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MIMO Systems
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Abstract—This paper is concerned with spatial multiplexing
analysis for millimeter-wave (mmWave) massive MIMO systems.
For a single-user mmWave system employing distributed antenna
subarray architecture in which the transmitter and receiver
consist of Kt and Kr subarrays, respectively, an asymptotic
multiplexing gain formula is firstly derived when the numbers of
antennas at subarrays go to infinity. Specifically, assuming that
all subchannels have the same number of propagation paths L,
the formula states that by employing such a distributed antenna-
subarray architecture, an exact multiplexing gain of Ns can be
achieved, where Ns ≤ KrKtL is the number of data streams.
This result means that compared to the co-located antenna
architecture, using the distributed antenna-subarray architecture
can scale up the maximum multiplexing gain proportionally to
KrKt. In order to further reveal the relation between diversity
gain and multiplexing gain, a simple characterization of the
diversity-multiplexing tradeoff is also given. The multiplexing
gain analysis is then extended to the multiuser scenario. More-
over, simulation results obtained with the hybrid analog/digital
processing corroborate the analysis results.

Index Terms—Millimeter-wave communications, massive
MIMO, multiplexing gain, diversity gain, diversity-multiplexing
tradeoff, distributed antenna-subarrays, hybrid precoding.

I. INTRODUCTION

Recently, millimeter-wave (mmWave) communication has

gained considerable attention as a candidate technology for

5G mobile communication systems and beyond [1]–[3]. The

main reason for this is the availability of vast spectrum in the

mmWave band (typically 30-300 GHz) that is very attractive

for high data rate communications. However, compared to

communication systems operating at lower microwave fre-

quencies (such as those currently used for 4G mobile commu-

nications), propagation loss in mmWave frequencies is much

higher, in the orders-of-magnitude. Fortunately, given the

much smaller carrier wavelengths, mmWave communication

systems can make use of compact massive antenna arrays to

compensate for the increased propagation loss.

Nevertheless, the large-scale antenna arrays together with

high cost and large power consumption of the mixed ana-

log/digital signal components makes it difficult to equip a
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separate radio-frequency (RF) chain for each antenna and

perform all the signal processing in the baseband. Therefore,

research on hybrid analog-digital processing of precoder and

combiner for mmWave communication systems has attracted

very strong interests from both academia and industry [4] −
[16]. In particular, a lot of work has been performed to

address challenges in using a limited number of RF chains. For

example, the authors in [4] considered single-user precoding

in mmWave massive MIMO systems and established the

optimality of beam steering for both single-stream and multi-

stream transmission scenarios. In [10], the authors showed that

hybrid processing can realize any fully digital processing if the

number of RF chains is twice the number of data streams.

However, due to the fact that mmWave signal propagation

has an important feature of multipath sparsity in both the

temporal and spatial domains [17]–[20], it is expected that

the potentially available benefits of diversity and multiplexing

are indeed not large if the deployment of the antenna arrays is

co-located. In order to enlarge diversity/multiplexing gains in

mmWave massive MIMO communication systems, this paper

consider the use of a more general array architecture, called

distributed antenna subarray architecture, which includes lo-

located array architecture as a special case. It is pointed out

that distributed antenna systems have received strong interest

as a promising technique to satisfy such growing demands for

future wireless communication networks due to the increased

spectral efficiency and expanded coverage [21] − [25].

It is well known that diversity-multiplexing tradeoff (DMT)

is a compact and convenient framework to compare differ-

ent MIMO systems in terms of the two main and related

system indicators: data rate and error performance [26]–[31].

This tradeoff was originally characterized by Zheng and Tse

[26] for MIMO communication systems operating over i.i.d.

Rayleigh fading channels. The framework has then ignited a

lot of interests in analyzing various communication systems

and under different channel models. For a mmWave massive

MIMO system, how to quantify the diversity and multiplexing

performance and further characterize its DMT is a fundamental

and open research problem. In particular, to the best of

our knowledge, until now there is no unified multiplexing

gain analysis for mmWave massive MIMO systems that is

applicable to both co-located and distributed antenna array

architectures.

To fill this gap, this paper investigates the multiplexing

performance of mmWave massive MIMO systems with the

proposed distributed subarray architecture. The focus is on

the asymptotical multiplexing gain analysis in order to find

out the potential multiplexing advantage provided by multiple

http://arxiv.org/abs/1801.02987v2


2

distributed antenna arrays. The obtained analysis can be used

conveniently to compare various mmWave massive MIMO

systems with different distributed antenna array structures.

