groups of ATM centers with similar day-of-the week
cash withdrawal patterns followed by (2) a clusterwise prediction
of the daily cash demands.

First, each ATM center’s withdrawal time series is translated
into a “day-of-the-week” cash withdrawal seasonality sequence
containing seven day-of-the-week cash withdrawal seasonality
parameters. For each ATM center, the continuous seasonality se-
quence is translated into a discrete cash withdrawal seasonality se-
quence. This “abstraction” transforms the continuous seasonality
sequence into a high-level quality seasonality sequence facilitating
the detection of ATM clusters with similar day-of-the week cash
demand patterns. The similarity between the ATMs’ discretized
daily withdrawal seasonality parameter sequence is measured by
calculating the Levenshtein distance using the Sequence Alignment
Method (SAM). These distances are further processed by a cluster-
ing algorithm to produce groups of ATM centers which are rela-
tively homogeneous with respect to the day-of-the-week cash
withdrawal seasonality patterns.

Second, a predictive model is built for each cluster. For each
ATM cluster four different neural networks are employed sepa-
rately for forecasting purpose. We used MLP because it is univer-
sally popular in forecasting tasks. We employed GRNN, GMDH
and WNN based on our experience and that of other authors (Li,
Luo, Zhu, Liu, & Le, 2008; Mohanthy et al., 2010a, 2010b; Rajkiran
& Ravi, 2007; Ravisankar & Ravi, 2010; Ravisankar, Ravi, Raghava
Rao, & Bose, 2011; Srinivasan, 2008; Vinay Kumar et al., 2008).

The proposed approach is similar to Prinzie and Van den Poel
(2006), as we also use SAM to first find ATM center clusters with
similar temporal patterns. Our approach differs from Prinzie and
Van den Poel (2006) in two major ways. Firstly, the sequences
are represented by seven discretized day-of-the-week time series
seasonality parameters rather than four discretized relative evolu-
tion turnover variables. We believe that the seasonality parameters
estimated by time-series models are more precise than the calcu-
lation of relative evolution variables. Secondly, whereas Prinzie
and Van den Poel (2006) include the cluster indicators as one of
the predictors in the churn attrition model, this paper builds a sep-
arate cash demand forecasting model per ATM cluster.

The rest of the paper is organized as follows. In Section 2,
literature review is presented. In Section 3, an overview of
Sequence-alignment method is described. Section 4 presents the
proposed methodology: construction of the sequential dimension;
method to find effect-of-the-day parameter and its discretization;
calculation of SAM distances; and the clustering procedure
employing the Taylor-Butina algorithm. Section 5 presents a brief
overview of the forecasting methods viz., WNN, GMDH, MLFF and
GRNN. Results are discussed in Section 6. Finally, Section 7
concludes the work.

2. Literature review

In the following, we review the literature on modeling and ana-
lyzing NN5 competition data (Crone, 2008).

Bontempi and Taieb (2010) discussed the limitations of single-
output approaches when the predictor is expected to return a long
series of future values, and presents a multi-output approach to
long term prediction. They also discussed here a multi-output
extension of conventional local modeling approaches, and present
and compare three distinct criteria for performing conditionally
dependent model selection. Coyle, Prasad, and McGinnity (2010)
employed self-organizing fuzzy neural network (SOFNN) to create
an accurate and easily calibrated approach to multiple-step-ahead

prediction for the NN5 forecasting competition. Lemke and Gabrys
(2010) investigated meta-learning for time series prediction with
the aim to link problem-specific knowledge to well performing
forecasting methods and apply them in similar situations. A fore-
casting approach based on Multi-Layer Perceptron (MLP) Artificial
Neural Networks (named by the authors MULP) is proposed by
Pasero, Raimondo, and Ruffa (2010) for the NN5 111 time series
long-term, out of sample forecasting competition. Good results
had also been obtained using the ANNs forecaster together with
a dimensional reduction of the input features space performed
through a Principal Component Analysis (PCA) and a proper infor-
mation theory based backward selection algorithm. Teddy and Ng
(2010) proposed a novel local learning model of the pseudo self-
evolving cerebellar model articulation controller (PSECMAC) asso-
ciative memory network to produce accurate forecasts of ATM cash
demands. As a computational model of the human cerebellum,
their model can incorporate local learning to effectively model
the complex dynamics of heteroskedastic time series. Andrawis
et al. (2011) used Forecast combinations of computational intelli-
gence and linear models to solve the problem. The main idea of this
model is to utilize the concept of combination of forecasts (ensem-
bling), which has proven to be an effective methodology in the
forecasting literature. The models used are neural networks,
Gaussian process regression, and a linear model. Wichard (2011)
proposed a simple way of predicting time series with recurring
seasonal periods. Missing values of the time series are estimated
and interpolated in a preprocessing step. He combined several
forecasting methods by taking the weighted mean of forecasts that
were generated with time-domain models which were validated
on left-out parts of the time series. The hybrid model is a combina-
tion of a neural network ensemble of nearest trajectory models.

