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Abstract

In this paper, as a first step in examining the properties of a feasible portfolio
subset that is characterized by budget and risk constraints, we assess the max-
imum and minimum of the investment concentration using replica analysis. To
do this, we apply an analytical approach of statistical mechanics. We note that
the optimization problem considered in this paper is the dual problem of the
portfolio optimization problem discussed in the literature, and we verify that
these optimal solutions are also dual. We also present numerical experiments,
in which we use the method of steepest descent that is based on Lagrange’s
method of undetermined multipliers, and we compare the numerical results to
those obtained by replica analysis in order to assess the effectiveness of our
proposed approach.

Keywords: Portfolio optimization, Replica analysis, Investment risk,

Investment concentration

1. Introduction

The portfolio optimization problem is one of the most important research
topics in the area of mathematical finance, and it is well known that the invest-
ment risk can be reduced by diversifying assets in accordance with the knowledge

obtained from the optimal solutions to this problem [1, 2]. The pioneering re-
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search on this topic was reported by Markowitz in 1952 [3, 4], and it is still an
active area of research [5, 6]. Several recent studies have considered investment
models that use the analytical approaches developed in cross-disciplinary fields,
such as replica analysis, belief propagation methods, and using the distribu-
tion of the eigenvalues of random matrices [7, 8, 9, 10, 11, 12, 13, 14, 15, 16].
For instance, Ciliberti et al [7, 8] used replica analysis in the limit of absolute
zero temperature to examine the minimal investment risk per asset when us-
ing the absolute deviation model or the expected shortfall model. Kondor et
al [9] quantified the sensitivity to noise for several risk functions, including the
in-sample risk, the out-sample risk, and the predicted risk. Moreover, Pafka et
al [10] investigated the relationship between the number of investment periods
and the value of assets, as well as various investment risks such as the predicted
risk and the practical risk. Shinzato [11] used replica analysis to show that for
the mean-variance model, the minimal investment risk and its concentration
are self-averaging. Furthermore, Shinzato [12] developed the replica approach
used in [11] so as to analyze the mean-variance model with the nonidentical
variances of asset returns. Moreover, Shinzato et al [13] developed an algo-
rithm based on a belief propagation method to solve for the optimal portfolio
when using the mean-variance model and the absolute deviation model, and
they proved the Konno-Yamazaki conjecture for a quenched disordered system.
Varga-Haszonits et al [14] used replica analysis to investigate the minimal vari-
ance of deviation of difference between actual return and expected return and
the efficient frontier for the mean-variance model under budget and return con-
straints. In addition, Shinzato [15] examined the minimizing investment risk
problem under the constraints of budget and expected return using the duality
of portfolio optimization problem. Recently, Shinzato [16] used replica analysis
to investigate the minimal investment risk for the mean-variance model with
budget and investment concentration constraints.

Of the studies discussed above, the minimal investment risk for a mean-
variance model with a number of constraints was analyzed only in Refs. [15, 16]

as a natural extension of the mean-variance model with a budget constraint
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considered in Ref. [11]; it turns out that the dual problem is implied in these
portfolio optimization problems. In order to better understand these optimiza-
tion problems, we use the dual structure to analyze them. However, in the
various investigations of this problem that have used analytical approaches that
were developed in cross-disciplinary fields (including replica analysis and an ap-
proach based on using the distribution of the eigenvalues of random matrices),
there are a few studies that analyze the potential of an investment system that
proactively employs a dual structure and the dual problem [15, 16]. Shinzato
[15] first applied the dual structure of portfolio optimization problem so as to
analyze the minimization of investment risk under the constraints of budget
and expected return and the maximization of expected return under the con-
straints of budget and investment risk from multilateral viewpoints. Though the
minimization of investment risk under budget constraint and investment con-
centration is already reported in [16], we need to supportedly examine the dual
problem of already-discussed optimization. Since the investment concentration
is a statistics similar to Herfindahl-Hirschman index (HHI), investigating the
range (or the upper and lower bounds) of investment concentration of optimal
portfolio is valid when investing optimally. The relationship between investment
concentration and HHI is already shown in [15]. As a first step in discussing the
mathematical framework of a dual structure, our aim in this paper is to solve
the dual problem of the portfolio optimization problem [16] and to clarify the
dual structure of these optimization problems.