The main contributions of this paper are summarized as

follows:

• For a single-user system with the proposed distributed

subarray architecture, a multiplexing gain expression is

obtained when the number of antennas at each subarray

increases without bound. This expression clearly indicates

that one can obtain a large multiplexing gain by employ-

ing the distributed subarray architecture.

• A simple DMT characterization is further given. It can

reveal the relation between diversity gain and multiplex-

ing gain and let us obtain insights to understand the

overall resources provided by the distributed antenna

architecture.

• The multiplexing gain analysis is then extended to the

multiuser scenario with downlink and uplink transmis-

sion.

• Simulation results are provided to corroborate the analy-

sis results and show that the distributed subarray architec-

ture yields significantly better multiplexing performance

than the co-located single-array architecture.

The remainder of this paper is organized as follows. Section

II describes the massive MIMO system model and hybrid pro-

cessing with the distributed subarray architecture in mmWave

fading channels. Section III and Section IV provides the

asymptotical achievable rate analysis and the multiplexing gain

analysis for the single-user mmWave system, respectively. In

Section V, the multiplexing gain analysis is extended to the

multiuser scenario. Section VI concludes the paper.

Throughout this paper, the following notations are used.

Boldface upper and lower case letters denote matrices and

column vectors, respectively. The superscripts (·)T and (·)H
stand for transpose and conjugate-transpose, respectively.

diag{a1, a2, . . . , aN} stands for a diagonal matrix with di-

agonal elements {a1, a2, . . . , aN}. The expectation operator

is denoted by E(·). [A]ij gives the (i, j)th entry of matrix

A. A
⊗

B is the Kronecker product of A and B. We write a

function a(x) of x as o(x) if limx→0 a(x)/x = 0. We use (x)+

to denote max{0,x}. Finally, CN (0, 1) denotes a circularly

symmetric complex Gaussian random variable with zero mean

and unit variance.

II. SYSTEM MODEL

Consider a single-user mmWave massive MIMO system as

shown in Fig. 1. The transmitter is equipped with a distributed

antenna array to send Ns data streams to a receiver, which

is also equipped with a distributed antenna array. Here, a

distributed antenna array means an array consisting of several

remote antenna units (RAUs) (i.e., antenna subarrays) that are

distributively located, as depicted in Fig. 2. Specifically, the

antenna array at the transmitter consists of Kt RAUs, each of

which has Nt antennas and is connected to a baseband pro-

cessing unit (BPU) by fiber. Likewise, the distributed antenna

array at the receiver consists of Kr RAUs, each having Nr
antennas and also being connected to a BPU by fibers. Such

a MIMO system shall be referred to as a (Kt,Nt,Kr,Nr)
distributed MIMO (D-MIMO) system. When Kt = Kr = 1,

the system reduces to a conventional co-located MIMO (C-

MIMO) system.

The transmitter accepts as its input Ns data streams and is

equipped with N
(rf)
t RF chains, where Ns ≤ N

(rf)
t ≤ NtKt.

Given N
(rf)
t transmit RF chains, the transmitter can apply a

low-dimension N
(rf)
t ×Ns baseband precoder, Wt, followed

by a high-dimension KtNt × N
(rf)
t RF precoder, Ft. Note

that amplitude and phase modifications are feasible for the

baseband precoder Wt, while only phase changes can be made

by the RF precoder Ft through the use of variable phase

shifters and combiners. The transmitted signal vector can be

written as

x = FtWtP
1/2
t s, (1)

where Pt = [pij ] is a diagonal power allocation matrix with
∑Ns

l=1 pll = 1 and s is the Ns × 1 symbol vector such that

E[ssH ] = P INs
. Thus P represents the average total input

power. Considering a narrowband block fading channel, the

KrNr × 1 received signal vector is

y = HFtWtP
1/2
t s+ n (2)

where H is KrNr×KtNt channel matrix and n is a KrNr×1
vector consisting of i.i.d. CN (0, 1) noise samples. Throughout

this paper, H is assumed known to both the transmitter and

receiver. Given that N
(rf)
r RF chains (where Ns ≤ N

(rf)
r ≤

NrKr) are used at the receiver to detect the Ns data streams,

the processed signal is given by

z = WH
r FHr HFtWtP

1/2
t s+WH

r FHr n (3)

where Fr is the KrNr×N (rf)
r RF combining matrix, and Wr

is the N
(rf)
r ×Ns baseband combining matrix. When Gaussian

symbols are transmitted over the mmWave channel, the the

system achievable rate is expressed as

R = log2 |INs
+PR−1

n WH
r FHr HFtWtPtW

H
t FHt HHFrWr|

(4)

where Rn = WH
r FHr FrWr.

Furthermore, according to the architecture of RAUs at the

transmitting and receiving ends, H can be written as

H =







√
g11H11 · · · √

g1Kt
H1Kt

...
. . .

