
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 125 (2018) 717–724

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th International Conference on Smart Computing and Communications
10.1016/j.procs.2017.12.092

10.1016/j.procs.2017.12.092 1877-0509

1877-
Peer-
Com

El

Abst

Ther
the e
meet
(Tab
10%

© 20
Peer-
Com

Keyw

1. In

C
serv
like
clou
elast
offer

* C
E

-0509 © 2018 Th
-review under r

mmunications.

6th Interna

astic and

tract

re are many loa
elasticity with lo
t to deadline an
le 1 & Figs. 2-
compare to mi

018 The Author
-review under r

mmunications.

words: scalability,

ntroduction

Cloud computi
ices (either in
as software a

ud are public,
tic compute c
red the servic

Corresponding au
-mail address: mo

A

he Authors. Publis
responsibility o

ational Conf

d flexibl

M

ad balancing alg
oad balancing.
nd provides an
-5) shows that
n-min algorithm

rs. Published by
responsibility o

, makespan time,

ing is an inte
n the form of s
as a service, st

private and hy
cloud, Google
es either pay

uthor: Tel. +91-9
ohit05cs33@gma

Available onlin

Scie
Procedia Comp

shed by Elsevier
f the scientific

ference on S
Decem

le deadli
C

Mohit Kuma
aR

gorithm has bee
We proposed a
elasticity mech
develop algori

m, 30% compar

y Elsevier B.V.
f the scientific

virtual machine,

ernet based co
software or ha
torage as a ser
ybrid. Public

e appEngine, W
per use basis

759950380
ail.com

ne at www.scie

enceDir
puter Science 00 (

B.V.
committee of th

Smart Comp
mber 2017, K

ne const
Cloud Co
ara*, Kalka
Research Scholar

a,bProfessor, IIT

en proposed for
a cloud architec
hanism with the
ithm decrease t
re to First come

committee of th

elasticity, task sc

omputing tech
ardware) to th
rvice, infrastr
cloud service
Window azur
or free. Priva

encedirect.com

rect

(2018) 000–000

he 6th Internati

puting and C
Kurukshetra

traint loa
omputin
Dubeyb, S

r, IIT Roorkee, ind
T Roorkee, India

r cloud comput
ture that is capa
e help of thresh
the makespan t
e first serve (FC

he 6th Internati

cheduling;

hnology in the
he users on the
ructure as a se
s are available

re service plat
ate cloud is us

m

onal Conferenc

Communica
a, India

ad Balan
ng
S.C.Sharma

dia

ting in last deca
able of handlin
hold based trig
ime and enhan

CFS) and shorte

onal Conferenc

e field of com
e basis of pay
ervice etc.[1] a
e for general p
tform etc are
sed for person

www.elsevier.

ce on Smart Com

ations, ICSC

ncing alg

aa,b

ade but none o
ng the maximum
ger strategy. C

nce task accepta
est job first (SJF

ce on Smart Com

mputer science
per use. It pr

and three dep
public over the
examples of

nal use or prov

.com/locate/proce

mputing and

CC 2017, 7-

gorithm

f algorithm pro
m user request b
Computational r
ance ratio more
F) in all conditio

mputing and

e that provide
ovides the ser
loyment mod
e internet. Am
public cloud

vides the serv

edia

-8

for

ovides
before
results
e than
on.

es the
rvices
els of

mazon
those
ice to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.12.092&domain=pdf

718	 Mohit Kumar et al. / Procedia Computer Science 125 (2018) 717–7242 Mohit Kumar/ Procedia Computer Science 00 (2018) 000–000

single organization. Eucalyptus, OpenNebula, Openstack etc are example of private cloud those offered the similar
advantages to public cloud. A hybrid cloud is combination of two or more than two public and private cloud which
are bounded by service level agreement (SLA). User can send the request at any time from any geographical location
for services, SLA selects the best resource within user defined deadline and budget. Elastic resource provisioning
with quality of service (QoS) parameter (deadline, high availability, priority etc.) is one of the most challenging
problem in the field of cloud computing. Therefore cloud service provider needs an efficient load balancing
algorithm that reduces the makespan time as well as task rejection ratio within user defined deadline.
In the last few years, maximum company are trying to achieve the scalability in terms of platform, application and
infrastructure level. Scalability is an important feature in cloud computing and can be divided into two part one is
scale up other is scale out [2]. Scale up is also called vertical scalability and scale out is also called horizontal
scalability. In this paper, we are using the horizontal scaling approach based upon the workload prediction with the
help of user defined threshold at the time of service level agreement (SLA).
The reminder of the article is organized as follows: Section 2 describes the related work which is related to our
research work such as existing scheduling & load balancing technique with virtual machine provisioning and
deprovisioning, Section 3 we will discuss the proposed architecture and its components, section 4 problem
formulation and proposed scheduling algorithm with elasticity, further section 5 is for analyze and comparison of
experimental results and Section 6 conclusion.

