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single organization. Eucalyptus, OpenNebula, Openstack etc are example of private cloud those offered the similar 
advantages to public cloud. A hybrid cloud is combination of two or more than two public and private cloud which 
are bounded by service level agreement (SLA). User can send the request at any time from any geographical location 
for services, SLA selects the best resource within user defined deadline and budget. Elastic resource provisioning 
with quality of service (QoS) parameter (deadline, high availability, priority etc.) is one of the most challenging 
problem in the field of cloud computing. Therefore cloud service provider needs an efficient load balancing 
algorithm that reduces the makespan time as well as task rejection ratio within user defined deadline. 
In the last few years, maximum company are trying to achieve the scalability in terms of platform, application and 
infrastructure level. Scalability is an important feature in cloud computing and can be divided into two part one is 
scale up other is scale out [2]. Scale up is also called vertical scalability and scale out is also called horizontal 
scalability. In this paper, we are using the horizontal scaling approach based upon the workload prediction with the 
help of user defined threshold at the time of service level agreement (SLA).  
The reminder of the article is organized as follows: Section 2 describes the related work which is related to our 
research work such as existing scheduling & load balancing technique with virtual machine provisioning and 
deprovisioning, Section 3 we will discuss the proposed architecture and its components, section 4 problem 
formulation and proposed scheduling algorithm with elasticity, further section 5 is for analyze and comparison of 
experimental results and Section 6 conclusion.  

2. Related Work 

There are lot of algorithm have been proposed for load balancing and scalability of cloud resource in last decade.  
E.Coninck et al. proposed a dynamic auto scaling algorithm that reduces the execution time and makespan time of 
upcoming requests (application/task) considering the deadline as a constraint using the Openstack and cloudsim as a 
simulator [3]. M. Kumar and S.C Sharma [4] proposed an algorithm that not only reduce the makespan time of tasks 
but also increase the utilization ratio of the task considering the priority of tasks as quality of services parameter. 
F.Juarez proposed a dynamic energy aware scheduling algorithm that reduces the makespan time and energy using 
the private cloud as a tool for implementation [5]. In this paper, find out the makespan and energy consumption for 
results but integration of both parameters doesn’t give optimal results i.e. one parameter at a time because trade-off 
occur between time and energy. Ye Feng et al., proposed a dynamic load balancing algorithm that reduce the task 
completion time and load balancing degree [6]. S. Abrishami, M. Naghibzadeh develop an algorithm for SaaS and 
IaaS that reduce the parameter cost and execution time where deadline as a constraint and java based simulator is 
used to implement the algorithm[7][8]. Proposed algorithm is implemented on Java based simulator that does not 
give the guarantee of cloud environment. The most important problem in the real environment is the inaccuracy of 
the estimated execution and transmission times. R.Naha, M.Othman and T.Somasundaram proposed broker based 
architecture for task scheduling and elasticity in cloud environment using cloud analyst and eucalyptus as a tool for 
implementation [9][10]. 
 Li Xiaofang et al. [11] proposed an improved max-min algorithm for elastic cloud that monitor the load at virtual 
machine continuously. Proposed algorithm allocate the task to running virtual machine in such a way that it can 
improve the response time of tasks and resource utilization ratio. Coutinho et al. Analyze the elasticity behaviour in 
cloud computing [12] using the parameter response time and utilization of cpu. Further author's define the over 
provisioning and under provisioning condition in elasticity. Al-Dhuraibi, Yahya, et al. Review all the existing 
classical and recent elasticity solutions [13]. Author’s compared the horizontal vs. vertical scalability pros and cons. 
Further they discuss the classification of elasticity mechanism, performance evolutions tools and elasticity solution 
in details.  Galante et al. [14] present a comprehensive study of elasticity including the classification mechanism 
based upon the commercial and academic solutions in cloud environment. Some challenges and open issues which 
are associated with the use of elasticity concept are also discussed by the author’s in this paper. Hu, Yazhou, et al. 
[15] discussed the elasticity concept and proposed a linear regression model to predict the upcoming workload in 
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cloud environment. Cloud resources are scaling based upon the predicted workload in this paper.  