This paper is organized as follows: in section 2, we state the dual problem of
the portfolio optimization problem with budget and investment concentration
constraints, as discussed in Ref. [16]. In section 3, we use replica analysis
to investigate this dual problem. In section 4, we compare the results of the
replica analysis to those estimated by numerical experiments and evaluate the
effectiveness of our proposed method. In section 5, we present our conclusions

and discuss areas of future work.
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2. Model Setting

As in Refs. [11, 12, 13, 15, 16], we consider a stable investment market in
which there is no regulation of short selling and in which there are N assets. A
portfolio of asset i(=1,---, N) is notated as w;, and a portfolio of N assets is
notated as @ = (w1, wa,--- ,wy)T € RY. We will use the notation T to mean
the transpose of a vector or a matrix. For simplicity, we assume that short selling
is not regulated, and we note that w; is not always nonnegative. We assume p
scenarios (or priods), and the return rate of asset ¢ in scenario u(=1,--- ,p) is
Z;y, where the return rates are independently distributed with a mean E'x[Z;,]
and unit variance. We will consider the feasible portfolio subset W (), which is

subject to the following constraints on the budget and risk constraint:

N
N = Zwi, (1)
=1

1&(1 « ’
Nke = 5; (TN;W (Zip —Ex[xw])> , (2)
where equation (1) is the budget constraint used in Refs. [11, 12, 13, 15, 16],
equation (2) is a risk constraint, and ¢ is the minimal investment risk e = QT’l
Note that equation (2) implies that the investment risk for N assets is k(> 1)
times the minimal investment risk Ne. We will call k the risk coefficient, and the
scenario ratio is defined as & = p/N. In addition, the modified return rate x;, is
defined as x;, = Z;,, — Ex[Z;,], and so the feasible portfolio subset W (k) C RV

can be rewritten as follows:

N T 1 wrE, ’
W(k) = weRY |N=w"¢€ Nke == , 3
(0 2 () ®
where the unit vector €= (1,--- ,1)T € R", and the modified return rate vector
is T, = (1,224, ,onu)T € RN, That is, the Wishart matrix XXT €
RY*N defined by the modified return rate matrix X = {%} € RV*P ig

the metric of the Mahalanobis distance (or, more accurately, half the squared
Mahalanobis distance), %ZETXX T4, which is constant. We need to examine

the portfolios included in the feasible subset W(k) in order to investigate the
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properties of the investment market. We will use the following statistic, which

has been used previously in the literature (e.g., [11]):

1 N
_ 2
G = N 21 w; (4)

For instance, when x = 1, the optimal solution is unique; when x > 1, the
feasible subset W (k) is not empty, and if we can determine the range investment
concentrations, then we can determine the number of portfolios in that subset.

Finally, we note that a previous study [11] examined the optimal solution
that minimizes the investment risk in equation (2) under the budget constraint
in equation (1), and it also analyzed the minimal investment risk. A different
study [16] examined the optimal solution that minimizes the investment risk in
equation (2) under the budget constraint in equation (1) and the investment
concentration constraint in equation (4), and again, it analyzed the minimal
investment risk. We note that this study [16], which discusses the portfolio op-
timization problem with two constraints, is a natural extension of the previous
study [11], which considered only a single constraint. In this paper, we inter-
change the investment concentration constraint and the object function (the

investment risk) to consider the dual of the problem considered in Ref. [16].

3. Replica analysis

In this section, we use replica analysis [17, 18] to investigate the optimization

problem discussed above. The Hamiltonian in this investment system is

N
Hw) = %ZwQ (5)

Following the approach of statistical mechanics, the partition function Z(x, X)

of the inverse temperature 3 is

205, X) = / ~ AGP (@], X)eFHD| ()
o 1~ (aT7,\°
P(w|k, X) = 5<ZwiN>5<N“522<\/N#> >7 (7)
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where X = { f/‘ﬁ} € RN*P is the return rate matrix. From this, the maximum
and minimum of the investment concentration, g, max and ¢y min, respectively,

can be derived using the following formula:

1 N
G = ménvszz){NZW? }

i=1
9
= lim ———logZ(s, X
g g log 25 X)), )
1 N
Gw,min wénVKI/I(lﬁ) {N i—zlwl}
2 0
= lim —=——>logZ(k, X).