2. Related Work

There are lot of algorithm have been proposed for load balancing and scalability of cloud resource in last decade.
E.Coninck et al. proposed a dynamic auto scaling algorithm that reduces the execution time and makespan time of
upcoming requests (application/task) considering the deadline as a constraint using the Openstack and cloudsim as a
simulator [3]. M. Kumar and S.C Sharma [4] proposed an algorithm that not only reduce the makespan time of tasks
but also increase the utilization ratio of the task considering the priority of tasks as quality of services parameter.
F.Juarez proposed a dynamic energy aware scheduling algorithm that reduces the makespan time and energy using
the private cloud as a tool for implementation [5]. In this paper, find out the makespan and energy consumption for
results but integration of both parameters doesn’t give optimal results i.e. one parameter at a time because trade-off
occur between time and energy. Ye Feng et al., proposed a dynamic load balancing algorithm that reduce the task
completion time and load balancing degree [6]. S. Abrishami, M. Naghibzadeh develop an algorithm for SaaS and
IaaS that reduce the parameter cost and execution time where deadline as a constraint and java based simulator is
used to implement the algorithm[7][8]. Proposed algorithm is implemented on Java based simulator that does not
give the guarantee of cloud environment. The most important problem in the real environment is the inaccuracy of
the estimated execution and transmission times. R.Naha, M.Othman and T.Somasundaram proposed broker based
architecture for task scheduling and elasticity in cloud environment using cloud analyst and eucalyptus as a tool for
implementation [9][10].
 Li Xiaofang et al. [11] proposed an improved max-min algorithm for elastic cloud that monitor the load at virtual
machine continuously. Proposed algorithm allocate the task to running virtual machine in such a way that it can
improve the response time of tasks and resource utilization ratio. Coutinho et al. Analyze the elasticity behaviour in
cloud computing [12] using the parameter response time and utilization of cpu. Further author's define the over
provisioning and under provisioning condition in elasticity. Al-Dhuraibi, Yahya, et al. Review all the existing
classical and recent elasticity solutions [13]. Author’s compared the horizontal vs. vertical scalability pros and cons.
Further they discuss the classification of elasticity mechanism, performance evolutions tools and elasticity solution
in details. Galante et al. [14] present a comprehensive study of elasticity including the classification mechanism
based upon the commercial and academic solutions in cloud environment. Some challenges and open issues which
are associated with the use of elasticity concept are also discussed by the author’s in this paper. Hu, Yazhou, et al.
[15] discussed the elasticity concept and proposed a linear regression model to predict the upcoming workload in

 Mohit Kumar/ Procedia Computer Science 00 (2018) 000–000 3

cloud environment. Cloud resources are scaling based upon the predicted workload in this paper.

3. Proposed Architecture

 The proposed cloud architecture for resource provisioning and deprovisioning with load balancing is shown in
Figure1.
Job Request Handler It is work at software as a service level cloud platform. User submit the task request T�,
T�…T� either graphical user interface or command line for service in the form of hardware, software etc.
considering quality of service (QoS) parameter like deadline, priority, elasticity, availability etc. all the request
(tasks) are checked by job request handler (gatekeeper) using Turing test and determine upcoming request is coming
from legitimate user or not.

Figure 1 Cloud architecture for resource provisioning and deprovisioning

Controller Node or Scheduler This node is used to provide the interaction between SaaS and IaaS. Scheduler checks
the quality of service parameter of request (task is deadline or priority based) and user required parameter like
makespan time, execution time, cost, energy efficiency before assigned the tasks to cloud resource. After that
scheduler schedule the task based upon the scheduling algorithm.
Workload analyzer and Elastic Load Balancer (ELB) The main aim of workload analyzer is to look at different
characteristics of cloud workload like high computational workload and description of workload. ELB starts to
monitor the virtual machine to find out the status of virtual machine (overloaded or underloaded conditions).
Cloud Resource Provisioning and deprovisioning (CRP and CRDP) The main objective of CRP is creation and
deletion of virtual machine as per application (job) requirement that provides the better resource utilization and
potential cost saving. Amazon cloud watch is available for scale up or scale down the resources in AWS cloud.

	 Mohit Kumar et al. / Procedia Computer Science 125 (2018) 717–724� 7192 Mohit Kumar/ Procedia Computer Science 00 (2018) 000–000

single organization. Eucalyptus, OpenNebula, Openstack etc are example of private cloud those offered the similar
advantages to public cloud. A hybrid cloud is combination of two or more than two public and private cloud which
are bounded by service level agreement (SLA). User can send the request at any time from any geographical location
for services, SLA selects the best resource within user defined deadline and budget. Elastic resource provisioning
with quality of service (QoS) parameter (deadline, high availability, priority etc.) is one of the most challenging
problem in the field of cloud computing. Therefore cloud service provider needs an efficient load balancing
algorithm that reduces the makespan time as well as task rejection ratio within user defined deadline.
In the last few years, maximum company are trying to achieve the scalability in terms of platform, application and
infrastructure level. Scalability is an important feature in cloud computing and can be divided into two part one is
scale up other is scale out [2]. Scale up is also called vertical scalability and scale out is also called horizontal
scalability. In this paper, we are using the horizontal scaling approach based upon the workload prediction with the
help of user defined threshold at the time of service level agreement (SLA).
The reminder of the article is organized as follows: Section 2 describes the related work which is related to our
research work such as existing scheduling & load balancing technique with virtual machine provisioning and
deprovisioning, Section 3 we will discuss the proposed architecture and its components, section 4 problem
formulation and proposed scheduling algorithm with elasticity, further section 5 is for analyze and comparison of
experimental results and Section 6 conclusion.