None of the papers modelling NN5 data clustered the time ser-
ies first on daily withdrawal trends before predicting the ATM cen-
ter's cash demand. Most authors try to reduce the complexity of
the cash demand forecasting by either performing a data reduction
of the input features space before prediction (Pasero et al., 2010) or
by employing a local learning model (Teddy & Ng, 2010). This pa-
per reduces the forecasting problem complexity by predicting cash
demand per ATM cluster containing ATM centres with similar daily
cash withdrawal patterns. We thereby follow an approach similar
to Prinzie and Van den Poel (2006), who first clustered customers
of an International Financial-Services Provider (IFSP) into clusters
with similar relative evolution in turnover using SAM and the Tay-
lor-Butina clustering algorithm followed by a binary logistic
regression model predicting the customer’s churn probability.
Rather than including the cluster indicators as additional predic-
tors in the forecasting model as in Prinzie and Van den Poel
(2006) we build cash demand forecast models per ATM cluster
with similar day-of-the week cash withdrawal patterns.

3. Overview of sequence-alignment method (SAM)

The ATM centers are compared with respect to their daily cash
withdrawal trends. Therefore, each ATM center is represented as a
sequence of seven ‘day-of-the-week’ cash demand seasonality
parameters. To facilitate the detection of ATM clusters with similar
day-of-the week cash withdrawal patterns, the “day-of-the-week”
seasonality parameters are discretized. Then, the Sequence-Align-
ment Method is used to calculate the similarity of each pair of
ATM centers on this discretized sequential dimension. Subse-
quently, these SAM distances are input to a clustering algorithm
to identify ATM centers with similar day-of-the-week cash with-
drawal patterns.

The Sequence-Alignment Method (SAM) (Levenshtein, 1965)
was developed in computer science and found applications in text
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editing, voice recognition and molecular biology (protein and nu-
cleic acid analysis). A common application in computer science is
string correction or string editing (Wagner & Fischer, 1974). The
main use of sequence comparison in molecular biology is to detect
the homology between macromolecules. If the distance between
two macromolecules is small enough, one may conclude that they
have a common evolutionary ancestor. Applications of sequence
alignment in molecular biology use comparatively simple alpha-
bets (the four nucleotide molecules or the twenty amino acids)
but tend to have very long sequences. Besides computer sciences
and molecular biology, SAM has applications in social science,
transportation research and speech processing. SAM has also been
applied in marketing to discover visiting patterns of websites (Hay,
Wets, & Vanhoof, 2003), to identify purchase-history sensitive
shopper segments (Joh, Timmermans and Popkowski-Leszczyc,
2003) and to identify customer segments with similar trends in
turnover. Methodological reference works of SAM include Sankoff
and Kruskal (1983) and Gribskov and Devereux (1992).

SAM handles variable length sequences and incorporates
sequential information, i.e., the order in which the elements appear
in a sequence, into its distance measure (unlike conventional posi-
tion-based distance measures, like Euclidean, Minkowsky, City
block and Hamming distances). The original SAM can be summa-
rized as follows. Suppose we compare sequence a, called the
source, having i elements a = [ay,...,q;] with sequence b, i.e., the
target, having j elements b = [b,,...,b;]. In general, the distance or
similarity between sequences a and b is expressed by the number
of operations (i.e., total amount of effort) necessary to convert se-
quence a into b. The SAM distance is represented by a score. The
higher the score, the more effort it takes to equalize the sequences
and the less similar they are. The elementary operations are inser-
tions, deletions and substitutions or replacements. Deletion and
insertion operations, often referred to as indel, are applied to ele-
ments of the source (first) sequence in order to change the source
into the target (second) sequence. Substitution operations include
both deletion and insertion. Every elementary operation is given a
weight (i.e., cost) greater than or equal to zero. Weights may be tai-
lored to reflect the importance of operations, the similarity of par-
ticular elements (element sensitive), the position of elements in
the sequence (position sensitive), or the number/type of neigh-
bouring elements or gaps. Different meanings can be given to the
distance in sequence comparison. In this paper, we express
similarity or distance between ATM centers on their parameter
“day-of-the-week” effect by calculating the Levenshtein distance
(Levenshtein, 1965) between each possible pair of ATM centers
(i.e., pairwise-sequence analysis). The Levenshtein distance defines
dissimilarity as the smallest sum of operation-weighting values
required to change sequence a-b. This way, a distance matrix is
constructed and subsequently, used as input for cluster analysis.

4. Proposed methodology

The proposed approach first clusters different ATM centers
based on their daily withdrawal trends using the Taylor-Butina’s
clustering algorithm and next builds clusterwise cash demand
forecasting model using four types of neural network models: gen-
eral regression neural network (GRNN), multi layer feed forward
neural network (MLFF), group method of data handling (GMDH)
and wavelet neural network (WNN). The entire data flow and the
block diagram for the proposed method are depicted in Fig. 1.

(1) We built one multiplicative time series model for each of the
ATM center’s daily withdrawal amounts. We first reordered
the data so that the withdrawal amounts are rearranged
according to the day of the week. Thus, for each day of the

Find "day-of-
the-week"
seasonality

Clustering the
descretized
sasonality

Find SAM
Discretize distance
"day-of-the- scores
week" effects between ATM
Centers

Build neural
networks for
ATM centers in
each cluster
separately

effect using
multiplicative
time-series
modeling

effects using
Taylor-Butina's
Algorithm

Fig. 1. Block diagram and data flow of the proposed methodology.

week, viz., Monday, Tuesday, ..., and Sunday we fitted the
multiplicative time series Y=Tx S« Cx I, where T, S, C and |
respectively represent trend, seasonality, cyclic movement
and irregular part of the time series. We modeled the trend
in the time series by linear regression using the principle of
linear least squares. There is no cyclic effect on the time ser-
ies and irregular part is assumed to be 1. Hence, we divided
the original time series Y by the trend values in order to get
seasonality effects, which are pure numbers. The seasonality
part is estimated as S = Y/T. They are treated as the 7 day-of-
the-week seasonality parameters (Monday, Tuesday, etc.).