In order to assess the bounds of the investment concentration, we use the unified
viewpoint approach of statistical mechanics, although we do not use the Boltz-
mann factor, which is widely used in the literature of statistical mechanics.
Since this representation maintains the mathematical structure of this model,
we can analyze both bounds within large limits of the inverse temperature (.
In addition, in order to examine the typical behavior of this investment system,
we need to evaluate the typical maximum and minimum investment concentra-
tions. That is, we must rigorously average the right-hand side in equation (8)
and equation (9) over the return rate of assets.

In a way similar to that used in previous studies [11, 16], we used replica
analysis and the ansatz of the replica symmetry solution (see Appendix Ap-

pendix A for details), as follows:

. 1
6 = Jlim ~Bx[log Z(s, X)]

1 5 -
= EXtIL _ {_k"i_’{es"_(Xw""qw)(Xw _Qw)
0 X w > Guw > Kw »Guw 2

Guwiw B § _ L dw
o w w ~ - =1 w a~
+ 5 +2(X +q)+2xw 5 log X +2Xw
« alqy,
— X log(1 + Oyy) — — 2w | 10
S lo(1+ 0x,) — 5 r e} (10)

where Extr,, f(m) is the extremum of function f(m) with respect to m , and




the replica symmetry solution is evaluated at a,b=1,2,--- ,n, as follows:

Xw+ Gw a=0b

qwab = 5 (11)
qw a#b
- Xw—Gw a=Dd
Gwab = h (12)
_(jw a 7é b
ke = k, (13)
6, = 0, (14)

where k is the auxiliary variable with respect to equation (1), and 6 is the auxil-
iary variable with respect to equation (2). From this, the extremum conditions

13 in equation (10) are derived as follows:

k= Xuw, (15)
Yo = — (16)
v Xw
G
quw = 1+ ~5 ) 17
7 (17)
ab
. __af )
Xw + B 1+ GXw’ ( 8)
ab?q,,
o= e )
qU (1+9Xw)2 ( 9)
k(a—1) AXw QG
= . 2
5 30+ Oxn) T 20+ )2 (20)

In order to obtain the maximum and minimum, we need to take the limit as
|B] — oo; we use the results presented in Refs. [11, 16]. Then, we assume
Oxw ~ O(1) and g ~ O(1), and so we obtain

1+/a—%

Oy = —Y " 21
X g (21)

A (et V4 (22)

0  T20-2+(a+1)/a—2

From these, we then obtain

v = L@ Uve-i (23)
Blakya—2)
qw = (\/ﬁ;tilf_l) ; (24)
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where, from the seventh term in equation (10), we have f% log Xw = %log Xws

since X, > 0. Note that if 8 > 0, the x.,, and ¢, are both positive, and if 5 < 0,
they are both negative. Moreover, from Egs. (8), (9), and (10), we obtain

o (1 0
= Xw 1 Qu, (25)

is obtained. Since ., is close to 0, then when || — 0o, we obtain

(Var + vi—1)°

qw,max — a_1 y (26)
(\/om — VK — 1)2
Gw,min — a—_1 . (27)

Four points should be noted here. First, both bounds of the investment con-

centration are consistent when x = 1, and S0 @, max = Gw,min = ﬁ Second,

the maximum investment concentration g, max has no upper bound, while the
minimum investment concentration g, min has a lower bound at x = ﬁ, and
SO Quwmin = 1. Third, the optimization problem discussed in the literature is

the dual problem of the one considered in the present work. When 7 = ¢y max,

o (a+1)r—1-2y/ar(r—1)

— , and so the investment risk per asset ¢’ = ke is calcu-

lated as follows:

I =

, ar+ 71— 1—22\/047'(7'— 1). (28)

We note that this coincides with the minimal investment risk per asset obtained
in our previous studies [16, 19]. That is, the portfolio in W (k) that maximizes

the investment concentration corresponds to the portfolio in

R(r) = {weRN|i'e=N,&"w=Nr} (29)
(a+1)7—1+42¢/ar(r—1)

that minimizes the investment risk. If 7 = gy min and k =

a—1 ’

then the investment risk per asset €’/ = ke is

/) a7+7‘—1+2\/m (30)
= .
2 b
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this corresponds to the maximal investment risk per asset found in Refs. [16, 19];
that is, the portfolio in W (k) that minimizes the investment concentration cor-
responds to the portfolio in R(7) in equation (29) that maximizes the investment
risk.