2. Related Work

There are lot of algorithm have been proposed for load balancing and scalability of cloud resource in last decade.
E.Coninck et al. proposed a dynamic auto scaling algorithm that reduces the execution time and makespan time of
upcoming requests (application/task) considering the deadline as a constraint using the Openstack and cloudsim as a
simulator [3]. M. Kumar and S.C Sharma [4] proposed an algorithm that not only reduce the makespan time of tasks
but also increase the utilization ratio of the task considering the priority of tasks as quality of services parameter.
F.Juarez proposed a dynamic energy aware scheduling algorithm that reduces the makespan time and energy using
the private cloud as a tool for implementation [5]. In this paper, find out the makespan and energy consumption for
results but integration of both parameters doesn’t give optimal results i.e. one parameter at a time because trade-off
occur between time and energy. Ye Feng et al., proposed a dynamic load balancing algorithm that reduce the task
completion time and load balancing degree [6]. S. Abrishami, M. Naghibzadeh develop an algorithm for SaaS and
IaaS that reduce the parameter cost and execution time where deadline as a constraint and java based simulator is
used to implement the algorithm[7][8]. Proposed algorithm is implemented on Java based simulator that does not
give the guarantee of cloud environment. The most important problem in the real environment is the inaccuracy of
the estimated execution and transmission times. R.Naha, M.Othman and T.Somasundaram proposed broker based
architecture for task scheduling and elasticity in cloud environment using cloud analyst and eucalyptus as a tool for
implementation [9][10].
 Li Xiaofang et al. [11] proposed an improved max-min algorithm for elastic cloud that monitor the load at virtual
machine continuously. Proposed algorithm allocate the task to running virtual machine in such a way that it can
improve the response time of tasks and resource utilization ratio. Coutinho et al. Analyze the elasticity behaviour in
cloud computing [12] using the parameter response time and utilization of cpu. Further author's define the over
provisioning and under provisioning condition in elasticity. Al-Dhuraibi, Yahya, et al. Review all the existing
classical and recent elasticity solutions [13]. Author’s compared the horizontal vs. vertical scalability pros and cons.
Further they discuss the classification of elasticity mechanism, performance evolutions tools and elasticity solution
in details. Galante et al. [14] present a comprehensive study of elasticity including the classification mechanism
based upon the commercial and academic solutions in cloud environment. Some challenges and open issues which
are associated with the use of elasticity concept are also discussed by the author’s in this paper. Hu, Yazhou, et al.
[15] discussed the elasticity concept and proposed a linear regression model to predict the upcoming workload in

 Mohit Kumar/ Procedia Computer Science 00 (2018) 000–000 3

cloud environment. Cloud resources are scaling based upon the predicted workload in this paper.

3. Proposed Architecture

 The proposed cloud architecture for resource provisioning and deprovisioning with load balancing is shown in
Figure1.
Job Request Handler It is work at software as a service level cloud platform. User submit the task request T�,
T�…T� either graphical user interface or command line for service in the form of hardware, software etc.
considering quality of service (QoS) parameter like deadline, priority, elasticity, availability etc. all the request
(tasks) are checked by job request handler (gatekeeper) using Turing test and determine upcoming request is coming
from legitimate user or not.

Figure 1 Cloud architecture for resource provisioning and deprovisioning

Controller Node or Scheduler This node is used to provide the interaction between SaaS and IaaS. Scheduler checks
the quality of service parameter of request (task is deadline or priority based) and user required parameter like
makespan time, execution time, cost, energy efficiency before assigned the tasks to cloud resource. After that
scheduler schedule the task based upon the scheduling algorithm.
Workload analyzer and Elastic Load Balancer (ELB) The main aim of workload analyzer is to look at different
characteristics of cloud workload like high computational workload and description of workload. ELB starts to
monitor the virtual machine to find out the status of virtual machine (overloaded or underloaded conditions).
Cloud Resource Provisioning and deprovisioning (CRP and CRDP) The main objective of CRP is creation and
deletion of virtual machine as per application (job) requirement that provides the better resource utilization and
potential cost saving. Amazon cloud watch is available for scale up or scale down the resources in AWS cloud.

720	 Mohit Kumar et al. / Procedia Computer Science 125 (2018) 717–7244 Mohit Kumar/ Procedia Computer Science 00 (2018) 000–000

4. Problem Formulation and Proposed Algorithm

4.1 Problem formulation

 To schedule all the upcoming workload in such a ways that cloud user can execute their task in minimum time
considering deadline as constraint. Job request handler received N number of independent task request with task
length (����) and deadline of task is�����. Every task need processor speed ��, number of cpu ��, RAM �� and
bandwidth B in mbps. There are m heterogeneous running virtual machine��� , ��… �� in cloud environment.
Scheduler try to map each task �� to virtual machine��, if a resource �� is match with task Ti then value of decision
variable ���� is 1 otherwise its value is 0.
Execution time of tasks Ti at a particular virtual machine is ���� =����/�� *�� (1)
When user submits the task to cloud resource with deadline, its completion time is depend that how much workload
is available on that resource. The time required to complete the task on available cloud resource is expressed in
equation 2. ����= ���� – ���� (2)
Where ���� represent the available workload at the resource �� before allocated the task �� and ���� is the
available remaining time to complete the allocated task �� at resource�� . This remaining time (����) should be
greater than or equal to task execution time. ���� ≤ ��� (3)
 Execution time of virtual machine where tasks are executing in minimum time
 ����=min ∑ ������ *���� (4)
 makespan time �������=max ∑ ������ (5)