...√
gKr1HKr1 · · · √

gKrKt
HKrKt






. (5)

In the above expression, gij represents the large scale fading

effect between the ith RAU at the receiver and the jth RAU

at the transmitter, which is assumed to be constant over many

coherence-time intervals. The normalized subchannel matrix

Hij represents the MIMO channel between the jth RAU at

the transmitter and the ith RAU at the receiver. We assume

that all of {Hij} are independent mutually each other.

A clustered channel model based on the extended Saleh-

Valenzuela model is often used in mmWave channel modeling

and standardization [4] and it is also adopted in this paper. For

simplicity of exposition, each scattering cluster is assumed to
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Fig. 1. Block diagram of a mmWave massive MIMO system with distributed antenna arrays.

Fig. 2. Illustration of distributed antenna array deployment.

contribute a single propagation path.1 Using this model, the

subchannel matrix Hij is given by

Hij =

√

NtNr
Lij

Lij
∑

l=1

αlijar(φ
rl
ij , θ

rl
ij)a

H
t (φtlij , θ

tl
ij), (6)

where Lij is the number of propagation paths, αlij is the

complex gain of the lth ray, and φrlij (θrlij ) and φtlij (θtlij) are

its random azimuth (elevation) angles of arrival and departure,

respectively. Without loss of generality, the complex gains αlij
are assumed to be CN (0, 1). 2 The vectors ar(φ

rl
ij , θ

rl
ij) and

at(φ
tl
ij , θ

tl
ij) are the normalized receive/transmit array response

vectors at the corresponding angles of arrival/departure. For an

N -element uniform linear array (ULA) , the array response

vector is

aULA(φ) =
1√
N

[

1, ej2π
du
λ

sin(φ), . . . , ej2π(N−1) du
λ

sin(φ)
]T

(7)

where λ is the wavelength of the carrier and du is the inter-

element spacing. It is pointed out that the angle θ is not

1This assumption can be relaxed to account for clusters with finite angular
spreads and the results obtained in this paper can be readily extended for such
a case.

2The different variances of αl
ij can easily accounted for by absorbing into

the large scale fading coefficients gij .

included in the argument of aULA since the response for an

ULA is independent of the elevation angle. In contrast, for a

uniform planar array (UPA), which is composed of Nh and

Nv antenna elements in the horizontal and vertical directions,

respectively, the array response vector is represented by

aUPA(φ, θ) = aULA
h (φ) ⊗ aULA

v (θ), (8)

where

aULA
h (φ) =

1√
Nh

[

1, ej2π
dh
λ

sin(φ), . . . , ej2π(Nh−1)
dh
λ

sin(φ)
]T

(9)

and

aULA
v (θ) =

1√
Nv

[

1, ej2π
dv
λ

sin(θ), . . . , ej2π(N
v
−1) dv

λ
sin(θ)

]T

.

(10)

III. ASYMPTOTIC ACHIEVABLE RATE ANALYSIS

From the structure and definition of the channel matrix

H in Section II, there is a total of Ls =
∑Kr

i=1

∑Kt

j=1 Lij
propagation paths. Naturally, H can be decomposed into a

sum of Ls rank-one matrices, each corresponding to one

propagation path. Specifically, H can be rewritten as

H =

Kr
∑

i=1

Kt
∑

j=1

Lij
∑

l=1

α̃lij ãr(φ
rl
ij , θ

rl
ij)ã

H
t (φtlij , θ

tl
ij), (11)

where

α̃lij =

√

gij
NtNr
Lij

αlij , (12)

ãr(φ
rl
ij , θ

rl
ij) is a KrNr × 1 vector whose bth entry is defined

as

[ãr(φ
rl
ij , θ

rl
ij)]b =

{

[ar(φ
rl
ij , θ

rl
ij)]b−(i−1)Nr

, b ∈ Qri
0, b /∈ Qri

(13)

where Qri = ((i− 1)Nr, iNr]. And ãt(φ
tl
ij , θ

tl
ij) is a KtNt× 1

vector whose bth entry is defined as

[ãt(φ
tl
ij , θ

tl
ij)]b =

{

[at(φ
tl
ij , θ

tl
ij)]b−(j−1)Nt

, b ∈ Qtj
0, b /∈ Qtj.

(14)

where Qtj = ((j − 1)Nt, jNt]. Regarding {ãr(φrlij , θrlij )} and

{ãt(φtlij , θtlij)}, we have the following lemma from [32].

Lemma 1: Suppose that the antenna configurations at

all RAUs are either ULA or UPA. Then all Ls vectors
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{ãr(φrlij , θrlij)} are orthogonal to each other when Nr → ∞.

