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The paper explores the usefulness of hybridizing two distinct nature inspired computational intelligence
techniques viz., Artificial Neural Networks (ANN) and Genetic Algorithms (GA) for modeling slump of
Ready Mix Concrete (RMC) based on its design mix constituents viz., cement, fly ash, sand, coarse aggre-
gates, admixture and water-binder ratio. The methodology utilizes the universal function approximation
ability of ANN for imbibing the subtle relationships between the input and output variables and the sto-
chastic search ability of GA for evolving the initial optimal weights and biases of the ANN to minimize the
probability of neural network getting trapped at local minima and slowly converging to global optimum.
The performance of hybrid model (ANN-GA) was compared with commonly used back-propagation neu-
ral network (BPNN) using six different statistical parameters. The study showed that by hybridizing ANN
with GA, the convergence speed of ANN and its accuracy of prediction can be improved. The trained
hybrid model can be used for predicting slump of concrete for a given concrete design mix in quick time
without performing multiple trials with different design mix proportions.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The mathematical relationships commonly used to describe the
material behavior of concrete are available in the form of empirical
formulae derived from experimental results. Although these
empirical relationships in the form of regression equations are
widely used and recommended for extracting knowledge about a
particular property of concrete, yet these cannot be applied
wherein the modeling problem involves a large number of inde-
pendent variables or the interactions among the variables is either
unknown or too complex to represent. In such cases the traditional
technique of regression fails to yield the expected accuracy and
predictability. Over the past few decades nature inspired computa-
tional tool, Artificial Neural Network (ANN) has been used for mod-
eling the real world problems due to its immense ability to capture
inter-relationships among input and output data pairs which are
unknown, nonlinear or too difficult to formulate. This potential
of ANN has been harnessed for wide applications in modeling the
material behavior and properties of concrete. Notable among them
are successful implementations in predicting and modeling com-
pressive strength of self compacting concrete (Uysal & Tanyildizi,
2012), high performance concrete (Yeh, 1998), recycled aggregate
concrete (Duan, Kou, & Poon, 2013), rubberized concrete
(Abdollahzadeh, Masoudnia, & Aghababaei, 2011), fiber reinforced
concrete (FRP)-confined concrete (Naderpour, Kheyroddin, &
Ghodrati Amiri, 2010), durability of high performance concrete
(Parichatprecha & Nimityonskul, 2009), predicting drying shrink-
age of concrete (Bal & Buyle-Bodin, 2013), concrete mix design
(Ji, Lin, & Lin, 2006) and prediction of elastic modulus of normal
and high strength concrete (Demir, 2008).

One of the physical properties of concrete which plays an
important role in the success of RMC industry is its workability.
It signifies the ease, with which fresh concrete can be placed, com-
pacted and finished at site with sufficient resistance to segregation.
Being a quality assurance metric quantitatively measured as con-
crete slump value, it not only controls quality and uniformity of
concrete from batch to batch but also acts a measure to ascertain
the shelf life of the RMC during its transit course from manufactur-
ing plant to subsequent placing at the construction site. Moreover
it ensures that the RMC design mix is customized catering to the
type of construction viz., heavily reinforced sections, lightly rein-
forced sections, road pavements, shallow sections or construction
requiring intensive vibration, demanding high, medium, low, very
low or extremely low workability concrete respectively. Recent
applications of ANN modeling for concrete slump include predic-
tion of slump and strength of ready mix concrete containing
retarders and high strength concrete containing silica fume and
plasticizers (Dias & Pooliyadda, 2001), predicting slump of fly ash

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.08.048&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.08.048
mailto:chandwani2@yahoo.com
mailto:agrawal_vinay_2000@yahoo.com
mailto:agrawal_vinay_2000@yahoo.com
mailto:ravindranagar@hotmail.com
http://dx.doi.org/10.1016/j.eswa.2014.08.048
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


886 V. Chandwani et al. / Expert Systems with Applications 42 (2015) 885–893
and slag concrete (Yeh, 2006), modeling slump of high strength
concrete (Oztas et al., 2006), modeling slump of high performance
concrete (Yeh, 2007) and modeling and analysis of concrete slump
using laboratory test results (Jain, Jha, & Misra, 2008).