4.2 Proposed algorithm:

We developed a load balancing algorithm whose objective is to reduce the makespan time and task rejection ratio in
cloud environment. We have created N number of task with different length (20000 to 400000 MI) and m number of
virtual machine. Sort the task based on deadline (algorithm step 1 to 4). Some tasks have execution time more than
their deadline. These types of tasks are discarded in cloud environment, if more tasks are discarded then
performance start to degrade. Therefore developed algorithm balanced the load at all VM and increase the ratio of
task meet with deadline using the elasticity concept (provisioning and deprovisioning of resources) as shown in
algorithm 1. Firstly calculate the number of task unable to meet deadline in each interval after that average of

Algorithm 1 for Load Balancing with resource provisioning and deprovisioning
DL[i] deadline array and T[i] task array
1. ∀i€ DL[i]
2. ∀j€ i+1 to DL[i], if (DL[j]<DL[i]) # if condition is true go to step 3&4
3. Swap DL[j] with DL[i]
4. Swap T[j] with T[i] # otherwise j=j+1
UVM =under loaded virtual machine, OVM =overloaded virtual machine , TotalTask=N,
 ���� = number of rejected task in a interval, �����= avg. number of task unable to meet deadline
5. Start the loop for Task 0 to N-1
6. Start loop for virtual machine 0 to m-1 # start to allocate the tasks
7. EPT[j]=����/�� *�� #EPT is expected processing time, End the for loop of virtual machine
8. Calculate the makespan time based on deadline
 For j=1 to m EPT[j]=EPT[j]+MET[j];
 # EPT[j] array represent the makespan time of task End for loop of VM
9. Find the minimum value of EPT[] ,
10. Compare the deadline of task with calculated execution time
11. If(����>min EPT) then Assigned the task to VM. End for loop of VM;
 Otherwise ���� ++; End for loop of Tasks
12. Start Task and VM for loop
13. Load increase at resource �� after task assignment
 ���= ���+ ����
14. Calculate the ����� in last z iteration

 Mohit Kumar/ Procedia Computer Science 00 (2018) 000–000 5

rejected task () in last z interval is calculated and apply the user defined threshold conditions as per SLA. If
value of is more than or equal to the value of 30% of total tasks then add new VM 20%. If value of is
more than 10% of total tasks then add 10% new VM. If is less than or equal to10% then there is no need to
add the new VM. Therefore calculate the parameter that is based upon recent (last) z interval. Further
calculate the overloaded and underloaded VM after assigning the task to virtual machine based upon the defined
threshold value and capacity of VMs. A VM is in overloaded mode if they utilize their capacity more than or equal
to 90% and underloaded if utilize their capacity less than 20%. If any virtual machine is overloaded or under loaded
condition then sorts VM in decreasing and increasing order and transfer the task from OVM to UVM. If average of
under loaded virtual machine is greater than the 30 % of all available virtual machine then decrease the virtual
machine 20 % for next interval. If it is more than 10% then decrease the virtual machine 10% for next interval
shown in algorithm step 17to 20.

5. Analysis and Comparison of Experimental Results

We proposed and implement the load balancing algorithm for minimize the makespan time and increase the ratio of
task to meet deadline using the cloudsim platform.

5.1 Makespan Time Calculations

We run the simulation more than one hour (approximate 100 times) on different number of task with random length
cloudlet (tasks) and calculate the result using the space shared policy in cloudsim. Consider 10 virtual machine with
bandwidth 1000 mbps, number of cpu for each virtual machine is 1. Consider the range of task is 10 to 30 at 10
virtual machine, 20 to 50 at 20 virtual machine and 100 tasks at 30 virtual machine, length of task is varying from
20000MI to 400000 MI. Computational results shows that proposed algorithm reduce the makespan time compared
to FCFS, SJF and Min-Min algorithm as shown in Table 1.

 Table 1 makespan time comparison

15. If (>=N *.30), Increase VM by 20%.
 Else If (> N * .1) Increase VM by 10%.
 Else (≤ N * .1) No need to increase the VM, End of for loop; End of for loop
16. Calculate UVM and OVM and sort the VM increasing and decreasing order
17. Calculate the in last z iterations
18. If (>.3*), Reduce 20% VM of total running VM.
 Else If (> .1*), Reduce 10% VM of total running VM
 Else (≤ .1*) No need to reduce the running VM,
19. End for loop; End for loop

Task Virtual machine FCFS SJF Min-Min Proposed algorithm
10 10 736 779 755 580
15 10 1081 830 784 603

20 10 1249 850 836 795
30 10 1486 1244 1147 1013

20 20 544 521 497 451
30 20 844 712 656 597

40 20 1061 898 824 752

50 20 1259 1084 1046 916

100 30 1489 1138 1058 970

	 Mohit Kumar et al. / Procedia Computer Science 125 (2018) 717–724� 7214 Mohit Kumar/ Procedia Computer Science 00 (2018) 000–000

