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Multiplexing Analysis of Millimeter-Wave Massive
MIMO Systems

Dian-Wu Yue, Ha H. Nguyen and Shuai Xu

Abstract—This paper is concerned with spatial multiplexing
analysis for millimeter-wave (mmWave) massive MIMO systems.
For a single-user mmWave system employing distributed antenna
subarray architecture in which the transmitter and receiver
consist of K; and K, subarrays, respectively, an asymptotic
multiplexing gain formula is firstly derived when the numbers of
antennas at subarrays go to infinity. Specifically, assuming that
all subchannels have the same number of propagation paths L,
the formula states that by employing such a distributed antenna-
subarray architecture, an exact multiplexing gain of N, can be
achieved, where N, < K, KL is the number of data streams.
This result means that compared to the co-located antenna
architecture, using the distributed antenna-subarray architecture
can scale up the maximum multiplexing gain proportionally to
K, K;. In order to further reveal the relation between diversity
gain and multiplexing gain, a simple characterization of the
diversity-multiplexing tradeoff is also given. The multiplexing
gain analysis is then extended to the multiuser scenario. More-
over, simulation results obtained with the hybrid analog/digital
processing corroborate the analysis results.

Index Terms—Millimeter-wave communications, massive
MIMO, multiplexing gain, diversity gain, diversity-multiplexing
tradeoff, distributed antenna-subarrays, hybrid precoding.

I. INTRODUCTION

Recently, millimeter-wave (mmWave) communication has
gained considerable attention as a candidate technology for
5G mobile communication systems and beyond [[1]]-[3]. The
main reason for this is the availability of vast spectrum in the
mmWave band (typically 30-300 GHz) that is very attractive
for high data rate communications. However, compared to
communication systems operating at lower microwave fre-
quencies (such as those currently used for 4G mobile commu-
nications), propagation loss in mmWave frequencies is much
higher, in the orders-of-magnitude. Fortunately, given the
much smaller carrier wavelengths, mmWave communication
systems can make use of compact massive antenna arrays to
compensate for the increased propagation loss.

Nevertheless, the large-scale antenna arrays together with
high cost and large power consumption of the mixed ana-
log/digital signal components makes it difficult to equip a
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separate radio-frequency (RF) chain for each antenna and
perform all the signal processing in the baseband. Therefore,
research on hybrid analog-digital processing of precoder and
combiner for mmWave communication systems has attracted
very strong interests from both academia and industry —
[16]. In particular, a lot of work has been performed to
address challenges in using a limited number of RF chains. For
example, the authors in [4] considered single-user precoding
in mmWave massive MIMO systems and established the
optimality of beam steering for both single-stream and multi-
stream transmission scenarios. In [10], the authors showed that
hybrid processing can realize any fully digital processing if the
number of RF chains is twice the number of data streams.
However, due to the fact that mmWave signal propagation
has an important feature of multipath sparsity in both the
temporal and spatial domains [17]-[20], it is expected that
the potentially available benefits of diversity and multiplexing
are indeed not large if the deployment of the antenna arrays is
co-located. In order to enlarge diversity/multiplexing gains in
mmWave massive MIMO communication systems, this paper
consider the use of a more general array architecture, called
distributed antenna subarray architecture, which includes lo-
located array architecture as a special case. It is pointed out
that distributed antenna systems have received strong interest
as a promising technique to satisfy such growing demands for
future wireless communication networks due to the increased
spectral efficiency and expanded coverage — 23],

It is well known that diversity-multiplexing tradeoff (DMT)
is a compact and convenient framework to compare differ-
ent MIMO systems in terms of the two main and related
system indicators: data rate and error performance [26]-[31].
This tradeoff was originally characterized by Zheng and Tse
[26] for MIMO communication systems operating over i.i.d.
Rayleigh fading channels. The framework has then ignited a
lot of interests in analyzing various communication systems
and under different channel models. For a mmWave massive
MIMO system, how to quantify the diversity and multiplexing
performance and further characterize its DMT is a fundamental
and open research problem. In particular, to the best of
our knowledge, until now there is no unified multiplexing
gain analysis for mmWave massive MIMO systems that is
applicable to both co-located and distributed antenna array
architectures.