Back-propagation neural network (BPNN) due to its ability to
map complex non-linear and unknown relationships is a preferred
choice among researchers for modeling unstructured problems.
BPNN is a multi-layer feed-forward neural network (MFNN)
trained using back-propagation (BP) algorithm. The BP algorithm
is a local search algorithm which employs gradient descent to iter-
atively update the weights and biases of the neural network, min-
imizing the performance function commonly measured in terms of
a squared error between the actual and ANN predicted output.
Despite its popularity as a universal function approximator and
easy implementation, the BP algorithm is faced with inherent
drawback of getting trapped in local minima and slow conver-
gence. The reason for this drawback is attributed to random initial-
ization of synaptic weights and biases prior to training a neural
network. With every re-run of neural network during training
phase, the BP algorithm evaluates a different set of final weights
leading to trained neural network having different prediction per-
formance and convergence speed. In order to minimize the BPNN’s
probability of inconsistency, it is necessary to develop an effective
methodology for improving its prediction performance and con-
vergence to global optima.

To overcome the inherent drawback of BP algorithm, genetic
algorithms (GA) have been harnessed for evolving the optimal ini-
tial weights and biases for ANN. GA is a gradient free global optimi-
zation and search technique inspired by the evolutionary processes
namely, natural selection and genetic variation, which allow simul-
taneous search for optimal solutions in different directions mini-
mizing the chance of getting trapped in a local minimum and
faster convergence. Successful implementations of this methodol-
ogy can be found in Asadi, Shahrabi, Abbaszadeh, and Tabanmehr
(2013), Irani and Nasimi (2011), Johari, Javadi, and Habibagahi
(2011), Pendharkar (2009), Sedki, Ouazar, and El Mazoudi (2009),
Tan, He, Nie, Zhang, and Hu (2014). Despite numerous applications
of integrating GA with ANN in various fields of study, the method-
ology has not been explored so far for modeling slump of concrete.
The study deals with amalgamating the universal function approx-
imating ability of BPNN and the global search ability of GA for
developing a robust computational tool for modeling slump of
RMC.

The study has been organized into sections. Section 2 deals with
data collection. Section 3 deals with the methodology, in which
neural network modeling of concrete slump, its optimization using
genetic algorithm assisted training and statistical performance
measures have been discussed. Results, discussions and conclu-
sions and future work have been dealt in Sections 4, 5, 6
respectively.
2. Data collection

The exemplar data for ANN were collected from the same RMC
plant to mitigate any chance of change caused in the slump data
due to change in composition of concrete mix constituents. The
data comprised of concrete design mix constituents consisting of
560 mix proportions namely, cement, fly ash, sand (as fine aggre-
gate), coarse aggregate 20 mm, coarse aggregate 10 mm, admix-
ture, water-binder ratio and corresponding slump value.
3. Methodology

For conducting the study, the Neural Network Toolbox and
Global Optimization Toolbox included in the commercially
available software MATLAB R2011b (Version 7.13.0.564) were used
to implement the BPNN and GA respectively.

3.1. ANN modeling of concrete slump

3.1.1. Preparing training, validation and test data sets
ANN is an information processing paradigm inspired by the

learning ability of human brain. ANN therefore requires exemplar
patterns to establish the underlying relationships between the
input–output data pairs. Moreover, it is also necessary to assess
the predictive power of the trained ANN when presented with
examples not included in the neural network training. To facilitate
training and testing of the neural networks, the collected data were
randomized and split into training, validation and test data-sets.
70% of the data were used for training purpose and the remaining
30% data were equally divided and set aside for validation and test-
ing of the trained ANN. The training data-set was used for training
the ANN, enabling it to learn the relationships between the input
and output data-pairs by systematic updating of the neural net-
work weights and biases using BP algorithm. During the training
phase, there is a tendency of the neural network to over-fit or
over-learn the exemplar patterns presented during the training
phase. This leads to poor generalization of the network when sub-
jected to unseen data. Validation data-set is indirectly used during
the training of ANN to monitor the over-fitting of the neural net-
work and to act as a guide to stop the training of the neural net-
work when the validation error begins to rise. Testing of the
neural network is done after completion of the training phase.
The test data set used during the testing phase evaluates the pre-
diction performance of the trained neural network.