Likewise, all Ls vectors {ãt(φtlij , θtlij)} are orthogonal to each

other when Nt → ∞.

Mathematically, the distributed massive MIMO system can

be considered as a co-located massive MIMO system with

Ls paths that have complex gains {α̃lij}, receive array re-

sponse vectors {ãr(φrlij , θrlij)} and transmit response vectors

{ãt(φtlij , θtlij)}. Furthermore, order all paths in a decreasing

order of the absolute values of the complex gains {α̃lij}. Then

the channel matrix can be written as

H =

Ls
∑

l=1

α̃lãr(φ
rl, θrl)ãt(φ

tl, θtl)H , (15)

where α̃1 ≥ α̃2 ≥ · · · ≥ α̃Ls .

One can rewrite H in a matrix form as

H = ArDAH
t (16)

where D is a Ls × Ls diagonal matrix with [D]ll = α̃l, and

Ar and At are defined as follows:

Ar = [ãr(φ
r1, θr1), . . . , ãr(φ

rLs , θrLs)] (17)

and

At = [ãt(φ
t1, θt1), . . . , ãt(φ

tLs , θtLs)]. (18)

Since both {ãr(φrl, θrl)} and {ãt(φtl, θtl)} are orthogonal

vector sets when Nr → ∞ and Nt → ∞, Ar and At are

asymptotically unitary matrices. Then one can form a singular

value decomposition (SVD) of matrix H as

H = UΣVH = [Ar|A⊥

r ]Σ[Ãt|Ã⊥

t ]
H (19)

where Σ is a diagonal matrix containing all singular values

on its diagonal, i.e.,

[Σ]ll =

{

|α̃l|, for 1 ≤ l ≤ Ls
0, for l > Ls

(20)

and the submatrix Ãt is defined as

Ãt = [e−jψ1 ãt(φ
t1, θt1), . . . , e−jψLs ãt(φ

tLs , θtLs)] (21)

where ψl is the phase of complex gain α̃l corresponding to the

lth path. Based on (19), the optimal precoder and combiner

are chosen, respectively, as

[FtWt]opt = [e−jψ1 ãt(φ
t1, θt1), . . . , e−jψLs ãt(φ

tNs , θtNs)]
(22)

and

[FrWr]opt = [ãr(φ
r1, θr1), . . . , ãr(φ

rNs , θrNs)]. (23)

To summarize, when Nt and Nr are large enough, the

massive MIMO system can employ the optimal precoder and

combiner given in (22) and (23), respectively.

Now suppose that α̃l = α̃l
′

ij =
√

gij
NtNr

Lij
αl

′

ij for a given l.

We introduce two notations:

γ̃l = Ppllgij
NtNr
Lij

(24)

and

β̃l = αl
′

ij . (25)

Then it follows from the above SVD analysis that the instan-

taneous SNR of the lth data stream is given by

SNRl = Ppll|α̃l|2 = γ̃l|β̃l|2, l = 1, 2, . . . ,Ns. (26)

So we obtain another lemma.

Lemma 2: Suppose that both sets {ãr(φrlij , θrlij)} and

{ãt(φtlij , θtlij)} are orthogonal vector sets when Nr → ∞ and

Nt → ∞. Let Ns ≤ Ls. In the limit of large Nt and Nr, then

the system achievable rate is given by

R =
Ns
∑

l=1

log2(1 + γ̃l|β̃l|2). (27)

Remark 1: (22) and (23) indicate that when Nt and Nr
is large enough, the optimal precoder and combiner can be

implemented fully in RF using phase shifters [4]. Furthermore,

(13) and (14) imply that for each data stream only a couple

of RAUs needs the operation of phase shifters at each channel

realization.

Remark 2: By using the optimal power allocation (i.e., the

well-known waterfilling power allocation [33]), the system can

achieve a maximum achievable rate, which is denoted as Ro.

We use Re(P/Ns) to denote the achievable rate obtained by

using the equal power allocation, namely, pll = P
Ns

, l =
1, 2, . . . ,Ns. Then

Re(P/Ns) ≤ Ro ≤ Re((PNs)/Ns) = Re(P ). (28)

By doing expectation operation on (28), (28) becomes,

R̄e(P/Ns) ≤ R̄o ≤ R̄e(P ). (29)

In what follows, we derive an asymptotic expression of

the ergodic achievable rate with the equal power allocation,

R̄e(P/Ns) (or R̄e for simplicity). For this reason, we need to

define an integral function

∆(x) =

∫ +∞

0

log2(1 + t)e−t/x
1

x
dt

= log2(e)e
1/xE1(1/x) (30)

where E1(·) is the exponential integral of a first-order function

defined as [34], [35]

E1(y) =

∫ +∞

1

e−yt

t
dt

= −E + ln(y)−
∞
∑

k=1

(−y)k
k · k! (31)

with E being the Euler constant.