To fill this gap, this paper investigates the multiplexing
performance of mmWave massive MIMO systems with the
proposed distributed subarray architecture. The focus is on
the asymptotical multiplexing gain analysis in order to find
out the potential multiplexing advantage provided by multiple
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distributed antenna arrays. The obtained analysis can be used
conveniently to compare various mmWave massive MIMO
systems with different distributed antenna array structures.

The main contributions of this paper are summarized as
follows:

o For a single-user system with the proposed distributed
subarray architecture, a multiplexing gain expression is
obtained when the number of antennas at each subarray
increases without bound. This expression clearly indicates
that one can obtain a large multiplexing gain by employ-
ing the distributed subarray architecture.

o A simple DMT characterization is further given. It can
reveal the relation between diversity gain and multiplex-
ing gain and let us obtain insights to understand the
overall resources provided by the distributed antenna
architecture.

o The multiplexing gain analysis is then extended to the
multiuser scenario with downlink and uplink transmis-
sion.

o Simulation results are provided to corroborate the analy-
sis results and show that the distributed subarray architec-
ture yields significantly better multiplexing performance
than the co-located single-array architecture.

The remainder of this paper is organized as follows. Section
IT describes the massive MIMO system model and hybrid pro-
cessing with the distributed subarray architecture in mmWave
fading channels. Section III and Section IV provides the
asymptotical achievable rate analysis and the multiplexing gain
analysis for the single-user mmWave system, respectively. In
Section V, the multiplexing gain analysis is extended to the
multiuser scenario. Section VI concludes the paper.

Throughout this paper, the following notations are used.
Boldface upper and lower case letters denote matrices and
column vectors, respectively. The superscripts (-)7 and (-)¥
stand for transpose and conjugate-transpose, respectively.
diag{ai,as,...,an} stands for a diagonal matrix with di-
agonal elements {a1,as,...,ay}. The expectation operator
is denoted by E(-). [A];; gives the (i,7)th entry of matrix
A. A ® B is the Kronecker product of A and B. We write a
function a(x) of z as o(x) if lim, 0 a(z)/z = 0. We use (x)™
to denote max{0,z}. Finally, CN'(0,1) denotes a circularly
symmetric complex Gaussian random variable with zero mean
and unit variance.

II. SYSTEM MODEL

Consider a single-user mmWave massive MIMO system as
shown in Fig.[Il The transmitter is equipped with a distributed
antenna array to send N, data streams to a receiver, which
is also equipped with a distributed antenna array. Here, a
distributed antenna array means an array consisting of several
remote antenna units (RAUs) (i.e., antenna subarrays) that are
distributively located, as depicted in Fig. [2I Specifically, the
antenna array at the transmitter consists of K; RAUSs, each of
which has N, antennas and is connected to a baseband pro-
cessing unit (BPU) by fiber. Likewise, the distributed antenna
array at the receiver consists of K, RAUs, each having N,
antennas and also being connected to a BPU by fibers. Such

a MIMO system shall be referred to as a (K, N¢, K, N,)
distributed MIMO (D-MIMO) system. When K; = K, = 1,
the system reduces to a conventional co-located MIMO (C-
MIMO) system.

The transmitter accepts as its input N data streams and is
equipped with Nt(rf) RF chains, where N, < Nt(rf) < N/ K;.
Given Nt(rf) transmit RF chains, the transmitter can apply a
low-dimension Nt(rf) x Ny baseband precoder, W, followed
by a high-dimension K;N; X Nt(rf) RF precoder, F;. Note
that amplitude and phase modifications are feasible for the
baseband precoder W, while only phase changes can be made
by the RF precoder F, through the use of variable phase
shifters and combiners. The transmitted signal vector can be
written as

x = F,W,P}/%, (1)

where P, = [p;;] is a diagonal power allocation matrix with
Zl]\il pu = 1 and s is the Ny x 1 symbol vector such that
E[ss”] = PIy.. Thus P represents the average total input
power. Considering a narrowband block fading channel, the
K, N, x 1 received signal vector is