Efficient training of ANN requires that all representative pat-
terns included in the exemplar data, should form a part of the train-
ing data-set. Hence, to allow the training data-set extend to the
edges of modeling domain, it was ensured that extreme values
(maximum and minimum values) of each constituent of total
data-set were included in training data-set. Moreover data division
should also reflect that training, validation and test data set is rep-
resentative of the same population. Therefore, three ways split of
data was done in such a way that the statistical parameters of Train-
ing, Validation and Test data sets viz., maximum value, minimum
value, mean and standard deviation of each constituent are margin-
ally different from each other. Table 1 shows the statistical param-
eters of the data used for training, validation and testing.

3.1.2. Preprocessing of data
The input data and output data generally comprise of different

identities either having no or minimum similarities. Preprocessing
or normalization of data eliminates the possibility of neural net-
work bias towards the different identities and scales down all
the input and output data preferably in a bound range [0, 1] or
[�1, 1]. Scaling of inputs to the range [�1, 1] greatly improves
the learning speed, as these values fall in the region of sigmoid
transfer function where the output is most sensitive to the varia-
tions of the input values (Alshihri, Azmy, & El-Bisy, 2009). Linear
scaling in the range [�1, 1] has been used in present study having
function

xnorm ¼
2 � ðx� xminÞ
ðxmax � xminÞ

� 1 ð1Þ

where xnorm is the normalized value of the variable x, xmax and xmin

are the minimum and maximum values of variable x respectively.

3.1.3. Neural network architecture and training parameters
The architecture of an ANN consists of a number of artificial

neurons connected through weighted connections. The artificial



Table 1
Statistical parameters of training, validation and test data-sets.

RMC data constituents Training Validation Test

Max Min Mean SD Max Min Mean SD Max Min Mean SD

Cement (kg/m3) 425 100 254.33 53.61 350 120 254.87 57.09 350 120 254.21 52.86
Fly ash (PFA) (kg/m3) 220 0 82.92 46.17 180 0 83.58 46.97 120 0 82.57 44.27
Sand (kg/m3) 900 550 780.44 55.37 850 662 780.45 51.13 849 583 780.61 52.35
Coarse aggregate 20 mm (kg/m3) 788 58 626.26 76.63 760 438 627.54 70.18 745 380 628.08 70.57
Coarse aggregate 10 mm (kg/m3) 771 343 453.56 95.71 680 343 458.10 100.24 600 343 452.07 93.23
Admixture (kg/m3) 5.50 1 3.25 0.70 4.70 2.00 3.33 0.65 5.50 1.30 3.34 0.72
Water-binder ratio 0.76 0.36 0.52 0.06 0.75 0.39 0.51 0.07 0.73 0.40 0.51 0.06
Slump (mm) 175 110 150.22 12.19 170 110 150.86 12.15 165 110 149.82 12.97
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neurons are synonymous to biological neurons as these constitute
the processing elements of an ANN. Each of these neurons has a
number of weighted inputs, a transfer function and an output.
The utility of transfer functions in neural networks is to introduce
non-linearity into the network. A consequence of the non-linearity
of this transfer function in the operation of the network, when so
introduced, is that the network is thereby enabled to deal robustly
with complex, undefined relations between the inputs and the out-
put (Shamseldin, Nasr, & O’Connor, 2002).