(2) Each ATM center’s time series of daily withdrawal amounts
are replaced by a sequence of 7 day-of-the week cash
withdrawal seasonality parameters. The day-of-the-week
seasonality parameter values are (for Monday, Tuesday, ...,
Sunday) computed by separately taking average values of
every Monday values (1,8,15,23...), Tuesday (2,9,16,
24...) and so on. To facilitate the identification of ATM clus-
ters with similar day-of-the-week cash withdrawal patterns,
the sequence of seven continuous daily withdrawal season-
ality parameters are discretized. Consequently, for each ATM
center, the continuous cash withdrawal seasonality
sequence is translated into a discrete cash withdrawal sea-
sonality sequence.

(3) Then, we calculated the Levenshtein distance score using
SAM to express how similar ATM centers are on their dis-
cretized daily withdrawal seasonality values.

(4) Then, by using the Taylor-Butina’s clustering algorithm, we
clustered the ATM centers on the SAM distances, thereby
identifying ATM clusters with similar daily cash withdrawal
seasonality values.

(5) Then, as a last step, for each of the ATM clusters, four types
of neural networks are built separately on the ATM’s daily
cash withdrawal time series to forecast the ATM center’s
daily cash demand by taking lagged data, as described in
Section 4.7.

4.1. Construction of the sequential dimension

We want to facilitate the ATMs’ cash demand forecast by build-
ing cash demand prediction models for similar ATM centers. Clus-
tering the ATM centers on their day-of-the week withdrawal
patterns is likely to reduce the complexity of the cash demand pre-
diction task. For example ATM centers in business districts might
be characterized by high cash demand during the week and low
cash demand during the weekend. On the contrary, ATM centers
in shopping districts are more likely to show a reverse trend: low
cash demand during the week followed by huge cash demand in
the weekend. Predicting an ATM’s cash demand knowing it belongs



386 K. Venkatesh et al./ European Journal of Operational Research 232 (2014) 383-392

to the ‘business district’ ATM cluster might be easier than predict-
ing that same ATM center’s cash demand in absence of this cluster
information.

4.2. “Day-of-the-week” seasonality effects parameter

As explained above, we first built a multiplicative time series
model for each ATM center to find the seasonality effect on the
cash withdrawal amount for each day of the week. The time series
model is built on the daily withdrawal amounts for each ATM cen-
ter, which are treated as the training data as specified by the NN5
competition. That way, we obtained, for each ATM center, the
effect of a Monday, Tuesday, ..., and Sunday on cash demand, as
seven continuous seasonality parameters. These seven “day-
of-the-week” parameters are used to translate each ATM center’s
2 years time series of daily cash withdrawal amount into a
seasonality sequence of seven numerical “day-of-week” effects.
Hence, the length of each ATM center’s sequence would be seven.

4.3. Discretizing the “day-of-the-week” parameter

This paper proposes cash demand forecasting within ATM cen-
ter clusters with similar day-of-the-week cash withdrawal pat-
terns. In order to identify such ATM center clusters, we will
cluster the ATMs’ day-of-the week seasonality values. To enhance
the detection of ATM centers with similar daily cash withdrawal
trends with seasonality effects, we discretize each ATM center’s
continuous seasonality sequence. We discretize the effect of day-
of-the-week seasonality effect and subsequently replace each
ATM center’s sequence of continuous daily seasonality parameters
by a sequence of discretized daily seasonality parameters. After all,
we want to limit the sequence alphabet in order to scale down the
differences between the ATM centers’ daily seasonality sequences
and facilitate ATM cluster detection. The alphabet size is limited
to four by using the quartiles of the “day-of-the-week” parameters
as shown in Table 1. Fig. 2 gives an example of how an ATM cen-
ter’s 2 years cash demand time series is translated into a discrete
day-of-the-week cash seasonality sequence.

This way the original 2 years cash demand time series data is
transformed into a sequence of seven discretized seasonality ef-
fects of “day-of-the-week” per ATM center. Then, we calculated
Levenshtein distance score using SAM to compare ATM centers
on the similarity on these discrete sequence of “day-of-the-week”
parameters.

4.4. Calculation of SAM scores

The elementary operations in the SAM method are insertions,
deletions and reordering. Weights may be tailored to reflect the
importance of operations and the similarity of particular elements.

The cost of reordering is given as follows:

R
COStreordering = Zn * POSeq

r=1

Table 1

Quartiles used to discretize the “day-of-the-week” seasonality parameter.
Day/quartile 1 2 3 4
Monday <0.69 0.69-0.77 0.77-0.81 >0.81
Tuesday <0.75 0.75-0.81 0.81-0.85 >0.85
Wednesday <0.95 0.95-1.03 1.03-1.08 >1.08
Thursday <1.34 1.34-1.46 1.46-1.55 >1.55
Friday <1.21 1.21-1.29 1.29-1.38 >1.38
Saturday <0.65 0.65-0.73 0.73-0.8 >0.8
Sunday <0.77 0.77-0.83 0.83-0.87 >0.87

where R is the number of reorderings and # is the reordering weight
and pos;e, is the absolute position of rth reordered element in the
source.