y = HF,W,P}/?s + n 2)

where H is K,.N,. x K;N; channel matrix and nis a K, N, x 1
vector consisting of i.i.d. CA(0, 1) noise samples. Throughout
this paper, H is assumed known to both the transmitter and
receiver. Given that N\ RF chains (where N, < N\ <
N, K,) are used at the receiver to detect the N, data streams,
the processed signal is given by

z = WHFAHF,W,P)/%s + WHFHp 3)

where F',. is the K, N, x Nr(rf) RF combining matrix, and W,.
is the Nr(rf) x Ny baseband combining matrix. When Gaussian
symbols are transmitted over the mmWave channel, the the
system achievable rate is expressed as

R =log, [In,+PR,'WHFIHF,W,P,WIFIH"F, W, |
“)
where R,, = WHFIF, W,
Furthermore, according to the architecture of RAUs at the
transmitting and receiving ends, H can be written as

\/911H11 \/gthHH(t

H= 5)
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In the above expression, g;; represents the large scale fading
effect between the ¢th RAU at the receiver and the jth RAU
at the transmitter, which is assumed to be constant over many
coherence-time intervals. The normalized subchannel matrix
H,; represents the MIMO channel between the jth RAU at
the transmitter and the ¢th RAU at the receiver. We assume
that all of {H,;} are independent mutually each other.

A clustered channel model based on the extended Saleh-
Valenzuela model is often used in mmWave channel modeling
and standardization [4] and it is also adopted in this paper. For
simplicity of exposition, each scattering cluster is assumed to
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Fig. 1. Block diagram of a mmWave massive MIMO system with distributed antenna arrays.
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Fig. 2. Tllustration of distributed antenna array deployment.

contribute a single propagation pathEl Using this model, the
subchannel matrix H;; is given by

Hij = Z ZJ ar :Jl’erl) a ( fé’etl) (6)

=1
where L;; is the number of propagation paths, aﬁj is the
complex gain of the /th ray, and (9”) and gbié (0%-) are

its random azimuth (elevation) angles of arrlval and departure,
respectively. Without loss of generality, the complex gains j
are assumed to be CA'(0,1). Bl The vectors a,(¢7),0;)) and
ay( ﬁ , 9”) are the normalized receive/transmit array response
vectors at the corresponding angles of arrival/departure. For an
N-element uniform linear array (ULA) , the array response
vector is
ULA _ L jom du sm((b) j2m(N—1) % sin(e) T
a o) = Wi 1,e .,e B
(N

where A is the wavelength of the carrier and d,, is the inter-
element spacing. It is pointed out that the angle 6 is not

"This assumption can be relaxed to account for clusters with finite angular
spreads and the results obtained in this paper can be readily extended for such
a case.

2The different variances of a . can easily accounted for by absorbing into
the large scale fading coefﬁments Gij-
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included in the argument of a since the response for an
ULA is independent of the elevation angle. In contrast, for a
uniform planar array (UPA), which is composed of N, and
N, antenna elements in the horizontal and vertical directions,
respectively, the array response vector is represented by

a'PA (¢, 0) = a4 (¢) @ aVH1(0), (8)
where
1 o b g ; dy . T
ULA _ 27 & sin(¢) j2m(Np —1) =L sin(¢)
a ¢) = {1, el ™ oo, € X }
N .
and
1 o du o . v dy o T
ULA(G) _ |:1 eg27rT” sin(0) o ej?ﬂ'(N b sm(0)j|
v VN, U7 B

(10)

III. ASYMPTOTIC ACHIEVABLE RATE ANALYSIS

From the structure and definition of the channel matrix
H in Section II, there is a total of Ly = El 1 ZKt L;;
propagation paths. Naturally, H can be decomposed into a
sum of L, rank-one matrices, each corresponding to one
propagation path. Specifically, H can be rewritten as

K, K. Lij
H=Y "% alal(s,0af (off,00), an
i=1 j=11=1
where
&y = (12)

a,(¢71,0;1) is a K, N, x 1 vector whose bth entry is defined
as
= rl prl _ [aT (¢;‘Jla erl)] (i— be Q:
[a(z]79 )]_{0 b¢Q;ﬂ