Theorem 1: Suppose that both sets {ãr(φrlij , θrlij )} and

{ãt(φtlij , θtlij)} are orthogonnal vector sets when Nr → ∞ and

Nt → ∞. Let Ns ≤ Ls and γ̃1 = γ̃2 = . . . = γ̃Ls
= γ̃. Then

in the limit of large Nt and Nr, the ergodic achievable rate

with homogeneous coefficient set {γ̃l}, denoted R̄eh, is given

by

R̄eh =

Ns
∑

l=1

Ls−l
∑

k=0

(−1)Ls−l−kLs!

(Ls − l)!(l − 1)!

(

Ls − l

k

)

∆( γ̃
Ls−k

)

Ls − k
. (32)

When Ns = Ls, R̄eh can be simplified to

R̄eh = Ls∆(γ̃). (33)
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Proof: Due to the assumptions that each complex gain αlij is

CN (0, 1) and the coefficient set {γ̃l} is homogeneous, thus

the instantaneous SNRs in the Ls available data streams are

i.i.d.. Let F (γ) and f(γ) denote the cumulative distribution

function (CDF) and the probability density function (PDF) of

the unordered instantaneous SNRs, respectively. Then γ̃ is just

the average receive SNR of each data stream. Furthermore,

F (γ) and f(γ) can be written as

F (γ) = 1− e−
γ
γ̃ , f(γ) =

1

γ̃
e−

γ
γ̃ . (34)

For the lth best data stream, based on the theory of order

statistics [36], the PDF of the instantaneous receive SNR at

the receiver, denoted γl, is given by

fl:Ls
(γl) =

Ls!

(Ls − l)!(l − 1)!
[F (γl)]

Ls−l[1− F (γl)]
l−1f(γl).

(35)

Inserting (34) into (35), we have that

fl:Ls
(γl) =

Ls−l
∑

k=0

Ls!(−1)Ls−l−k

(Ls − l)!(l − 1)!

(

Ls − l

k

)

e−γl(Ls−k)/γ̃

γ̃
.

(36)

By the definition of the function ∆(·), the ergodic available

rate for the lth data stream can therefore be written as

R
(l)
eh =

∫ +∞

0

log2(1 + γl)fl:Ls
(γl)dγl

=

Ls−l
∑

k=0

(

Ls − l

k

)

Ls!(−1)Ls−l−k

(Ls − l)!(l − 1)!
gk(γ̃)

=

Ls−l
∑

k=0

(

Ls − l

k

)

Ls!(−1)Ls−l−k

(Ls − l)!(l − 1)!

∆( γ̃
Ls−k

)

Ls − k
(37)

where

gk(γ̃) =

∫ +∞

0

log2(1 + γl)
e−γl(Ls−k)/γ̃

γ̃
dγl. (38)

So we can obtain the desired result (32).

Finally, when Ns = Ls, we can readily prove (33) with the

help of the knowledge of unordered statistics. �

Remark 3: Now let Ns = Ls and assume that Lij = L for

any i and j (i.e., all subchannels Hij have the same number of

propagation paths). When Nr → ∞ and Nt → ∞, the ergodic

achievable rate of the distributed MIMO system, R̄eh, can be

rewritten as

R̄eh(Kt,Kr) = KtKrL∆(γ̃(Kt,Kr)). (39)

Furthermore, consider a co-located MIMO system in which

the numbers of transmit and receiver antennas are equal to

KtNt and KrNr, respectively. Then its asymptotic ergodic

achievable rate can be expressed as

R̄eh(1, 1) = L∆(KtKrγ̃(Kt,Kr)). (40)

Remark 4: Generally, the coefficient set {γ̃l} is inhomo-

geneous. Let γ̃max = max{γ̃l} and γ̃min = min{γ̃l}. Then

the ergodic achievable rate with inhomogeneous coefficient set

{γ̃l}, R̄e, has the following upper and lower bounds:

R̄eh(γ̃min) ≤ R̄e({γ̃l}) ≤ R̄eh(γ̃max). (41)
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Fig. 3. Rate versus SNRa for different numbers of antennas.

Assuming that N
(rf)
t = N

(rf)
r = 2Ns [10] and Nr =

Nt = N , Fig.3 plots the ergodic achievable rate curves versus

SNRa = γ̃ for different numbers of antennas, N = 5, 10, 50.