The fourth point considers the annealed disordered system for this invest-
ing strategy (for a detailed explanation of annealed and quenched disordered
systems, see [11]). From our previous studies [11, 13], the minimal expected
investment risk per asset of an annealed disordered system is eOF = S, and so
the risk constraint in equation (2) is replaced by

)]

NkeOR

N

D[R

(31)

p
D Ex
p=1

N

> i
i=1

where Ex[x;,2;,]) = 0;;. From this, the feasible portfolio subset of the annealed

disordered system is calculated as follows:

WOR(k) = {weRN

(32)

Thus, the maximum and minimum of the investment concentration qu are the

same:
G = K (33)

The feasible portfolio subset W (k) in equation (3) is determined by the portfolio
w for which half of the squared Mahalanobis distance is consistent; note that
the metric of the Mahalanobis distance is defined by the Wishart matrix X X7,
which is derived from the return rate matrix X = {zﬁ} € RV*P, However, in
general, since this feasible portfolio subset W (k) is not isotropic, the portfolio
closest to the origin (which minimizes the investment concentration) and the

one farthest from the origin (which maximizes the investment concentration)

are uniquely determined. However, since the feasible portfolio subset of the
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annealed disordered system WO (k) is isotropic, this implies that the maximum

and minimum investment concertation are the same.

4. Numerical Experiments

In order to evaluate the effectiveness of our proposed approach, we numeri-
cally assess the maximum and minimum investment concentration, ¢, max and
Gw,min, respectively, and compare the results with those obtained by replica
analysis. We replace the feasible portfolio subset W (k) in equation (3) with
constraint conditions using Lagrange’s method of undetermined multipliers, and

the object function of Lagrange’s method L(w, k, 6) is defined as follows:
= - T Lop,
L(w,k,0) = 7U W+ k(N —¢e w)+46 ¥ JW — Nke |,
(34)

where k, 6 are the auxiliary variables, and the 4, jth component of the Wishart

matrix J(= XXT) - {Jij} c RVXN ig

1 p
Jij = szﬂw%w (35)
p=1

It is necessary to evaluate the optimal solution of the object function of La-
grange’s method, L(w, k, ), in order to determine the maximum and minimum

of investment concentration. We used the following method of steepest descent:

TR ] .
R TN 0.1 ) -
gt = g LT, 59
where, at step s, the portfolio is @* = (wf, w3, - ,w3)T € RY and the auxil-

iary variables are k%, 6° € R; also, w° = €and k° = #° = 1. When 1, 1, 1w > 0,
we can determine the minimum, and when 7, 79, 7, < 0, we can determine the
maximum. The stopping condition is that A = Zivzl |w$ —wiTH 4+ [k® — k5T +

|65 — 65| is less than 6.

10
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From this, we obtain the M return rate matrices, X',--- , XM, where the

m
xT

mth return rate matrix is X™ = {\/%} € RY*P_ with respect to the risk

coefficient &, using ¢ max (%, X™) and gy min(k, X™), as estimated using the

algorithm given above. These are calculated as follows:

S

1

Qw,max(ﬁ) = M qw,max("€7Xm)v (39)

Il
-

==
NE

QM,min(H) = Qw,min(ﬁva)» (40)

3
I

where the return rate of asset ¢, 7);, is independently and identically distributed
with zero mean and unit variance.

We performed numerical experiments with the following settings: N =
1000,p = 3000, « = p/N = 3, and M = 10. When seeking the minimum,
we used § = 107°, n, = 107,19 = 107°, and 7, = 107!, and when seeking
the maximum, we used n, = —10~', 79 = —107°, and 1, = —10~'. The results
of the replica analysis and numerical experiments are shown in Figs. 1 and 2.
The horizontal axis shows the investment concentration g,,, and the vertical axis
shows the risk coefficient k. Solid lines are the results of the replica analysis
(Egs. (26) and (27)) and the asterisks with error bars are the results of the
numerical simulation (Eqgs. (39) and (40)). The figures show that the results of
the replica analysis are consistent with those of the numerical simulation, and
so we can use replica analysis to accurately analyze the portfolio optimization

problem.

5. Conclusion and Future work

In the present study, we used replica analysis, which was developed for cross-
disciplinary research, to analyze the duality problem of the portfolio optimiza-
tion problem with several constraint conditions, which has been considered in
our previous studies [11, 12, 13, 14, 15, 16]. We determined a feasible portfolio
that maximizes the investment concentration subject to budget and risk con-

straints, and one that minimizes the investment concentration. We applied a

11
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canonical ensemble analysis to a large, complicated system with respect to this
optimization problem with several restrictions. From a unified viewpoint, we
were able to derive the maximum and minimum investment concentrations from
the subset of feasible portfolios. The portfolio optimization problem considered
in this paper is the dual of the optimization problem discussed in our previous
study [16], and we verified that the optimal solutions possess the duality struc-
ture. In the numerical experiments, we used the method of steepest descent that
is based on Lagrange’s method of undetermined multipliers, and we compared
the numerical and theoretical results to verify our proposed approach.