L 9”) isa KtNt x 1

YR

1)N,» (13)

where Q7 = ((i — 1)N,,iN,]. And a,(
vector whose bth entry is defined as

a, (oL gt
(ot o = { g

Ds—Gi-vn,, be QS (14)
where Q% = ((j — 1)Ny, jNy]. Regarding {a,(¢}},0;!)} and

0, b¢ Qt-.
177

{a; (¢!}, 01%)}, we have the following lemma from [-]
Lemma ] Suppose that the antenna configurations at
all RAUs are either ULA or UPA. Then all L, vectors



{a,(¢5!,0;1)} are orthogonal to each other when N, — oc.
Likewise, all L, vectors {a;( Z , 9%)} are orthogonal to each
other when N; — oc.

Mathematically, the distributed massive MIMO system can
be considered as a co-located massive MIMO system with
L paths that have complex gains {a -}, receive array re-
sponse vectors {a,(¢j!,07/)} and transmit response vectors
{a( Z,Hﬁ)} Furthermore, order all paths in a decreasing
order of the absolute values of the complex gains {at ;1 Then

the channel matrix can be written as

Ls
H= dlér(gbrl,orl)ét(ﬁstl,otl)H (15)
=1
where &' > a2 > .. > als.
One can rewrite H in a matrix form as
H= A, DAY (16)

where D is a L, x L, diagonal matrix with [D]; = &, and
A, and A; are defined as follows:

A, =[a.(¢",0m),. ..,

a,(¢ s, 0m1)] (17)

and
At = [ét(¢t179t1)7'"7é~t(¢tL579th)]' (18)

Since both {a,(¢",0™)} and {a;(¢",6")} are orthogonal
vector sets when N, — oo and N; — oo, A, and A; are
asymptotically unitary matrices. Then one can form a singular

value decomposition (SVD) of matrix H as
H=USVY = (A [A]S[AA]? (19)

where X is a diagonal matrix containing all singular values
on its diagonal, i.e.,

_ |at|, for1 <1< L,
[Eu = { 0, forl > L (20)
and the submatrix At is defined as
A, = [e7Tra, (¢!, 01, .. e IVaa, (¢t 0tE)]  (21)

where 1; is the phase of complex gain &' corresponding to the

Ith path. Based on (19), the optimal precoder and combiner
are chosen, respectively, as

[FeWilops = [e77¥18,(0"1,6"), ... e 7Vkeay (¢, 0]
(22)

and

[F, W lopt = [a:(¢7, 0™, .., &, (o™=, 0"N)]. (23)

To summarize, when N; and [V, are large enough, the
massive MIMO system can employ the optimal precoder and

combiner given in m and 23, respectively

Now suppose that &' = al = gw

We introduce two notations:
- N; N,
Y =P pllgij% 24
ij

and
(25)

Then it follows from the above SVD analysis that the instan-
taneous SNR of the /th data stream is given by

SNR; = Ppyla'|? = 4|61, 1=1,2,...,N,. (26)

So we obtain another lemma.

Lemma 2: Suppose that both sets {a,(¢;},60;))} and
{a; (¢}, 0%)} are orthogonal vector sets when N, — oo and
Ny — o0. Let Ng < Lg. In the limit of large N; and N, then

the system achievable rate is given by
Ns

R =" log,(1+ 4[4
=1

Remark 1: @2) and 23) indicate that when N; and N,
is large enough, the optimal precoder and combiner can be
implemented fully in RF using phase shifters [4]]. Furthermore,
(I3) and (I4) imply that for each data stream only a couple
of RAUs needs the operation of phase shifters at each channel
realization.