4. Problem Formulation and Proposed Algorithm

4.1 Problem formulation

 To schedule all the upcoming workload in such a ways that cloud user can execute their task in minimum time
considering deadline as constraint. Job request handler received N number of independent task request with task
length (����) and deadline of task is�����. Every task need processor speed ��, number of cpu ��, RAM �� and
bandwidth B in mbps. There are m heterogeneous running virtual machine��� , ��… �� in cloud environment.
Scheduler try to map each task �� to virtual machine��, if a resource �� is match with task Ti then value of decision
variable ���� is 1 otherwise its value is 0.
Execution time of tasks Ti at a particular virtual machine is ���� =����/�� *�� (1)
When user submits the task to cloud resource with deadline, its completion time is depend that how much workload
is available on that resource. The time required to complete the task on available cloud resource is expressed in
equation 2. ����= ���� – ���� (2)
Where ���� represent the available workload at the resource �� before allocated the task �� and ���� is the
available remaining time to complete the allocated task �� at resource�� . This remaining time (����) should be
greater than or equal to task execution time. ���� ≤ ��� (3)
 Execution time of virtual machine where tasks are executing in minimum time
 ����=min ∑ ������ *���� (4)
 makespan time �������=max ∑ ������ (5)

4.2 Proposed algorithm:

We developed a load balancing algorithm whose objective is to reduce the makespan time and task rejection ratio in
cloud environment. We have created N number of task with different length (20000 to 400000 MI) and m number of
virtual machine. Sort the task based on deadline (algorithm step 1 to 4). Some tasks have execution time more than
their deadline. These types of tasks are discarded in cloud environment, if more tasks are discarded then
performance start to degrade. Therefore developed algorithm balanced the load at all VM and increase the ratio of
task meet with deadline using the elasticity concept (provisioning and deprovisioning of resources) as shown in
algorithm 1. Firstly calculate the number of task unable to meet deadline in each interval after that average of

Algorithm 1 for Load Balancing with resource provisioning and deprovisioning
DL[i] deadline array and T[i] task array
1. ∀i€ DL[i]
2. ∀j€ i+1 to DL[i], if (DL[j]<DL[i]) # if condition is true go to step 3&4
3. Swap DL[j] with DL[i]
4. Swap T[j] with T[i] # otherwise j=j+1
UVM =under loaded virtual machine, OVM =overloaded virtual machine , TotalTask=N,
 ���� = number of rejected task in a interval, �����= avg. number of task unable to meet deadline
5. Start the loop for Task 0 to N-1
6. Start loop for virtual machine 0 to m-1 # start to allocate the tasks
7. EPT[j]=����/�� *�� #EPT is expected processing time, End the for loop of virtual machine
8. Calculate the makespan time based on deadline
 For j=1 to m EPT[j]=EPT[j]+MET[j];
 # EPT[j] array represent the makespan time of task End for loop of VM
9. Find the minimum value of EPT[] ,
10. Compare the deadline of task with calculated execution time
11. If(����>min EPT) then Assigned the task to VM. End for loop of VM;
 Otherwise ���� ++; End for loop of Tasks
12. Start Task and VM for loop
13. Load increase at resource �� after task assignment
 ���= ���+ ����
14. Calculate the ����� in last z iteration

 Mohit Kumar/ Procedia Computer Science 00 (2018) 000–000 5

rejected task () in last z interval is calculated and apply the user defined threshold conditions as per SLA. If
value of is more than or equal to the value of 30% of total tasks then add new VM 20%. If value of is
more than 10% of total tasks then add 10% new VM. If is less than or equal to10% then there is no need to
add the new VM. Therefore calculate the parameter that is based upon recent (last) z interval. Further
calculate the overloaded and underloaded VM after assigning the task to virtual machine based upon the defined
threshold value and capacity of VMs. A VM is in overloaded mode if they utilize their capacity more than or equal
to 90% and underloaded if utilize their capacity less than 20%. If any virtual machine is overloaded or under loaded
condition then sorts VM in decreasing and increasing order and transfer the task from OVM to UVM. If average of
under loaded virtual machine is greater than the 30 % of all available virtual machine then decrease the virtual
machine 20 % for next interval. If it is more than 10% then decrease the virtual machine 10% for next interval
shown in algorithm step 17to 20.

5. Analysis and Comparison of Experimental Results

We proposed and implement the load balancing algorithm for minimize the makespan time and increase the ratio of
task to meet deadline using the cloudsim platform.

5.1 Makespan Time Calculations

We run the simulation more than one hour (approximate 100 times) on different number of task with random length
cloudlet (tasks) and calculate the result using the space shared policy in cloudsim. Consider 10 virtual machine with
bandwidth 1000 mbps, number of cpu for each virtual machine is 1. Consider the range of task is 10 to 30 at 10
virtual machine, 20 to 50 at 20 virtual machine and 100 tasks at 30 virtual machine, length of task is varying from
20000MI to 400000 MI. Computational results shows that proposed algorithm reduce the makespan time compared
to FCFS, SJF and Min-Min algorithm as shown in Table 1.