3. Proposed Architecture 

 The proposed cloud architecture for resource provisioning and deprovisioning with load balancing is shown in 
Figure1. 
Job Request Handler It is work at software as a service level cloud platform. User submit the task request T�, 
T�…T�  either graphical user interface or command line for service in the form of  hardware, software etc. 
considering quality of service (QoS) parameter like deadline, priority, elasticity, availability etc.  all the request 
(tasks) are checked by job request handler (gatekeeper) using Turing test and determine upcoming request is coming 
from legitimate user or not. 

 
Figure 1 Cloud architecture for resource provisioning and deprovisioning 

 
Controller Node or Scheduler This node is used to provide the interaction between SaaS and IaaS. Scheduler checks 
the quality of service parameter of request (task is deadline or priority based) and user required parameter like 
makespan time, execution time, cost, energy efficiency before assigned the tasks to cloud resource. After that 
scheduler schedule the task based upon the scheduling algorithm. 
Workload analyzer and Elastic Load Balancer (ELB) The main aim of workload analyzer is to look at different 
characteristics of cloud workload like high computational workload and description of workload. ELB starts to 
monitor the virtual machine to find out the status of virtual machine (overloaded or underloaded conditions).  
Cloud Resource Provisioning and deprovisioning (CRP and CRDP) The main objective of CRP is creation and 
deletion of virtual machine as per application (job) requirement that provides the better resource utilization and 
potential cost saving. Amazon cloud watch is available for scale up or scale down the resources in AWS cloud.   
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4. Problem Formulation and Proposed Algorithm 

4.1 Problem formulation 

 To schedule all the upcoming workload in such a ways that cloud user can execute their task in minimum time 
considering deadline as constraint. Job request handler received N number of independent task request with task 
length (����) and deadline of task is�����. Every task need processor speed ��, number of cpu ��, RAM �� and 
bandwidth B in mbps. There are m heterogeneous running virtual machine��� , ��… ��  in cloud environment. 
Scheduler try to map each task �� to virtual machine��, if a resource �� is match with task Ti then value of decision 
variable ���� is 1 otherwise its value is 0. 
Execution time of tasks Ti at a particular virtual machine is ���� =����/�� *��                 (1) 
When user submits the task to cloud resource with deadline, its completion time is depend that how much workload 
is available on that resource. The time required to complete the task on available cloud resource is expressed in 
equation 2.                                                                             ����= ���� – ����                 (2) 
Where ����  represent the available workload at the resource ��  before allocated the task ��  and ����  is the 
available remaining time to complete the allocated task ��  at resource�� . This remaining time (����) should be 
greater than or equal to task execution time.                     ���� ≤  ���                             (3)                                                
 Execution time of virtual machine where tasks are executing in minimum time 
                                                                                   ����=min ∑ ������  *����         (4)                                  
                                                                 makespan time �������=max ∑ ������               (5)    

4.2 Proposed algorithm: 

We developed a load balancing algorithm whose objective is to reduce the makespan time and task rejection ratio in 
cloud environment. We have created N number of task with different length (20000 to 400000 MI) and m number of 
virtual machine. Sort the task based on deadline (algorithm step 1 to 4). Some tasks have execution time more than 
their deadline. These types of tasks are discarded in cloud environment, if more tasks are discarded then 
performance start to degrade. Therefore developed algorithm balanced the load at all VM and increase the ratio of 
task meet with deadline using the elasticity concept (provisioning and deprovisioning of resources) as shown in 
algorithm 1. Firstly calculate the number of task unable to meet deadline in each interval after that average of  