Remark 2: By using the optimal power allocation (i.e., the
well-known waterfilling power allocation [33]]), the system can
achieve a maximum achievable rate, which is denoted as R,.
We use R.(P/N;) to denote the achievable rate obtained by

27)

using the equal power allocation, namely, p; = N%, I =
1,2,..., Ng. Then
R.(P/N;) < R, < R.((PNs)/Ng) = Re(P). (28)
By doing expectation operation on (28), (28) becomes,
R.(P/Ny) < R, < Re(P). (29)

In what follows, we derive an asymptotic expression of
the ergodic achievable rate with the equal power allocation,
R.(P/N,) (or R, for simplicity). For this reason, we need to
define an integral function

+o0o 1
/ logy (1 +t)e t/*=dt
0 X

= logy(e)e'/"Er(1/x)
where Fj (-) is the exponential integral of a first-order function

defined as [34], [33]]
+oo —yt
/ C
1 t

A(x)

(30)

Ei(y) =

— —FE+hy i (=9)" G1)
k- k!
k=1
with E' being the Euler constant.
Theorem 1: Suppose that both sets {a,( fj,@f;)} and

{a; (¢}, 0:%)} are orthogonnal vector sets when N, — oo and

Ny —o00. Let Ny < Lgand 4y =2 = ... =7, = 7. Then
in the limit of large N; and N,, the ergodic achievable rate
with homogeneous coefficient set {7;}, denoted R.p,, is given
by

No La—l —l—k ul
L) (Ly,—1\A
S e (10 AE
—~ ~ L, —DY(1-1)! k Ly —k
When N, = L, R.j, can be simplified to
Ren, = LyA(F). (33)



Proof: Due to the assumptions that each complex gain aﬁj is

CN(0,1) and the coefficient set {%;} is homogeneous, thus
the instantaneous SNRs in the L, available data streams are
iid.. Let F'(v) and f(v) denote the cumulative distribution
function (CDF) and the probability density function (PDF) of
the unordered instantaneous SNRs, respectively. Then 7 is just
the average receive SNR of each data stream. Furthermore,
F(v) and f(v) can be written as

F(y)=1-¢"7, f(y)= e 7. (34)

2| =

For the [th best data stream, based on the theory of order
statistics [36], the PDF of the instantaneous receive SNR at
the receiver, denoted ~;, is given by

L! _ _
fror.(m) = m[F(%)]LS MN—F) 1f((7315);
Inserting (34) into (33D, we have that

Ls—l LS!(_l)Lsflfk Ly — 1\ e n(Ls=k)/%
fer () = ;0 m< i >$
- (36)

By the definition of the function A(-), the ergodic available
rate for the /th data stream can therefore be written as

“+o0
RS}Z = /O logy (1 + ) fi.z.. (1)dm

Lyl(=1)Fe 7k
( ) T D0 ),gk(v)
Ly — 1\ L(—1)Lt=k A(1)
( k )(Ls—l).(l—l). L,—k

e (La—k)/7
d"yl.

|OM|

(37)

k=0

where

+oo
ok(7) = / logy(1 + )

So we can obtain the desired result (32).

Finally, when N, = L, we can readily prove (33)) with the
help of the knowledge of unordered statistics. (]

Remark 3: Now let Ny = L, and assume that L;; = L for
any ¢ and j (i.e., all subchannels H;; have the same number of
propagation paths). When N,, — oo and N; — oo, the ergodic
achievable rate of the distributed MIMO system, R.n, can be
rewritten as

Reh(Kta Kr)

(38)

= KK, LA(Y(Ky, K,)). (39)

Furthermore, consider a co-located MIMO system in which
the numbers of transmit and receiver antennas are equal to
KN, and K, N,, respectively. Then its asymptotic ergodic
achievable rate can be expressed as

Ren(1,1) = LA(K K, 7 (Ky, K..)). (40)

Remark 4: Generally, the coefficient set {7;} is inhomo-
geneous. Let Y0, = max{¥;} and i, = min{7;}. Then
the ergodic achievable rate with inhomogeneous coefficient set
{%1}, Re, has the following upper and lower bounds:

Reh (;?mzn) S Re({ﬁ/l}) S Reh(:)/max)- (41)

T T
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Fig. 3. Rate versus SNR,, for different numbers of antennas.