Based on the sequence in which the neurons are connected and
the way they process information, neural networks can be classi-
fied as multilayer perceptrons (MLP), radial basis function (RBF),
wavelet neural networks, self organizing maps (SOM) and recur-
rent networks. Multi-layer feed forward neural networks (MFNNs)
are a type of MLP wherein the inter layer neurons are connected in
the forward direction only and no loops are allowed. MFNNs are
ordered into layers comprising of an ‘‘input layer’’ and an ‘‘output
layer’’ joined by a number of ‘‘hidden layer/s’’. By varying the num-
ber of hidden layers and hidden layer neurons, improvement in
learning and generalization of neural networks can be achieved.
As noticed by Sovil, Kvanicka, and Pospichal (1997) it critically
depends on the number of training cases, the amount of noise
and the degree of complexity of the function or the classification
desired to be learnt. Hornik, Stinchcombe, and White (1989) con-
cluded that a three layered feed-forward neural network with
back-propagation algorithm can map any non-linear relationship
with desired degree of accuracy. Some ‘‘rules of thumb’’ acting as
initial guidelines for choosing neural network architecture have
been suggested by Berry and Linoff (1997), Blum (1992), Boger
and Guterman (1997), Swingler (2001). Nevertheless, the selection
of hidden layers and hidden layer neurons is a trial and error pro-
cess and generally started by choosing a network with minimum
number of hidden layers and hidden neurons.

Modeling a particular phenomenon using ANN is started by
presenting the information in the form of training data-set. The
information provided by the training data-set, there is forward-
propagated from the input layer to the output layer through
hidden layer/s. The weights and biases of the neural network are
adjusted and the predicted output is generated. The computed
the error between the actual and predicted output is propagated
backwards. Based on the computed error, the weights and biases
are adjusted using steepest gradient descent principle employed
by BP algorithm. A suitable learning rate and momentum coeffi-
cient is employed for efficient learning of the network. A higher
learning rate leads to faster training but by doing so it produces
large oscillations in the weight change which may force the ANN
model to overshoot the optimal weight values. On the other hand,
a lower learning rate makes convergence slower and increases the
probability of ANN model to get trapped in local minima. The
momentum term effectively filters out the high frequency
variations of the error surface in the weight space, since it adds
the effect of the past weight changes on the current direction of
movement in the weight space (Rajasekaran & Pai, 2003). A com-
bined use of these parameters helps the BP algorithm to overcome
the effect of local minima. By incorporating these two parameters
the change in weights is determined by:

Dwn ¼ aDwn�1 � g
@E
@w

ð2Þ

where; E ¼ 1
N

XN

i¼1

ðTi � PiÞ2 ð3Þ

where w represent the weight allocated to the connection between
any two neurons; Dw and Dwn�1 are the changes in the neural net-
work weights at n and n � 1 iterations respectively; a is momentum
coefficient; g is the learning rate; E is the computed error; Ti is the
target or actual output and Pi is the neural network predicted output.

For the present study, RMC mix proportion ingredients, namely,
cement, fly ash (PFA), sand, coarse aggregate (CA) 20 mm, coarse
aggregate (CA) 10 mm, admixture and water-binder ratio, form
the seven inputs or input neurons for the neural network. Corre-
spondingly, the value of concrete slump forms the output or output
neuron for the neural network. Tangent hyperbolic transfer func-
tion which maps the inputs between �1 and +1 has been used
for hidden layers whereas linear transfer function is used for out-
put layer for comparison of actual values and ANN predicted out-
puts. For arriving at optimal neural network architecture, seven
single hidden layer feed-forward neural network architectures of
different complexities having hidden layer neurons in the range
3–11 were trained and validated using training and validation
data-set respectively. The neural network architecture having the
minimum validation error is selected as the optimal neural net-
work. Flow chart exhibited in Fig. 1 shows the training and valida-
tion of the neural networks using BP algorithm.

The systematic updating of weights and biases was performed
by Lavenberg Marquardt back-propagation algorithm. Lavenberg–
Marquardt back-propagation (LMBP) training algorithm is the fast-
est converging algorithm preferred for supervised learning. It can
be regarded as a blend of steepest descent and Gauss–Newton
method, combining the speed of Newton algorithm with the stabil-
ity of the steepest descent method (Wilamowski, Chen, &
Malinowski, 1999). A learning rate of 0.4 and momentum coeffi-
cient of 0.9 was used during training of neural networks. Using trial
and error, the numbers of hidden layer neurons were established
as 8 and neural network model with architecture 7-8-1 was
selected for modeling the slump of concrete. The neural network
architecture for modeling slump of concrete is shown in Fig. 2.