In Fig.3, we set Ns = 6, Kr = Kt = 2, and L = 3. As

expected, it can be seen that the rate performance is improved

as N increases. Obviously, the rate curve with N = 10 is

very close to the curve with limit results obtained based on

(30) while the rate curve with N = 50 is almost the same as

the curve with limit results. This verifies Theorem 1.

IV. MULTIPLEXING GAIN ANALYSIS AND

DIVERSITY-MULTIPLEXING TRADEOFF

A. Multiplexing Gain Analysis

Definition 1: Let γ̄ = 1
Ls

∑Ls
l=1 γ̃l. The distributed MIMO

system is said to achieve spatial multiplexing gain Gm if its

ergodic date rate with optimal power allocation satisfies

Gm(R̄o) = lim
γ̄→∞

R̄o(γ̄)

log2 γ̄
. (42)

Theorem 2: Assume that both sets {ãr(φrlij , θrlij )} and

{ãt(φtlij , θtlij)} are orthogonal vector sets when Nr and Nt are

very large. Assume that Nr and Nt are always very large but

fixed and finite when γ̄ → ∞. Let Ns ≤ Ls. Then the spatial

multiplexing gain is given by

Gm(R̄o) = Ns. (43)

Proof: We first consider the simple homogeneous case with

γ̃1 = γ̃2 = . . . = γ̃Ls
= γ̃ and derive the spatial multiplexing

gain with respect to R̄eh. In this case, γ̄ = γ̃. Obviously,

Gm(R̄eh) = lim
γ̄→∞

R̄eh(γ̄)

log2 γ̄
=

Ns
∑

l=1

lim
γ̄→∞

R̄leh(γ̄)

log2 γ̄
. (44)

For the lth data stream, under the condition of very large Nt
and Nr, the individual ergodic rate can be written as

R
(l)
eh(γ̄) = E log2(1 + γ̄|β̃l|2). (45)
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Fig. 4. Multiplexing gain versus SNRa for different numbers of data streams.

Noting that

E log2(|β̃l|2) ≤ E log2(1 + |β̃l|2) = R
(l)
eh(1) (46)

and R
(l)
eh(1) is a finite value, we can have that

G(l)
m (R̄eh) = lim

γ̄→∞

R
(l)
eh(γ̄)

log2 γ̄

= lim
γ̄→∞

log2 γ̄ + E log2(|β̃l|2)
log2 γ̄

= 1. (47)

Therefore, Gm(R̄eh) =
∑Ns

l=1G
(l)
m (R̄eh) = Ns.

Now we consider the general inhomogeneous case with

equal power allocation. Because cmin = γ̃min/γ̄ and cmax =
γ̃max/γ̄ be finite when γ̄ → ∞. Consequently, it readily

follows that both of the two systems with the achievable rates

R̄eh(γ̃min) and R̄eh(γ̃max) can achieve a multiplexing gain of

Gm(R̄eh) = Ns. So we conclude from (41) that the distributed

MIMO system with the achievable rate R̄e(γ̄) can achieve a

multiplexing gain of Gm(R̄e) = Ns.
Finally, it can be readily shown that the system with the

optimal achievable rate R̄o(γ̄) can only achieve multiplexing

gain Gm(R̄o) = Ns since both of the equal power allocation

systems with the achievable rates R̄e(P/Ns) and R̄e(P ) have

the same spatial multiplexing gain Ns. �

Remark 5: Assume that Lij = L for any i and j. Theorem 2

implies that the distributed massive MIMO system can obtain

a maximum spatial multiplexing gain of KrKtL while the co-

located massive MIMO system can only obtain a maximum

spatial multiplexing gain of L.

Now we let N
(rf)
t = N

(rf)
r = 2Ns [10] and Kr = Kt = K ,

and set L = 3 and Nr = Nt = 50. We consider the

homogeneous case and define Ψ(γ̄) = R̄eh(γ̄)
log2 γ̄

. In order to

verify Theorem 2, Fig.4 plots the curves of Ψ(γ̄) versus

SNRa = γ̄ for different numbers of data streams, namely,

Ns = 1, 2, 3 when K = 2 and Ns = 3, 6, 12 when K = 2. It

can be seen that for any givenNs, the function Ψ(γ̄) converges

to the limit value Ns as γ̄ grows large. This observation is

expected and agrees with Theorem 2.

B. Diversity-Multiplexing Tradeoff

The previous subsection shows how much the maximal

spatial multiplexing gain we can extract for a distributed

mmWave-massive MIMO system while our previous work in

[32] indicates how much the maximal spatial diversity gain

we can extract. However, maximizing one type of gain will

possibly result in minimizing the other. We need to bridge

between these two extremes in order to simultaneously obtain

both types of gains. We firstly give the precise definition of

diversity gain before we carry on the analysis.