The cost of deletion is given by

D
COStgeletion = ZWd * Cd_e
d=1

where Wy is the weight for deletion and cq . is cost for deletion of
dth element with a certain value (i.e., element cost).
Finally, the cost of insertion is given by

1
COStinsertion = ZWI‘ * Cie

i=1

where W; is the weight for insertion; c; ¢, is the cost for insertion of
ith element with a certain value (i.e., element cost).
Then, the total SAM distance is given as follows:

R I D
SAMis = min {(Zn * posreo> + <ZW,» * ci_e) + (ZWd * Cde)}
i=1 d=1

r=1

In this paper, we set the operational cost in line with standard prac-
tice: the insertion and deletion operational costs are 1 and the reor-
dering cost is 2. To maximize the SAM distance variance, we
calculate the similarity between a pair of ATM discretized day-of-
the week trend sequences using element-sensitive deletion and
insertion costs. As the day-of-the-week parameters are discretized
in the ascending order of 1-4, their significance is reflected in the
deletion/insertion costs in the ascending order of 0.25-1.
Element-based costs

Element Del/Ins cost
1 0.25

2 0.5

3 0.75

4 1

The SAM distance is calculated using the algorithm by Hay et al.
(2003). Here is an example of how to calculate the SAM distance
for a pair of ATM centers. In the first step the longest common sub-
string is defined.

ATM Center 1 1443142
(target)
ATM Center 2 1341144
(source)
ATM Center 1 1443142
ATM Center 2 1341144

In a second step, common elements not appearing in the substring
are identified as elements that need to be reordered: elements 3
and 4.

COStreordering =2%6+2 % 2=16 for 374

where 2 is the reordering weight

ATM Center 1
ATM Center 2

1443142
1341144

In the third step unique elements in the source are deleted and un-
ique elements in target are inserted. Element 1 is to be deleted from
the source ATM center 2 and element 2 has to be inserted.
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ATM center's time series of withdrawal amounts is
replaced by a sequence of 7
day-of-the week withdrawal seasonality parameters

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

0.66 0.86 1.01 1.54 1.20 0.86 0.81
J— Temporal abstraction of "day-of-the week"
d b seasonality time-series using quartiles

Monday Tuesday Wednesday

Thursday

Sunday

Friday Saturday

Fig. 2. Schematic diagram of how each ATM center’s continuous daily cash demand time series is translated into a discrete “day-of-the-week” seasonality sequence.

CoStgeletion = 1 * (0.25) =0.25

COStinselTion =1 = (05) =05

Then, total Cost = COStreordering + COStdeletion + COSTinsertion
=16+0.25+05=16.75

4.5. Cluster analysis of Levenshtein SAM distances

We cluster the ATM centers on the Levenshtein SAM distances,
expressing how similar the ATM centers are with respect to their
day-of-the-week cash withdrawal seasonality patterns. For each
of the clusters obtained, different neural networks are built sepa-
rately for predicting the ATM withdrawal. While training each
neural network architecture for each of the clusters, the input
variables are the withdrawal amounts of past seven days (i.e. se-
ven lags). We hypothesize that a prediction model for each clus-
ter center based on SAM distances will outperform a similar
model applied on the original data. A distance matrix holding
the pairwise Levenshtein distances between ATM centers se-
quences is used as a distance measure for clustering. We apply
the Taylor-Butina cluster algorithm on this Levenshtein distance
matrix to cluster ATM centers on “day-of-the-week” seasonality
information. MacCuish, Nicolaou, and MacCuish (2001) converted
the Taylor-Butina exclusion region grouping algorithms into a
real clustering algorithm, which can be used for both disjoint or
non-disjoint (overlapping), either symmetric or asymmetric clus-
tering. Although this algorithm is designed for clustering com-
pounds (i.e., the chemi-informatics field with applications like
compound acquisition and lead optimization in high-throughput

screening), in this paper it is employed to cluster ATM centers
on “day-of-the-week” effect information.

4.6. Taylor-Butina algorithm

The Taylor-Butina algorithm is a five-step procedure described
as follows:

1. Construct the threshold nearest-neighbour table using similar-
ities in both directions.

2. Find true singletons, i.e., data points (in our case ATM centers)
with an empty nearest-neighbour list. Those elements do not
fall into any cluster.

3. Find the data point with the largest nearest neighbour list. This
point tends to be in the center of the kth (k clusters) most den-
sely occupied region of the data space. The data point together
with all its neighbours within its exclusion region, constitutes a
cluster. The data point itself becomes the representative data
point for the cluster. Remove all elements in the cluster from
all nearest-neighbour lists. This process can be seen as putting
an ‘exclusion sphere’ around the newly formed cluster (Butina,
1999).

4. Repeat step 3 until no data points exist with a nonempty near-
est-neighbour list.

5. Assign remaining data points, i.e., false singletons, to the group
that contains their most similar nearest neighbour, but identify
them as false singletons. These elements have neighbours at the
given similarity threshold criterion (e.g. all elements with a
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dissimilarity measure smaller than 0.3 are deemed similar), but
a stronger cluster representative i.e., one with more neighbours
in the list, excluding those neighbours (cluster criterion).