In this and our previous studies [11, 16, 19], we analyzed a portfolio opti-
mization problem subject to several constraints. In the future, we intend to
further examine the complicated relationship between this and the dual prob-
lem in more general situations. In addition, we intend to examine the effects of

regulating short selling.
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Appendix A. Replica analysis

In this appendix, we explain the replica analysis used in the present paper.

As in Ref. [11], Ex[Z™(k, X)], n € Z, is defined as follows:

x[2"(r, X)]

1 oo
= —— / H dWadi,dv, Ex

(2m) e J oo
—&—zn:k:a (wa—N>
—&-izp: i:u,m (v,m — \/» waww>>] . (A1)

p=1a=1

z | Mﬁ
%
VR
2
:

O

|

O |
I <l
—

TN

S
~_—

We caluculate the configuration average at first,

o ( zzmzuwwm)]

zlpl a=1

Ex

N
= EXtT exXp | —5 Z Z UpaUpbGwab — Z Cjwab (Z WiqWip — quab> )
a,b i=1

waw ,Ltlab

(A.2)

where the notation ), , means > ;> ), and Qu = {quwas} € R™", Qu =

{Guwap} € R™™™ and we have the order parameters
T
Quwab = %7 Zwiawib, (A.3)
i=1

and the conjugate parameters G,q,. Moreover,

Nn / H H dw;q exp Z Z Wiqg — 5 Z quabWiaWib + Z kqwiq

©j=1a=1 i=1

N R,
+ 76TrQw + 2kTQw1k> ,

N ~
= exp (—2 log det ’Qu,

13

>
=~




is also assessed. In addition,

n

1 o 2 p 1 1,
Gy /oo H H dtt}q, AV, €XP Z —3 quabuwuub -3 Zeavua
- a,b a=1

p=1a=1 p=1

n
+1 Z UpaVua })
a=1

= exp —Blogdet Qu —d ) (A.5)
2 ~il @

»0 is evaluated. Here, k, is the auxiliary variable with respect to equation (1),
and 6, is the auxiliary variable with respect to equation (2). In addition, k =
(k- k,)T € RY, 0 = (01,---,0,)" € R", & = (1,---,1)T € R", and
© = diag {61,603, ,0,} € R™*™,

In the thermodynamic limit of the number of assets N, we obtain

1
lim i log Ex[Z"(k, X))

N —o00
, 1 A
_ gmw — et wele+ S TrQuQu + 5K QL
1 - w —il
——logdet |Qq| — 2 log det Q (A.6)
2 2 —il O

s If we substitute the replica symmetry solutions from Egs. (11) to (14) into

equation (A.6), we obtain

1
lim NlogEX[Z"(n,X)]

N—oco
npB n . - n(n —1 .
= 7(xw+qw)—nk+m€€9+§(xw+qw)(xw—qw)— (2 )quw
-+ niy —n_llo X —110 (Xw — NGw)
2(>~<w A nq-w) 2 ng 2 g Xw (Iw
-1
—% log(1 + 0xw) — %log(l + Oxw + nlqy). (A.7)

From this, equation (10) is also obtained.
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Figure 1: Comparison of the maximal investment concentration obtained by the replica
analysis to that obtained in the numerical experiments; « = p/N = 3. The horizontal axis
shows the risk coefficient x, and the vertical axis shows the minimal investment concentration
Guw,max- The solid line (orange) shows the results of the replica analysis, the asterisks with
error bars (blue) show the results of the numerical simulation, and the dashed line shows the

investment concentration at x = 1, that is, 5.
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Figure 2: Comparison of the minimal investment concentration obtained by the replica

analysis to that obtained in the numerical experiments; & = p/N = 3. The horizontal axis
shows the risk coefficient k, and the vertical axis shows the maximal investment concentration
Gw,min- The solid line (orange) shows the results of the replica analysis, the asterisks with
error bars (blue) show the results of the numerical simulation, and the dashed line shows the

minimal investment concentration, that is, unity.
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