3.2. Genetic algorithm optimization of neural networks (ANN-GA)

Genetic algorithms are evolutionary optimization algorithms
based on the Darwin’s principle ‘‘Survival of the fittest’’. They
employ computational models of evolutionary processes like
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Fig. 1. Training and validation of neural networks using BP algorithm.
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selection, crossover and mutation as stochastic search techniques
for finding global minimum for complex non-linear problems hav-
ing numerous sub-optimal solutions. GA’s ability to extensively
search the solution space and to intensively concentrate on the glo-
bal optimum provides a perfect blend of exploration and exploita-
tion of the search space. In contrast to BP algorithm that uses local
gradient descent for finding the optimal set of neural network con-
nection weights, the GAs parallel nature of global search, gradient
free optimization and use of stochastic operators helps in evolving
the initial weights for ANN, thereby minimizing the probability of
the BP algorithm to get stuck in the local minima.

For optimizing the performance of ANN and to minimize the
drawback of BP algorithm, GA is hybridized with ANN. This meth-
odology involves two stages. In the first stage, ANN is trained using
GA. GA is used for evolving the optimal set of initial weights and
biases for training of the neural network. This is accomplished by
simultaneous search performed by GA in all possible directions
in the search space and narrowing down to the region where there
is maximum probability of finding the optimal weights and biases.
The second stage involves training of neural network using BP
algorithm. The training is started by initializing the BP algorithm
with set of initial weights and biases evolved using GA assisted
training of ANN. This initialization of ANN with optimal weights
and biases is harnessed by BP algorithm to carry forward the
search for the global optima started by GA through fine tuning
of neural network’s weights and biases. The different steps of
this methodology are presented in Fig. 3 and are summarized as
under.



Fig. 2. Architecture of neural network (7-8-1).
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3.2.1. Initialization of genetic algorithm
GA is a population based heuristic technique and requires ini-

tialization with an initial population. The solutions to the problem
are encoded as genes and these form initial population of chromo-
somes. The chromosomes resemble initial guesses to the probable
solutions. These probable solutions are distributed randomly in the
search space. In the present study initial population comprises of
neural network weights and biases. For 7-8-1 architecture of neu-
ral network, the number of weights and biases are 73. These 73
weights and biases are coded as genes of the chromosomes. Since
each weight and bias value is a real number, hence it is expressed
as a real number.

Since in GA every chromosome in the population represents a
potential solution therefore, the initial population size should be
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Fig. 3. Flow chart of genetic algorithm a
chosen to promote the best solution in the search space leading
to global optimization of the problem. A higher population size
involves greater computational time whereas in case of small pop-
ulation size, the quality of solution is left to the vagaries of chance.
In the present study an initial population size of 50 chromosomes
is used.
3.2.2. Evaluating fitness of chromosomes
The fitness function for each probable solution or chromosome

is evaluated. Fitness function forms a measure of distinguishing
optimal solution from numerous sub-optimal solutions by evaluat-
ing the ability of the possible solutions to survive or biologically
speaking, it test’s the reproductive efficiency of chromosomes.
The training data-set consisting of input–output data pairs are pre-
sented to the neural network. Each chromosome comprising of
weights and biases is assigned to the ANN. The ANN through for-
ward propagation of information computes the root mean square
error (RMSE) between the actual and the predicted slump value.
The fitness of each chromosome is computed using:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

ðTi � PiÞ2
vuut ð4Þ

where Ti and Pi denote the target or observed values and ANN pre-
dicted concrete slump values respectively.
3.2.3. Selecting the fitter chromosomes
GA uses the evolution operator selection, for selecting the fitter

chromosomes. The selection procedure is synonymous to a filter-
ing membrane, which allows chromosomes having high fitness to
pass on their genes to next generation while prohibiting the
entrance of low fitness chromosomes, thereby guiding the algo-
rithm to search the promising regions of the solution space. The
present study uses roulette wheel selection strategy which allows
probability of selection proportional to the fitness of the chromo-
some. The basic advantage of roulette wheel selection is that it
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discards none of the individuals in the population and gives a
chance to all of them to be selected (Razali & Geragthy, 2011).