4.7. Forecasting using neural networks

Once the ATM centers are clustered as described above, four
neural network architectures viz., MLFF, WNN, GRNN and GMDH
are employed on the original time series data, which is rearranged
with a time lag of seven days. Thus, we wanted to test the influence
of the cash withdrawals performed during the last week on the
present day’s cash withdrawal. Therefore, past 7 days’ cash with-
drawal amounts are the input variables to predict the cash with-
drawal of the present day as follows:

Yi :f(Yi—h Yi—27 Yi—37 Yi—47 Yi—57 Yi—67 Yi—7)7
where Y; is the cash withdrawal on the ith day.

To compare the performance of the neural networks, we did not
use mean absolute percentage error (MAPE), because MAPE has the
disadvantage of becoming infinite if there are zero values in a ser-
ies. Instead, we used the Symmetric Mean Absolute Percentage Er-
ror (SMAPE) as the error measure, as this is the measure considered
in the NN5 competition by many competitors including Andrawis
et al. (2011). It is defined as:

1Y, - Yl
SMAPE = Mr;i(‘ % ‘?Ym‘)

where Y, is the actual time series value, Y‘m is the forecast, and M is
the size of the test period.

5. Neural networks employed
5.1. Wavelet neural networks

The word wavelet is due to Grossmann and Morlet (1984).
Wavelets are a class of functions used to localize a given function
in both space and scale (http://mathworld.wolfram.com/wave-
let.html). A family of wavelets can be constructed from a function
Y(x), sometimes known as a “mother wavelet,” which is confined
in a finite interval “Daughter wavelets” *P(x) are then formed
by translation (b) and dilation (a). Wavelets are especially useful
for compressing image data, since a wavelet transform has proper-
ties that are in some ways superior to a conventional Fourier trans-
form. Recently, due to the similarity between the discrete inverse
wavelet transform and a one-hidden-layer neural network, the
idea of combining both wavelets and neural networks has
emerged. This resulted in the wavelet neural network (WNN) - a
feed forward neural network with one hidden layer. Based on the
use of activation functions in the hidden nodes, there are two vari-
ants of WNN that are implemented here. They are Morlet wavelet
function and Gaussian wavelet function. Wavelet networks employ
activation functions that are dilated and translated versions of a
single function 1/:R? — R, where d is the input dimension as stated
in Zhang and Benvniste (1992) and Zhang (1997). It can dramati-
cally increase convergence speed as stated in Zhang et al. (2001).
WNN found many applications including software cost estimation
(Vinaykumar et al., 2008) and software reliability prediction (Rajki-
ran & Ravi, 2007).

5.2. Group method of data handling (GMDH)
The Group Method of Data Handling (GMDH), introduced by

Ivakhnenko (1966), is a self-organizing approach based on sort-
ing-out of gradually complicated models and evaluation of them

by external criterion on separate part of data sample. GMDH has
influenced the development of several techniques for synthesizing
(or “self-organizing”) networks of polynomial nodes. GMDH has
been applied in many fields such as predicting energy demand
(Srinivasan, 2008), predicting software reliability (Mohanty et al.,
2010b), web-services classification (Mohanty et al., 2010a), fraud
detection (Ravisankar et al., 2011) and bankruptcy prediction (Rav-
isankar & Ravi, 2010). There is little advantage in precisely estimat-
ing the parameters of a model if its basic structure (the input
variables, and their transformations and interactions) is rather ten-
tative. The GMDH offers a hierarchic solution to this problem, by
trying many simple models, retaining the best, and building on
them iteratively, to obtain a composition of functions as the model.
The building blocks (polynomial nodes) have the quadratic form

Z'=Wo + WiX1 + WaXy + W3X; + WaXj + WsX1X)

for inputs x; and x,, coefficient (or weight) vector w, and node out-
put, z. The coefficients are found by solving the Linear Regression
(LR) equations with z = y, the response vector.

The GMDH neural network develops on a data set. The data set
including independent variables (x1,X5,...,x;) and one dependent
variable y is split into a training and testing set. During the learning
process a forward multilayer neural network is developed in a ser-
ies of steps.

In these networks, the most important input variables, number
of layers, neurons in hidden layers and optimal model structure are
determined automatically. These polynomial terms are created by
using linear and non-linear regression. The initial layer is simply
the input layer. The first layer created is made by computing
regressions of the input variables and then choosing the best ones.
The second layer is created by computing regressions of the values
in the first layer along with the input variables. This means that the
algorithm essentially builds polynomials of polynomials. Again,
only the best are chosen by the algorithm. These are called survi-
vors. This process continues until a pre-specified selection criterion
is met.

5.3. Multi-layer feed forward neural network (MLFF)

MLFF is one of the most common NN structures, as they are
simple and effective, and have been employed in a wide assort-
ment of machine learning applications. MLFF starts as a network
of nodes arranged in three layers—the input, hidden, and output
layers. The input and output layers serve as nodes to buffer input
and output for the model, respectively, and the hidden layer serves
to provide a means for input relations to be represented in the out-
put. Before any data is passed to the network, the weights for the
nodes are random, which has the effect of making the network
much like a newborn’s brain—developed but without knowledge.
MLFF are feed-forward NN trained with the standard back-propa-
gation algorithm. They are supervised networks so they require a
desired response to be trained. They learn how to transform input
data into a desired response. So they are widely used for pattern
classification and prediction. A multi-layer perceptron is made up
of several layers of neurons. Each layer is fully connected to the
next one. With one or two hidden layers, they can approximate vir-
tually any input-output map. They have been shown to yield accu-
rate predictions in difficult problems (Rumelhart, 1986). Simutis
et al. (2007) successfully used a feed-forward neural network to
predict the cash demand for n-subsequent days per ATM on simu-
lated data.