 Table 1 makespan time comparison

15. If (>=N *.30), Increase VM by 20%.
 Else If (> N * .1) Increase VM by 10%.
 Else (≤ N * .1) No need to increase the VM, End of for loop; End of for loop
16. Calculate UVM and OVM and sort the VM increasing and decreasing order
17. Calculate the in last z iterations
18. If (>.3*), Reduce 20% VM of total running VM.
 Else If (> .1*), Reduce 10% VM of total running VM
 Else (≤ .1*) No need to reduce the running VM,
19. End for loop; End for loop

Task Virtual machine FCFS SJF Min-Min Proposed algorithm
10 10 736 779 755 580
15 10 1081 830 784 603

20 10 1249 850 836 795
30 10 1486 1244 1147 1013

20 20 544 521 497 451
30 20 844 712 656 597

40 20 1061 898 824 752

50 20 1259 1084 1046 916

100 30 1489 1138 1058 970

722	 Mohit Kumar et al. / Procedia Computer Science 125 (2018) 717–724
6

5.2

We
the
inte
bala
so t
prop
algo
algo
task
exis

5.3

Elas
reso

then
send
only
than
20 u
virtu

Number of tas

computed the
user. Created

erval. Created
ancing algorith
that task can b
posed algorith
orithm shown
orithm, 85% in
k from 20 to 5
sting algorithm

Provisioning

sticity is the d
ources in an au

n controller no
d the 20 task
y 17 tasks are
n 10% therefo
upcoming task
ual machine.

sk meets to de

e performance
a window of
10 VM to pro
hm considers

be executed be
hm complete m
in Figure 2. T

n FCFS, 86 in
0 and VM fro

m shown in Fi

and deprovis

degree to whic
utonomic man

Fig. 2 task m

Fig. 3 task

ode call the E
with deadline
e accepted ou
ore controller
ks. Task rejec
This process i

Mohit Kuma

eadline

e metric for an
task in which

ocess the upco
the deadline a

efore the dead
more tasks bef
The percentag
n SJF and 81%
om 10 to 30. C
ig. 3.

ioning of reso

ch a system is
nner. If load is

meet to deadline

meet to deadline

ELB componen
e at 10 VM. R
ut of 20 tasks

node passes t
ction ratio is 1
is continuing u

r/ Procedia Comp

nalyzing the c
h 20 tasks with
oming task and
as an importan

dline expired. W
fore deadline

ge of task meet
% in Min-Min
Calculated resu

ource

s able to adap
s increased or

comparison betw

comparison betw

nt to add or re
Run the simula
in first iterati
the control to
0% or less tha
until all the up

puter Science 00

ompletion of
h random leng
d deadline of
nt factor and f
We run the sim
rather than ex
ting with dead
algorithm. Fu

ults shows tha

t to workload
decreased at

ween proposed alg

ween proposed alg

emove the vir
ation and plot
ion. Controlle
CRP for incr

an 10% for ne
pcoming task

(2018) 000–000

tasks on or be
gth is sending
task is genera
find out the be
mulation and
xisting FCFS,
dline is approx
urther find out
at proposed alg

d changes by p
host is above

gorithm vs FCFS,

gorithm vs FCFS

rtual machine
t the graph is

er node found
reasing the 10
ext iteration so
has not finish

efore the dead
continuously

ated randomly
est virtual mac
calculated res
SJF and Min-
ximate averag
t the results af
gorithm perfo

provisioning a
or below the

,SJF, Min-Min

,SJF,Min-Min

in cloud envi
shown in Figu
that task reje

0% VM. Now
o there is no n

hed.

line specified
after 5 second
. Developed l
chine for the t
sults shows tha
-Min scheduli
ge 95% in prop
fter increasing
orm better than

and de-provisi
threshold limi

ironment. In c
ure 4 represen
ection ratio is

11VM proce
need to increa

by
d
oad
task
at
ing
posed
g the
n

ioning
it

case I,
nt that

more
ess the
ase the

Con
dead
meet
incre
show

6. C

To a
have
is m
defin
clou
prop
algo
conv

Refe

1.

2.

3.

4.

5.

sider II case i
dline out of 30
t with deadlin
ease. This pro
wn in Figure 5

onclusion

achieve minim
e developed a

making the aut
ned threshold

ud resource p
posed algorith
orithm perform
ventional algo

erences

P.Sareen, "Clo
Journal of Adv
Hwang, Kai,
Computing Te
D.Coninck, El
Systems and S
M.Kumar, S.C
INDIACom, 2
Juarez, Fredy,
computing." F

 Fig

n which incre
0) are rejected
ne and 7 task
ocess is conti
5.

 F

mum makespa
load balancin
tonomic decis

d value. Prop
provisioning a
m reduce the
m better scal
orithm like FC

oud computing: t
vanced Research
Yue Shi, and X

echnology and Sc
lias, et al. "Dyna

Software 118 (201
C. Sharma, Priori
2016. pp. 415–420
, Jorge Ejarque,

Future Generation

Mohit Kum

gure 4 scale out b

ease the task 2
d. CRP increas
ks are rejecte
inuing until

Figure 5 Elasticity

an time and in
ng algorithm i
sion about th

posed architec
and deprovisi
makespan tim
e out and sc

CFS, SJF and M

types, architectur
in Computer Scie

Xiaoying Bai, "S
cience (CloudCom
amic auto-scaling
16): 101-114.
ity Aware Longe
0.

and Rosa M. B
n Computer Syste

ar/ Procedia Com

by proposed algor

20 to 30 and st
ses the VM in
ed, average ta

 become

y in cloud environ

ncrease the rat
in this paper c

he scale out a
cture contains
ioning. Exper
me as well as
cale in and in
Min-Min show

e, applications, c
ence and Softwar
Scale-Out vs. Sc
m), 2014 IEEE 6th
g and scheduling

est Job First (PA

Badia. "Dynamic
ms (2016).