Definition 2: Let γ̄ = 1
Ls

∑Ls
l=1 γ̃l. The distributed MIMO

system is said to achieve spatial diversity gain Gd if its average

error probability satisfies

Gd(P̄e) = − lim
γ̄→∞

P̄e(γ̄)

log2 γ̄
. (48)

or its outage probability satisfies

Gd(P̄out) = − lim
γ̄→∞

P̄out(γ̄)

log2 γ̄
. (49)

With the help of a result of diversity analysis from [32], we

can derive the following DMT result.

Theorem 3: Assume that both sets {ãr(φrlij , θrlij )} and

{ãt(φtlij , θtlij)} are orthogonal vector sets when Nr and Nt are

very large. Assume that Nr and Nt are always very large but

fixed and finite when γ̄ → ∞. Let Ns ≤ Ls . For a given

d ∈ [0,Ls], by using optimal power allocation, the distributed

MIMO system with Ns data streams can reach the following

maximum spatial multiplexing gain at diversity gain Gd = d

Gm =

Ls
∑

l=1

(1− d

Ls − l + 1
)+. (50)

Proof: We first consider the simple case where the dis-

tributed system is the one with equal power allocation and

the channel is the one with homogeneous large scale fading

coefficients. The distributed system has Ls available link paths

in all. For the lth best path, its individual maximum diversity

gain is equal to G
(l)
d = Ls − l + 1 [32]. Due to the fact that

each path can not obtain a multiplexing gain of G
(l)
m > 1

[31], we therefore design its target data rate R(l) = rl log2 γ̄
with 0 ≤ rl ≤ 1. Then the individual outage probability is

expressed as

P
(l)
out = P(log2(1 + γ̄|β̃l|2) < rl log2 γ̄)

= P(|β̃l|2 <
γ̄rl − 1

γ̄
). (51)

From [37], [38], the PDF of the parameter µ = |β̃l|2 can be

written as

fµ = aµLs−l + o(µLs−l) (52)

where a is a positive constant. So P
(l)
out can be rewritten as

P
(l)
out = (cγ̄)−(Ls−l+1)(1−rl) + o((γ̄)−(Ls−l+1)(1−rl)) (53)

where c is a positive constant. This means that this path now

can obtain diversity gain

G
(l)
d = (Ls − l + 1)(1− rl). (54)
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Since the distributed system requires the system diversity gain

Gd ≥ d, this implies that

G
(l)
d = (Ls − l+ 1)(1 − rl) ≥ d (55)

or say

rl ≤ (1− 1

Ls − l + 1
)+. (56)

To this end, under the condition that the diversity gain satisfies

Gd = d, the maximum spatial multiplexing gain of the

distributed system must be equal to

Gm(R̄eh) =

Ls
∑

l=1

rl =

Ls
∑

l=1

(1− d

Ls − l + 1
)+. (57)

This proves that (50) holds under the special case. We

readily show that for a general case, the lth best path can also

reach a maximum diversity gain of Ls − l + 1. So applying

(41) and (29) leads to the desired result. �

Remark 6: When d is an integer, Gm(d) can be expressed

simply. In particular, Gm(0) = Ls if d = 0; Gm(1) =
∑Ls−1

l=1
Ls−l
Ls−l+1 if d = 1; Gm(Ls − 1) = 1

Ls
if d = Ls − 1;

Gm(Ls) = 0 if d = Ls. In general, if d = Ls −Ns + 1 for a

given integer Ns ≤ Ls, then

Gm(Ls −Ns + 1) =

Ns−1
∑

l=1

Ns − l

Ls − l + 1
. (58)

The function Gm(d) is plotted in Fig.5. Note that Gm(Ls −
Ns) − Gm(Ls − Ns + 1) =

∑Ns

l=1
1

Ls−l+1 . Generally, when

d ∈ [Ls −Ns,Ls −Ns + 1) , the multiplexing gain is given

by

Gm(d) = Ns −
Ns
∑

l=1

d

Ls − l + 1
. (59)

Example 1: We set that L = 3 and Kt = Kr = 2. So

Ls = 12. The DMT curve with fractional multiplexing gains

is shown in Fig.6. If the multiplexing gains be limited to

integers, the corresponding DMT curve is also plotted in Fig.6

for comparison.
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V. MULTIPLEXING GAIN ANALYSIS FOR THE MULTIUSER

SCENARIO

This section considers the downlink communication in a

multiuser massive MIMO system as illustrated in Fig. 7. Here

the base station (BS) employs Kb RAUs with each having Nb
antennas and N

(rf)
b RF chains to transmit data streams to Ku

mobile stations. Each mobile station (MS) is equipped with

Nu antennas and N
(rf)
u RF chains to support the reception of

its own Ns data streams. This means that there is a total of

KuNs data streams transmitted by the BS. The numbers of

data streams are constrained as KuNs ≤ N
(rf)
b ≤ KbNb for

the BS, and Ns ≤ N
(rf)
u ≤ Nu for each MS.