5.4. Generalized regression neural network (GRNN)

Specht (1991) introduced GRNN. It can be thought of as a nor-
malized Radial Basis Function (RBF) network in which there is a
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hidden unit centered at every training case. These RBF units are
called “kernels” and are usually probability density functions such
as the Gaussian. GRNN is indeed a nonparametric regression model
discritized with the help of Parzen windows approach and imple-
mented as a feed forward neural network. The hidden-to-output
weights are just the target values, so the output is simply a
weighted average of the target values of training cases close to
the given input case. The only quantities that need to be learned
are the widths of the RBF units. These widths (often a single com-
mon width is used) are called “smoothing parameters” or “band-
widths” and are usually chosen by cross-validation or iterative
genetic algorithm. However, gradient descent is not used. GRNN
is a universal approximator for smooth functions, so it should be
able to solve any smooth function-approximation problem given
enough data. The main drawback of GRNN is that, like kernel meth-
ods in general, it suffers badly from the curse of dimensionality.
GRNN cannot ignore irrelevant inputs without major modifications
to the basic algorithm.

5.5. Neural networks based time series analysis on the entire data
without clustering

We compare the results of our present work with those of direct
neural network based time series analysis of the original data with-
out resorting to clustering the ATM centers. In this procedure, we
employed three different neural networks viz., MLFF, wavelet neu-
ral network (WNN) and GRNN and the traditional ARIMA sepa-
rately on the entire sample without resorting to clustering. The
procedure employed is as follows:

1. The NN5 dataset used in the experiments consists of a few miss-
ing values. The missing values are imputed using mean imputa-
tion technique.

2. Then, median-based deseasonalization method (Andrawis et al.,
2011) is employed to deseasonalize the data.

3. Later, four forecasting techniques Auto Regressive Integrate Moving
Averages (ARIMA) (Box and Jenkins, 1976), MLFF, WNN and GRNN
are applied to the deseasonalized data with a time lag of 7 days.

6. Results and discussions

In this work, we have used available data from NN5 Forecasting
competition, consisting of cash withdrawal of 2 years at various ATMs
at different locations in England (see Crone; 2008, and http://
www.neural-forecasting-competition.com/NN5/datasets.htm). In the
NN5 competition, the task was to forecast 111 daily time series, rep-
resenting daily cash withdrawal amounts at ATMs in various cities in
the UK. All time series have a length of 2 years, and the forecast hori-
zon is 56 days. There are few missing values in the data of ATM cash
demand sequences. These are replaced by mean imputation, i.e. the
mean values of the entire series. While employing four different neu-
ral network architectures, we tested on a range of parameters for
each of the neural network and obtained the best results for the com-
bination of parameters mentioned below. For MLP the best range of
parameters are with learning rate 0.5-0.7; momentum rate 0.02-
0.06; one hidden layer and 3-5 number of hidden nodes and maxi-
mum number of iterations as 500. For GRNN the range tested for
the smoothing parameter is 0.2-0.3. Whereas, for WNN, the best dila-
tion and translation parameter range is 0.5-1 and 2-4 respectively.

The objective is to cluster different ATM centers using the Tay-
lor-Butina’s cluster algorithm and build cluster wise forecasting
algorithms using various neural network models. We first built
time series model per each ATM center to find the parameter effect
of “day-of-the-week” (Monday, Tuesday, and Wednesday). This is
used to build the sequence for each ATM center by taking time ser-
ies seasonality parameters as sequence elements. After that, we

discretized the effect of “day-of-the-week”. Then, we created a dis-
tance score using SAM to compare this “day-of-the-week” season-
ality parameter. Later, using SAM method, a distance matrix is
constructed and consequently used as input for a cluster analysis.
Eventually, we ended up with four clusters after applying the Tay-
lor Butina’s clustering algorithm. The Taylor Butina’s algorithm
automatically determines the number of clusters unlike other algo-
rithms. Thereafter, for each of the clusters, different neural net-
works are built for the ATM withdrawal series prediction. Four
forecasting neural networks namely GRNN, MLFF, GMDH and
WNN are applied for analyzing this data.

For this method, the average SMAPE values over all clusters ob-
tained by different NN techniques are presented in Table 2. We no-
ticed very good performance from GRNN (presented in bold face in
Table 2), which yielded an average SMAPE of 18.44. The best result
of the study is yielded by GRNN with an average value of 17.67%
SMAPE for one of the clusters centers, whereas, it yielded average
SMAPE values of 18.83%, 19.38% and 17.89% for clusters 2, 3 and 4
respectively. GMDH yielded average SMAPE values of 19.56%,
20.24%, 21.63% and 19.86% for each of the clusters. As regards
MLEFF, it yielded average SMAPE values of 19.81%, 21.67%, 22.6%
and 20.33% for each of the clusters. As regards WNN, it yielded
average SMAPE values of 19.63%, 20.79%, 21.93% and 20.07% for
each of the clusters. On an average for clusters, GMDH, MLFF and
WNN vyielded average SMAPE values of 20.32%, 21.10% and
20.60% respectively. However, GRNN yielded an average SMAPE
value of 18.44% which is smaller than that of Andrawis et al.
(2011). We also noticed that the centers in the cluster 1 and 4
yielded smaller SMAPE values when compared to that of other
two clusters.