mputer Science 0

rithm in cloud env

tart to process
stance as per p
ask rejection
10 or less th

nment by propose

tio of tasks m
considering de
and scale in b
s the compone
rimental resul
task rejection
ncrease the a
wn in Table 1&

concerns, virtuali
re Engineering 3.
cale-Up Techniq
h International C

g of deadline con

-LJF) Algorithm

c energy-aware s

0 (2018) 000–000

vironment

s at 10 VM. M
proposed algo
ratio is more
an 10%. Elas

ed algorithm

meet to the dea
eadline as QoS
based upon th
ent like sched
lts shows tha

n ratio. The re
acceptance rat
& Figure 2-5.

zation and role o
3 (2013).

ques for Cloud P
Conference on IEE
nstrained service

for Utilization o

scheduling for p

0

More than 10%
orithm. In nex
e than 10%, a
sticity is achie

adline in cloud
S parameter. D

he upcoming
duler, workloa
at under all p
sults have pro
tio of task th

of it governance i

Performance and
EE, 2014.
workloads on Ia

of the Resource i

arallel task-based

% tasks (22 me
xt iteration 23
again 10% V
eved by algor

d environmen
Develop algor
demands and
ad analyzer, E
possible cond
oven that prop
han other exi

in cloud," Interna

d Productivity,"

aaS clouds," Jour

in Cloud Environ

d application in

7

eet to
tasks

VM is
rithm

nt, we
rithm

d user
ELB,
dition
posed
isting

ational

Cloud

rnal of

nment,

cloud

	 Mohit Kumar et al. / Procedia Computer Science 125 (2018) 717–724� 723
6

5.2

We
the
inte
bala
so t
prop
algo
algo
task
exis

5.3

Elas
reso

then
send
only
than
20 u
virtu

Number of tas

computed the
user. Created

erval. Created
ancing algorith
that task can b
posed algorith
orithm shown
orithm, 85% in
k from 20 to 5
sting algorithm

Provisioning

sticity is the d
ources in an au

n controller no
d the 20 task
y 17 tasks are
n 10% therefo
upcoming task
ual machine.

sk meets to de

e performance
a window of
10 VM to pro
hm considers

be executed be
hm complete m
in Figure 2. T

n FCFS, 86 in
0 and VM fro

m shown in Fi

and deprovis

degree to whic
utonomic man

Fig. 2 task m

Fig. 3 task

ode call the E
with deadline
e accepted ou
ore controller
ks. Task rejec
This process i

Mohit Kuma

eadline

e metric for an
task in which

ocess the upco
the deadline a

efore the dead
more tasks bef
The percentag
n SJF and 81%
om 10 to 30. C
ig. 3.

ioning of reso

ch a system is
nner. If load is

meet to deadline

meet to deadline

ELB componen
e at 10 VM. R
ut of 20 tasks

node passes t
ction ratio is 1
is continuing u

r/ Procedia Comp

nalyzing the c
h 20 tasks with
oming task and
as an importan

dline expired. W
fore deadline

ge of task meet
% in Min-Min
Calculated resu

ource

s able to adap
s increased or

comparison betw

comparison betw

nt to add or re
Run the simula
in first iterati
the control to
0% or less tha
until all the up

puter Science 00

ompletion of
h random leng
d deadline of
nt factor and f
We run the sim
rather than ex
ting with dead
algorithm. Fu

ults shows tha

t to workload
decreased at

ween proposed alg

ween proposed alg

emove the vir
ation and plot
ion. Controlle
CRP for incr

an 10% for ne
pcoming task

(2018) 000–000

tasks on or be
gth is sending
task is genera
find out the be
mulation and
xisting FCFS,
dline is approx
urther find out
at proposed alg

d changes by p
host is above

gorithm vs FCFS,

gorithm vs FCFS

rtual machine
t the graph is

er node found
reasing the 10
ext iteration so
has not finish

efore the dead
continuously

ated randomly
est virtual mac
calculated res
SJF and Min-
ximate averag
t the results af
gorithm perfo

provisioning a
or below the

,SJF, Min-Min

,SJF,Min-Min

in cloud envi
shown in Figu
that task reje

0% VM. Now
o there is no n

hed.

line specified
after 5 second
. Developed l
chine for the t
sults shows tha
-Min scheduli
ge 95% in prop
fter increasing
orm better than

and de-provisi
threshold limi

ironment. In c
ure 4 represen
ection ratio is

11VM proce
need to increa

by
d
oad
task
at
ing
posed
g the
n

ioning
it

case I,
nt that

more
ess the
ase the

Con
dead
meet
incre
show

6. C

To a
have
is m
defin
clou
prop
algo
conv

Refe

1.

2.

3.

4.

5.

sider II case i
dline out of 30
t with deadlin
ease. This pro
wn in Figure 5

onclusion

achieve minim
e developed a

making the aut
ned threshold

ud resource p
posed algorith
orithm perform
ventional algo

erences

P.Sareen, "Clo
Journal of Adv
Hwang, Kai,
Computing Te
D.Coninck, El
Systems and S
M.Kumar, S.C
INDIACom, 2
Juarez, Fredy,
computing." F

 Fig

n which incre
0) are rejected
ne and 7 task
ocess is conti
5.