Assuming that Nt(rf) - N = on, and N, =

N; = N, Fig.3 plots the ergodic achievable rate curves versus
SNR, = ¥ for different numbers of antennas, N = 5,10, 50.
In Fig.3, we set Ny = 6, K, = K; = 2, and L = 3. As
expected, it can be seen that the rate performance is improved
as N increases. Obviously, the rate curve with N = 10 is
very close to the curve with limit results obtained based on
(30) while the rate curve with N = 50 is almost the same as
the curve with limit results. This verifies Theorem 1.

IV. MULTIPLEXING GAIN ANALYSIS AND
DIVERSITY-MULTIPLEXING TRADEOFF

A. Multiplexing Gain Analysis

Definition 1: Let v = LL ZlL:Sl 7;. The distributed MIMO
system is said to achieve spatial multiplexing gain G, if its
ergodic date rate with optimal power allocation satisfies
T 26))

Gm(R,
(Ro) = o0 logy 7'

(42)

Theorem 2: Assume that both sets {a,.(¢7!,67!)} and

(I RREY]
{a, (¢}, 0)} are orthogonal vector sets when N,. and Ny are
very large. Assume that N, and NV, are always very large but
fixed and finite when 4y — oco. Let Ny < Lg. Then the spatial

multiplexing gain is given by

Gm(R,) = Ns. (43)

Proof: We first consider the simple homogeneous case with
Y1 =2 = = L. = 7 and derive the spatial multiplexing
gain with respect to Rep. In this case, ¥ = 7. Obviously,

(44)

For the lth data stream, under the condition of very large N,
and N,, the individual ergodic rate can be written as

RY (%) = Elogy (1 +7|6:[%). (45)
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Fig. 4. Multiplexing gain versus SNR,, for different numbers of data streams.

Noting that
5 5 !
Elogy(|fif*) < Elogy(1+|51*) = B)(1)
and Rg(l) is a finite value, we can have that
RO (5
711II1 eh (’Z)
y—oo logy ¥

log, ¥ + Elng“Bl %)
log, ¥

(46)

Gg@) (Reh)

= lim

N—r00

= 1

Therefore, G, (Ren) = Zf\il oW (Ren) = N.

Now we consider the general inhomogeneous case with
equal power allocation. Because Cpin = Yimin /7 and ¢z =
Amaz/7 be finite when 5 — oo. Consequently, it readily
follows that both of the two systems with the achievable rates
Ren (Amin) and Rep, (maz) can achieve a multiplexing gain of
Gm(Rer) = Ns. So we conclude from (&) that the distributed
MIMO system with the achievable rate R.(%) can achieve a
multiplexing gain of G,,(R.) = Nj.

Finally, it can be readily shown that the system with the
optimal achievable rate R,(¥) can only achieve multiplexing
gain G, (R,) = N, since both of the equal power allocation
systems with the achievable rates R.(P/N;) and R.(P) have
the same spatial multiplexing gain Nj. (]

Remark 5: Assume that L;; = L for any ¢ and j. Theorem 2
implies that the distributed massive MIMO system can obtain
a maximum spatial multiplexing gain of K, K;L while the co-
located massive MIMO system can only obtain a maximum
spatial multlplexm% gain of L.

Now we let N\™ = NI = 2N, [-] and K, = K, = K,
and set L = 3 and NT = Ny = 50. We consider the
homogeneous case and define W(7) = loﬁgm In order to
verify Theorem 2, Fig.4 plots the curves of ¥(7) versus
SNR, = # for different numbers of data streams, namely,
Ny =1,2,3 when K =2 and Ny, = 3,6,12 when K = 2. It
can be seen that for any given N, the function ¥ (%) converges
to the limit value Ny as 7y grows large. This observation is
expected and agrees with Theorem 2.

(47)

B. Diversity-Multiplexing Tradeoff

The previous subsection shows how much the maximal
spatial multiplexing gain we can extract for a distributed
mmWave-massive MIMO system while our previous work in
indicates how much the maximal spatial diversity gain
we can extract. However, maximizing one type of gain will
possibly result in minimizing the other. We need to bridge
between these two extremes in order to simultaneously obtain
both types of gains. We firstly give the precise definition of
diversity gain before we carry on the analysis.