6.1. Evaluation and profiling of the ATM clusters

Clustering the ATM centers on their evolution of day-of-the
week withdrawal seasonality values identified four ATM clusters.
The clusterwise distribution of ATM centers as found by the Tay-
lor-Butina algorithm is presented in Table 4. Cluster 1 has the
highest number of ATM centers in it and the rest have almost the
same number of ATM centers in them.

The statistical quality of the clustering is reflected by the lower
standard deviation for the day-of-the week seasonality parameters
within the clusters (row 5 onwards in Table 5) than for the total
sample of ATM centers (row 2 in Table 5). Only for ATM cluster 2
the standard deviation on the Wednesday to Saturday seasonality
parameters exceeds the total sample standard deviation on these
seasonality parameters. In general, clustering the ATM centers on
their evolution of day-of-the week withdrawal seasonality patterns
reduces the variance on the withdrawal seasonality parameters.
The smaller within-cluster variance signals the benefit of predict-
ing the withdrawal amount within each ATM cluster as in our re-
search approach.

Before profiling the different ATM clusters, we first investigate the
evolution of the withdrawal seasonality parameters for all ATM ma-
chines. Fig. 3 shows the median day-of-the week cash withdrawal
seasonaity parameters for all ATM machines and for each ATM cluster
using the continuous trend data. All ATM centers start with a lower

Table 2

Results of the proposed approach.
Cluster MLFF WNN GRNN GMDH
Cluster 1 (45) 19.81 19.63 17.67 19.56
Cluster 2 (21) 21.67 20.79 18.83 20.24
Cluster 3 (22) 22.6 21.93 19.38 21.63
Cluster 4 (23) 20.33 20.07 17.89 19.86
Average 21.10 20.60 18.44 20.32
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withdrawal amount on Monday, cash demand increases slightly on
Tuesday and Wednesday, with a maximum cash demand on Thurs-
day, followed by a slight decrease in demand on Friday, dropping fur-
ther to lower cash demand similar to Mondays and Tuesdays on
Saturday and Sunday. The withdrawal amount on Wednesday repre-
sents an average day. The cash withdrawal amount is lower on Mon-
days, Tuesdays, Saturdays and Sundays. Higher withdrawal amounts
are observed for Thursday and Friday. The variation in cash with-
drawal seasonlity value is highest on Thursday, Friday and Saturday
(see bold faced numbers in Table 5).

The four ATM clusters show a pattern of the median day-of-the-
week seasonality values that is similar to that of the total sample.
Especially ATM cluster 1 closely follows the total sample pattern.
However, the four ATM clusters do differ from the total sample
in two ways. First, ATM cluster 3 does not have a peak in cash with-
drawal on Thursday but on Friday. Second, the four ATM clusters
do deviate from the total sample in the absolute size of the season-
ality parameters. The latter is clearly reflected in Fig. 3 by the larger
spread of the cluster seasonality parameters around the total sam-
ple parameter on Thursday, Friday and Saturday. The clustering
handles the larger deviation on Thursday, Friday and Saturday
and hence the clusterwise cash demand predictive model actually
resulted in better predictions than a total sample predictive model.
This is evident from Table 3, where the entire sample was analyzed
using three neural networks viz., MLFF, WNN and GRNN and the
traditional ARIMA approach. The best SMAPE value of the approach
is 23.16 yielded by GRNN (presented in bold face in Table 3), much
higher than 18.44, which again is yielded by GRNN in the proposed
approach. Moreover, clusterwise predictions did yield considerably
smaller SMAPE values in the case of MLFF and WNN also compared
to the total sample approach. ARIMA approach did yield the worst
result in the traditional approach of direct prediction on the entire
sample without clustering.

Table 6 and Fig. 4 are used to profile the different ATM clusters.
Table 6 shows which ATM cluster has the lowest median seasonal-
ity parameter and which ATM cluster has the highest median sea-
sonality parameter. The numbers in parentheses indicate how
much lower (row 3) or higher (row 4) the cluster’s median day-
of the-week seasonality parameter is compared to the total sam-
ple’s median seasonality parameter (row 2). For example, ATM
cluster 2’s Monday seasonality parameter is the highest, being
13% larger than the total sample’s Monday seasonality parameter.
Fig. 4 represents a correspondence map on the median day-of-the
week seasonality parameters for the four ATM clusters. The map
shows the relationship between the ATM clusters and the effect
of a particular day-of-the week on the withdrawal behavior. Mon-
day, Tuesday and Sunday are close to each other in line with the
shared lower withdrawal trends for these days. ATM cluster 2 is
close to these days and to Saturday too, corresponding to the max-
imum day-of-the-week seasonality parameters for cluster 2 for
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Fig. 3. Median day-of the week seasonality parameters for the four ATM clusters
and for the total sample.

Table 3

Results of the neural network based time series analysis on the entire sample.
Model SMAPE%
ARIMA 27.76
MLFF 23.87
WNN 23.33
GRNN 23.16

Monday, Tuesday, Saturday and Sunday. ATM cluster 3 is close to
Friday, due to cluster 3 being the only segment with a peak in
withdrawal trend on Friday rather than Thursday. ATM cluster 4
is close to Wednesday and Thursday as this cluster has the highest
withdrawal trends for these two days.