At the BS, denote by Fb the KbNb × N
(rf)
b RF precoder

and by Wb the N
(rf)
b ×NsKu baseband precoder. Then under

the narrowband flat fading channel model, the received signal

vector at the ith MS is given by

yi = HiFbWbs + ni, i = 1, 2, . . . ,Ku (60)

where s is the signal vector for all Ku mobile stations,

which satisfies E[ssH ] = P
KuNs

IKuNs
and P is the average

transmit power. The Nu×1 vector ni represents additive white

Gaussian noise, whereas the Nu × KbNb matrix Hi is the

channel matrix corresponding to the ith MS, whose entries

Hij are described as in Section II. Furthermore, the signal

vector after combining can be expressed as

zi = WH
uiF

H
uiHiFbWbs +WH

uiF
H
uini, i = 1, 2, . . . ,Ku

(61)

where Fui is the Nu ×N
(rf)
u RF combining matrix and Wui

is the N
(rf)
u ×Ns baseband combining matrix for the ith MS.

Theorem 4: Assume that all antenna array configurations

for the downlink transmission are ULA. For the ith user, let

L
(i)
s =

∑Kb

j=1 Lij and 0 ≤ d(i) ≤ L
(i)
s . In the limit of large

Nb and Nu, the ith user can achieve the following maximum

spatial multiplexing gain when its individual diversity gain
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satisfies G
(i)
d = d(i)

G(i)
m =

Li
s

∑

l=1

(1− d(i)

L
(i)
s − l + 1

)+. (62)

Proof: For the downlink transmission in a massive MIMO

multiuser system, the overall equivalent multiuser basedband

channel can be written as

Heq =











FHu1 0 · · · 0
0 FHu2 · · · 0
...

...
. . .

...

0 0 · · · FHuKu





















H1

H2

...

HKu











Fb. (63)

On the other hand, when both Nb and Nu are very large, both

receive and transmit array response vector sets, {ãr(φrlij , θrlij)}
and {ãt(φtlij , θtlij)}, are orthogonal sets. Therefore the multi-

plexing gain for the ith user can depend only on the subchannel

matrix Hi and the choices of Fui and Fb. The subchannel

matrix Hi has a total of L
(i)
s propagation paths. Similar to the

proof of Theorem 2, by employing the optimal RF precoder

and combiner for the ith user, when its diversity gain satisfies

Gid = d(i), the user can achieve a maximum multiplexing gain

of

G(i)
m =

L(i)
s

∑

l=1

(1− d(i)

L
(i)
s − l + 1

)+. (64)

So we obtain the desired result. �

Remark 7: Consider the case that all antenna array config-

urations for the downlink transmission are ULA and Lij = L
for any i and j . Let 0 ≤ d ≤ KbL. In the limit of large

Nb and Nu, the downlink transmission in the massive MIMO

multiuser system can achieve the following maximum spatial

multiplexing gain at diversity gain Gd = d

Gm =

Ku
∑

i=1

G(i)
m = Ku

KbL
∑

l=1

(1 − d

KbL− l + 1
)+. (65)

Remark 8: In a similar fashion, it is easy to prove that the

uplink transmission in the massive MIMO multiuser system

can also achieve simultaneously a diversity gain of Gd = d
(0 ≤ d ≤ KbL) and a spatial multiplexing gain of

Gm = Ku

Ls
∑

l=1

(1− d

KbL− l + 1
)+. (66)

VI. CONCLUSION

This paper has investigate the distributed antenna subar-

ray architecture for mmWave massive MIMO systems and

provided the asymptotical multiplexing analysis when the

number of antennas at each subarray goes to infinity. In

particular, this paper has derived the closed-form formulas

of the asymptotical available rate and spatial maximum mul-

tiplexing gain under the assumption which the subchannel

matrices between different antenna subarray pairs behave

independently. The spatial multiplexing gain formula shows

that mmWave systems with the distributed antenna architecture

can achieve potentially rather larger multiplexing gain than

the ones with the conventional co-located antenna architecture.

On the other hand, using the distributed antenna architecture

can also achieve potentially rather higher diversity gain. For a

given mmWave massive MIMO channel, both types of gains

can be simultaneously obtained. This paper has finally given

a simple DMT tradeoff solution, which provides insights for

designing a mmWave massive MIMO system.
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