Definition 2: Let 4 = 7~ S7/°, 4;. The distributed MIMO
system is said to achieve spatial diversity gain G4 if its average
error probability satisfies

_ P.(5
G4(P,) = — lim &) (48)
F—oc logy ¥
or its outage probability satisfies
D pou Y
Gl Pout) = — Jim 220, (49)

y—oo logy

With the help of a result of diversity analysis from [32]], we
can derive the following DMT result.

Theorem 3: Assume that both sets {a,(¢}},0;!)} and
{a; (¢}, 0:%)} are orthogonal vector sets when N, and N; are
very large. Assume that N, and NV, are always very large but
fixed and finite when 7 — oo. Let Ny < Lg . For a given
d € [0, L], by using optimal power allocation, the distributed
MIMO system with N data streams can reach the following
maximum spatial multiplexing gain at diversity gain G4 = d

d
=20 )

=1

(50)

Proof: We first consider the simple case where the dis-
tributed system is the one with equal power allocation and
the channel is the one with homogeneous large scale fading
coefficients. The distributed system has L available link paths
in all. For the [th best path, its individual maximum diversity
gain is equal to Gfll) = Ls — 1+ 1 [32]. Due to the fact that
each path can not obtain a multiplexing gain of GEQ > 1
[31], we therefore design its target data rate R() = 7, logy 7
with 0 < 7 < 1. Then the individual outage probability is
expressed as

j20)

P(logy(1 +7|4i]?) < rilog,¥)
. AT 1

= P(AP <) 51)

Y

From [37], [38]], the PDF of the parameter y = | Bl|2 can be

written as

aMLsfl + O( Lsfl)

)

ut

fu =
where a is a positive constant. So P(f

P, = (e7)”

where c is a positive constant. This means that this path now
can obtain diversity gain

G = (Ly— 1+ 1)1 —r).

(52)
can be rewritten as

(Ls—1+1)(1— Tz)_|_0(( )~ (Ls l+1)(1*m)) (53)

(54)
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Fig. 5. Diversity-multiplexing tradeoff G, (d) for a general integer d.

Since the distributed system requires the system diversity gain
G4 > d, this implies that

GV = (Li—1+1)1-r)>d (55)
or say )
<(1—-—)". 56
i < ( .1+ 1) (56)
To this end, under the condition that the diversity gain satisfies
G4 = d, the maximum spatial multiplexing gain of the
distributed system must be equal to
Ls
= *. 57
; T = Z l T 1) (57)

This proves that (30) holds under the special case. We
readily show that for a general case, the Ith best path can also
reach a maximum diversity gain of Ly — [ + 1. So applying
(@1 and [29) leads to the desired result. O

Remark 6: When d is an integer, G,,(d) can be expressed
31mp1y In particular Gn(0) = L, if d = 0; Gu(1) =

St ifd =1 Gu(Le— 1) = £ ifd=L,— 1
Gn(L )—Olfd L. In general, if d = Ly — Ny + 1 for a
given integer N; < Lg, then
N.—1
- Ny —1
Gm(Ls — Ng+1) = — 58
( +1) l; I oT+1 (58)

The function G,,(d) is plotted in Fig.5. Note that G, (L
N) = G(Ls — No+ 1) = 320 7171 Generally, when
d € [Ls— Ns,Ls— Ns+ 1), the multiplexing gain is given
by
N, d
Gm(d) = N, ;LS_ZH. (59)

Example 1: We set that L = 3 and K; = K, = 2. So
Ly = 12. The DMT curve with fractional multiplexing gains
is shown in Fig.6. If the multiplexing gains be limited to
integers, the corresponding DMT curve is also plotted in Fig.6
for comparison.
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Fig. 6. Diversity-multiplexing tradeoff when L = 3 and K; = K, = 2.

V. MULTIPLEXING GAIN ANALYSIS FOR THE MULTIUSER
SCENARIO

This section considers the downlink communication in a
multiuser massive MIMO system as illustrated in Fig. 7. Here
the base station (BS) employs K, RAUs with each having NV,
antennas and N, ) RF chains to transmit data streams to K,
mobile stations. Each mobile station (MS) is equipped with
N,, antennas and ngrf) RF chains to support the reception of
its own N, data streams. This means that there is a total of
K, N data streams transmitted by the BS. The numbers of
data streams are constrained as K, N, < N, (rf) < KuN, for
the BS, and N, < NI < N, for each MS.