Other interesting observations include:

(1) All ATM clusters follow the total-sample succession of day-
of-the-week seasonality parameters. We do not really find
a cluster that only has large withdrawal amounts in the
weekend and another ATM cluster only having large with-
drawal amounts during the week.

(2) All ATM clusters have small day-of-the week seasonality
parameters on Saturday.

(3) The SAM + clustering reduces the variation on the seasonal-
ity parameters which probably leads to better cash demand
predictions for Thursday, Friday and Saturday (largest stan-
dard deviation for these days in total sample) than a total
sample model.

Table 4

Cluster distribution of the ATM centers.
Cluster ATM Cluster ATM Cluster ATM Cluster ATM
# Center # Center # Center # Center

# # # #

1 1 1 80 3 6 4 3
1 7 1 96 3 8 4 4
1 10 1 99 3 17 4 5
1 11 1 100 3 26 4 15
1 12 1 105 3 36 4 16
1 13 1 108 3 56 4 18
1 14 1 74 3 57 4 19
1 21 1 76 3 58 4 23
1 22 3 59 4 29
1 24 2 2 3 61 4 30
1 25 2 20 3 69 4 33
1 27 2 60 3 73 4 35
1 28 2 67 3 75 4 41
1 31 2 68 3 81 4 42
1 32 2 71 3 85 4 52
1 34 2 77 3 86 4 79
1 38 2 78 3 91 4 82
1 39 2 84 3 92 4 83
1 40 2 93 3 98 4 87
1 43 2 94 3 102 4 90
1 44 2 95 3 106 4 104
1 45 2 97 3 107 4 109
1 46 2 103 4 111
1 47 2 110
1 48 2 9
1 49 2 37
1 50 2 64
1 51 2 88
1 53 2 89
1 54 2 101
1 55
1 62
1 63
1 65
1 66
1 70
1 72
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Table 5
The ATM clusters have smaller standard deviation on the day-of-the week seasonality parameters except for cluster 2 Wednesday to Saturday (shown in italics).
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
median 0.77 0.81 1.03 1.46 1.29 0.73 0.84
std 0.10 0.08 0.10 0.16 0.19 0.15 0.10
rank 5 7 4 2 1 3 6
ATM cluster 1 0.05 0.06 0.08 0.08 0.07 0.08 0.05
ATM cluster 2 0.08 0.08 0.12 0.17 0.23 0.23 0.09
ATM cluster 3 0.07 0.06 0.06 0.10 0.07 0.10 0.04
ATM cluster 4 0.05 0.07 0.08 0.07 0.08 0.10 0.04
Table 6
Profiling ATM clusters based on median seasonality parameters?.
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Overall 6 5 3 1 2 7 4
Median 0.78 0.82 1.05 1.48 1.30 0.74 0.85
Lowest Cluster4 (—14%) Cluster4 (—8%) Cluster 3 (—7%) Cluster 2 (—12%) Cluster 2 (—13%) Cluster 3 (—20%) Cluster 4 (—-11%)
Highest Cluster 2 (13%) Cluster 2 (+9%) Cluster 4 (+10%) Cluster 4 (+13%) Cluster 3 (+19%) Cluster 2 (+13%) Cluster 2 (+13%)

2 For example, ATM cluster 2’s median Monday seasonality parameter is the highest, being 13% larger than the total sample’s Monday seasonality parameter.

* ATM Cluster 4
L 4
L 4 *
ATM Cluster 2
ATM Cluster 1
*
*
¢ *
L 4
ATM Cluster 3
* *

Fig. 4. Correspondence map showing the relationship between ATM clusters and
median day-of-the week seasonality parameters. (The map shows the relationship
between the ATM clusters and the days of the week. For example, ATM cluster 3 is
close to Friday, due to cluster 3 being the only cluster with a peak in withdrawal on
Friday rather than Thursday.)

Thus, the chief advantage of clustering the ATM centers first is
to look for groups of ATM centers which are similar in the with-
drawal pattern. The initial phase of clustering the similar ATM cen-
ters reduces the computational task in forecasting phase and also
helps the bank’s top management to design similar cash replenish-
ment plans for all the ATM centers falling under the same cluster,
thereby potentially saving huge operational costs. Thus, separate
models need not be developed for each of the ATM centers. This
is a significant outcome of the present study.

7. Conclusions

The primary objective of the paper is to cluster different ATM
centers using the Taylor-Butina’s clustering algorithm and build
cluster-wise forecasting models using neural networks. The best
result of the study, an average SMAPE value of 18.44% is yielded
by GRNN. This result is better than the result of Andrawis et al.
(2011). The initial phase of clustering the similar ATM centers re-
duces the computational task in the forecasting phase thereby
improving cash demand predictions. Further, the proposed
approach of clustering followed by prediction yielded much
smaller SMAPE values than the traditional approach of direct pre-
diction on the entire sample without clustering. From a managerial

perspective, identifying ATM clusters with similar daily cash de-
mand trends helps the bank’s top management to design similar
cash replenishment plans for all the ATM centers falling under
the same cluster. This segment-level replenishment plans could re-
sult in saving huge operational costs for ATM centers operating in a
similar geographical region. For a financial-services institution
having ATM centers operating in very different geographical
regions, such huge cost savings could also be realized if the ATM
segment-level cash replenishment plan is applied within opera-
tionally meaningful regions. That is ATM clusters with similar
day-of-the week cash demand patterns are defined within each
operationally meaningful region.
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