 F

mum makespa
load balancin
tonomic decis

d value. Prop
provisioning a
m reduce the
m better scal
orithm like FC

oud computing: t
vanced Research
Yue Shi, and X

echnology and Sc
lias, et al. "Dyna

Software 118 (201
C. Sharma, Priori
2016. pp. 415–420
, Jorge Ejarque,

Future Generation

Mohit Kum

gure 4 scale out b

ease the task 2
d. CRP increas
ks are rejecte
inuing until

Figure 5 Elasticity

an time and in
ng algorithm i
sion about th

posed architec
and deprovisi
makespan tim
e out and sc

CFS, SJF and M

types, architectur
in Computer Scie

Xiaoying Bai, "S
cience (CloudCom
amic auto-scaling
16): 101-114.
ity Aware Longe
0.

and Rosa M. B
n Computer Syste

ar/ Procedia Com

by proposed algor

20 to 30 and st
ses the VM in
ed, average ta

 become

y in cloud environ

ncrease the rat
in this paper c

he scale out a
cture contains
ioning. Exper
me as well as
cale in and in
Min-Min show

e, applications, c
ence and Softwar
Scale-Out vs. Sc
m), 2014 IEEE 6th
g and scheduling

est Job First (PA

Badia. "Dynamic
ms (2016).

mputer Science 0

rithm in cloud env

tart to process
stance as per p
ask rejection
10 or less th

nment by propose

tio of tasks m
considering de
and scale in b
s the compone
rimental resul
task rejection
ncrease the a
wn in Table 1&

concerns, virtuali
re Engineering 3.
cale-Up Techniq
h International C

g of deadline con

-LJF) Algorithm

c energy-aware s

0 (2018) 000–000

vironment

s at 10 VM. M
proposed algo
ratio is more
an 10%. Elas

ed algorithm

meet to the dea
eadline as QoS
based upon th
ent like sched
lts shows tha

n ratio. The re
acceptance rat
& Figure 2-5.

zation and role o
3 (2013).

ques for Cloud P
Conference on IEE
nstrained service

for Utilization o

scheduling for p

0

More than 10%
orithm. In nex
e than 10%, a
sticity is achie

adline in cloud
S parameter. D

he upcoming
duler, workloa
at under all p
sults have pro
tio of task th

of it governance i

Performance and
EE, 2014.
workloads on Ia

of the Resource i

arallel task-based

% tasks (22 me
xt iteration 23
again 10% V
eved by algor

d environmen
Develop algor
demands and
ad analyzer, E
possible cond
oven that prop
han other exi

in cloud," Interna

d Productivity,"

aaS clouds," Jour

in Cloud Environ

d application in

7

eet to
tasks

VM is
rithm

nt, we
rithm

d user
ELB,
dition
posed
isting

ational

Cloud

rnal of

nment,

cloud

724	 Mohit Kumar et al. / Procedia Computer Science 125 (2018) 717–724
8 Mohit Kumar/ Procedia Computer Science 00 (2018) 000–000

6. Feng, Ye, et al. "A novel cloud load balancing mechanism in premise of ensuring QoS." Intelligent automation & soft computing 19.2
(2013): 151-163.

7. Abrishami, Saeid, and Mahmoud Naghibzadeh. "Deadline-constrained workflow scheduling in software as a service cloud." Scientia
Iranica 19.3 (2012): 680-689.

8. Abrishami, Saeid, Mahmoud Naghibzadeh, and Dick HJ Epema. "Deadline-constrained workflow scheduling algorithms for
Infrastructure as a Service Clouds." Future Generation Computer Systems 9.1 (2013): 158-169.

9. Naha, Ranesh Kumar, and Mohamed Othman. "Brokering and load-balancing mechanism in the cloud–Revisited." IETE Technical
Review 31.4 (2014): 271-276.

10. Somasundaram, Thamarai Selvi, et al. "A broker based architecture for adaptive load balancing and elastic resource provisioning and
deprovisioning in multi-tenant based cloud environments." Proceedings of International Conference on Advances in Computing. Springer
India, 2013.

11. Li, Xiaofang, et al. "An improved max-min task-scheduling algorithm for elastic cloud." Computer, Consumer and Control (IS3C), 2014
International Symposium on. IEEE, 2014.

12. Coutinho, Emanuel Ferreira, Danielo Gonçalves Gomes, and José Neuman de Souza. "An analysis of elasticity in cloud computing
environments based on allocation time and resources." Cloud Computing and Communications (LatinCloud), 2nd IEEE Latin American
Conference on. IEEE, 2013.

13. Al-Dhuraibi, Yahya, et al. "Elasticity in Cloud Computing: State of the Art and Research Challenges." IEEE Transactions on Services
Computing (2017).

14. Galante, Guilherme, and Luis Carlos E. de Bona. "A survey on cloud computing elasticity." Utility and Cloud Computing (UCC), 2012
IEEE Fifth International Conference on. IEEE, 2012.

15. Hu, Yazhou, et al. "Workload prediction for cloud computing elasticity mechanism." Cloud Computing and Big Data Analysis
(ICCCBDA), 2016 IEEE International Conference on. IEEE, 2016.