At the BS, denote by F; the K, Ny x lerf) RF precoder
and by Wy, the Nérf) x N K,, baseband precoder. Then under
the narrowband flat fading channel model, the received signal
vector at the ith MS is given by

vi=HF,Wys+n,, i=1,2,.... K, (60)
where s is the signal vector for all K, mobile stations,
which satisfies E[ss!] = BN, N —— Ik, N, and P is the average
transmit power. The NV,, x 1 vector n; represents additive white
Gaussian noise, whereas the N, x K, N, matrix H; is the
channel matrix corresponding to the ¢th MS, whose entries
H,; are described as in Section II. Furthermore, the signal
vector after combining can be expressed as

=WIFrEH, F,W;s + WIFZ

ur ur ut ut

n;, 1=12,..., K,
, 1)
where F,; is the N, x fof) RF combining matrix and W ;
is the ngrf) x Ny baseband combining matrix for the :th MS.
Theorem 4: Assume that all antenna array configurations
for the downhnk transmission are ULA. For the 7th user, let
= Z b Lij and 0 < d < LY In the limit of large
Nb and Nu, the ith user can achieve the following maximum
spatial multiplexing gain when its individual diversity gain
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Fig. 7. Block diagram of a multiuser mmWave system with distributed antenna arrays.

satisfies Gl(ii) =d®

Li

G%):Z(l— d®

&y (62)
= L -1+

Proof: For the downlink transmission in a massive MIMO
multiuser system, the overall equivalent multiuser basedband
channel can be written as

Ffl 0 0 H;
0 FL ... 0 H,

Heq = | . : - : : Fy. (63)
0o o0 .- FH Hy,

On the other hand, when both N, and N,, are very large, both
receive and transmit array response vector sets, {ér(qﬁfjl, 9”)}
and {a,( ﬁ,@”)}, are orthogonal sets. Therefore the multi-
plexing gain for the ith user can depend only on the subchannel
matrix H; and the choices of F,; and F;. The subchannel
matrix H; has a total of Lgl) propagation paths. Similar to the
proof of Theorem 2, by employing the optimal RF precoder
and combiner for the ith user, when its diversity gain satisfies
G, = d®, the user can achieve a maximum multiplexing gain
of

LY 4@
G =N"1-——rn— 7T (64)
l; LY —1+1
So we obtain the desired result. O

Remark 7: Consider the case that all antenna array config-
urations for the downlink transmission are ULA and L;; = L
for any ¢ and j . Let 0 < d < K3 L. In the limit of large
Ny and N, the downlink transmission in the massive MIMO
multiuser system can achieve the following maximum spatial
multiplexing gain at diversity gain G4 = d

KL

Gom ZG(”—K Z

i=1

74—
KbL—l—i-l) ' (65)

Remark 8: In a similar fashion, it is easy to prove that the
uplink transmission in the massive MIMO multiuser system
can also achieve simultaneously a diversity gain of Gy = d
(0 <£d < KyL) and a spatial multiplexing gain of

_KZ

4y
KbL—l+1) ' (66)

VI. CONCLUSION

This paper has investigate the distributed antenna subar-
ray architecture for mmWave massive MIMO systems and
provided the asymptotical multiplexing analysis when the
number of antennas at each subarray goes to infinity. In
particular, this paper has derived the closed-form formulas
of the asymptotical available rate and spatial maximum mul-
tiplexing gain under the assumption which the subchannel
matrices between different antenna subarray pairs behave
independently. The spatial multiplexing gain formula shows
that mmWave systems with the distributed antenna architecture
can achieve potentially rather larger multiplexing gain than
the ones with the conventional co-located antenna architecture.
On the other hand, using the distributed antenna architecture
can also achieve potentially rather higher diversity gain. For a
given mmWave massive MIMO channel, both types of gains
can be simultaneously obtained. This paper has finally given
a simple DMT tradeoff solution, which provides insights for
designing a mmWave massive MIMO system.
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