Algorithm 1 for Load Balancing with resource provisioning and deprovisioning 
# DL[i] deadline array and T[i] task array 
1.  ∀i€ DL[i] 
2.  ∀j€  i+1 to DL[i],    if (DL[j]<DL[i])                           # if condition is true go to step 3&4 
3.  Swap DL[j] with DL[i]   
4.  Swap T[j] with T[i]                                                       #  otherwise j=j+1 
UVM =under loaded virtual machine,  OVM =overloaded virtual machine ,  TotalTask=N,    
 ���� = number of rejected task in a interval,   �����= avg. number of task unable to meet deadline  
5.  Start the loop for Task 0 to N-1  
6.  Start loop for virtual machine 0 to m-1                          # start to allocate the tasks  
7.  EPT[j]=����/�� *��      #EPT is expected processing time,    End the for loop of virtual machine 
8.  Calculate the makespan time based on deadline 
         For j=1 to  m                                                               EPT[j]=EPT[j]+MET[j];
       # EPT[j] array represent the makespan time of task      End for loop of VM 
9.   Find the minimum value  of EPT[] ,               
10.   Compare the deadline of task with calculated execution time 
11.   If(����>min EPT)  then Assigned the task to VM.      End for loop of VM;      
               Otherwise ���� ++;                                                 End for loop of Tasks 
12.  Start Task and VM for loop 
13.  Load increase at resource �� after task assignment                             
          ���=  ���+ ����                
14.  Calculate the  ����� in last z iteration   
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rejected task ( ) in last z interval is calculated and apply the user defined threshold conditions as per SLA. If 
value of  is more than or equal to the value of 30% of total tasks then add new VM 20%. If value of  is 
more than 10% of total tasks then add 10% new VM. If  is less than or equal to10% then there is no need to 
add the new VM. Therefore calculate the parameter  that is based upon recent (last) z interval. Further 
calculate the overloaded and underloaded VM after assigning the task to virtual machine based upon the defined 
threshold value and capacity of VMs. A VM is in overloaded mode if they utilize their capacity more than or equal 
to 90% and underloaded if utilize their capacity less than 20%. If any virtual machine is overloaded or under loaded 
condition then sorts VM in decreasing and increasing order and transfer the task from OVM to UVM. If average of 
under loaded virtual machine is greater than the 30 % of all available virtual machine then decrease the virtual 
machine 20 % for next interval. If it is more than 10%  then decrease the virtual machine 10% for next interval 
shown in algorithm step 17to 20. 
 
5. Analysis and Comparison of Experimental Results 
 
We proposed and implement the load balancing algorithm for minimize the makespan time and increase the ratio of 
task to meet deadline using the cloudsim platform.  

5.1 Makespan Time Calculations  

We run the simulation more than one hour (approximate 100 times) on different number of task with random length 
cloudlet (tasks) and calculate the result using the space shared policy in cloudsim. Consider 10 virtual machine with 
bandwidth 1000 mbps, number of cpu for each virtual machine is 1. Consider the range of task is 10 to 30 at 10 
virtual machine, 20 to 50 at 20 virtual machine and 100 tasks at 30 virtual machine, length of task is varying from 
20000MI to 400000 MI. Computational results shows that proposed algorithm reduce the makespan time compared 
to FCFS, SJF and Min-Min algorithm as shown in Table 1.  

  
                                                               Table 1 makespan time comparison 
 
 
 
 
 
 

 
 

 
 
 
 

15.  If (  >=N *.30),                                                    Increase VM by 20%. 
       Else If (  > N * .1)                                                Increase VM by 10%. 
       Else (  ≤ N * .1)       No need to increase the VM,  End of for loop;     End of for loop 
16.  Calculate  UVM and OVM  and sort the VM increasing and decreasing order 
17.  Calculate the  in last z iterations 
18.  If ( >.3* ),                                                  Reduce 20% VM of total running VM. 
         Else If ( > .1* ),                                       Reduce 10% VM of total running VM 
         Else ( ≤ .1* )                                           No need to reduce the running VM,     
19.  End for loop;                                                             End for loop 

Task Virtual machine FCFS SJF Min-Min Proposed algorithm 
10 10 736 779 755 580 
15 10 1081 830 784 603 

20 10 1249 850 836 795 
30 10 1486 1244 1147 1013 

20 20 544 521 497 451 
30 20 844 712 656 597 

40 20 1061 898 824 752 

50 20 1259 1084 1046 916 

100 30 1489 1138 1058 970 
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