3.2.4. Creating new generation of population
The power of genetic algorithms arises primarily from crossover

and mutation (Lin, Lee, & Hong, 2003). GA’s stochastic operations
in the form of crossover and mutation, allow GA to produce next
generation of population. Crossover is a recombination operator
that selects a random pair of two chromosomes for mating and
swaps the genes between the chromosomes based on the cross site
selected along the string length of the chromosome. Crossover
operator thus generates new population by extracting the
strengths of two individuals and produces new individuals in the
hope that these individuals will be better than their parents. Prob-
ability of crossover is a parameter to describe how often the cross-
over will be performed. The present utilized the scattered
crossover with probability 0.9 for recombining the two parent
chromosomes for producing a fitter child.

The mutation operation adds diversity to the population help-
ing the algorithm to attain a larger exploratory space thereby, pre-
venting the search process to fall into local minima. Viewed as a
background operator, mutation exploits the current population to
find better individuals. It also plays an important part in recovering
the genetic information lost inadvertently during the crossover
operations. It also keeps the pool of chromosomes well stocked
thus ensuring the dynamics of the creating new generation. The
probability of mutation decides how often the parts of the chromo-
somes will be mutated. Too high mutation rate increases the
search space to a level that convergence or finding global optima
becomes a difficult issue. Whereas a lower mutation rate drasti-
cally reduces the search space and eventually leads genetic algo-
rithm to get stuck in a local optima. The present study uses
uniform mutation with mutation rate 0.01. The procedure for cre-
ating new population of chromosomes is continued till maximum
generation limit is achieved or the fitness function reaches a satu-
ration level. Maximum number of generations used for present
study is 100.

3.2.5. Fine tuning of the initial weights and biases using BP algorithm
The initial weights and biases evolved using GA in step 1 to 4 is

assigned to BP algorithm. The ANN is trained using these initial set
of weights and biases. The BP algorithm through forward propaga-
tion of information and back-propagation of errors, allows fine tun-
ing of weights and biases to render the RMSE error between the
actual and predicted slump values a minimum.

The flow-chart of genetic algorithm training of ANN for evolving
the optimal weights and biases and subsequent fine tuning of these
weights and biases is shown in Fig. 3.

3.3. Performance evaluation of trained models

In the present study six different statistical parameters have
been employed for judging the performance of the trained ANN
models. The parameters include: root mean square error (RMSE),
mean absolute percentage error (MAPE), coefficient of correlation
(R), coefficient of efficiency (E), root mean square error to observa-
tion’s standard deviation ratio (RSR) and normalized mean bias
error (NMBE). The above performance statistics were evaluated
using:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

ðTi � PiÞ2
vuut ð5Þ

MAPE ð%Þ ¼ 1
N

XN

i¼1

jTi � Pij
Ti

� 100 ð6Þ
R ¼
PN

i¼1 ðTi � TÞðPi � PÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðTi � TÞ2

PN
i¼1ðPi � PÞ2

q
0
B@

1
CA ð7Þ

E ¼ 1�
PN

i¼1ðTi � PiÞ2PN
i¼1ðTi � TÞ2

ð8Þ

RSR ¼ RMSEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 Ti � T
� �2

q ð9Þ

NMBE ð%Þ ¼ 1=N
PN

i¼1ðPi � TiÞ
1=N

PN
i¼1Ti

� 100 ð10Þ

where Ti and Pi denote the target or observed values and ANN pre-
dicted values and T and P represent the mean observed and mean
ANN predicted values, respectively. N represents the total number
of data.

RMSE statistics compares the observed values to the predicted
values and computes the square root of the average residual error.
A lower value of RMSE indicates good prediction performance of
the model. But RMSE gives more weightage to large errors (Kisi,
Shiri, & Tombul, 2013). MAPE is a dimensionless statistics that pro-
vides an effective way of comparing the residual error for each data
point with respect to the observed or target value. Smaller values
of MAPE indicate better performance of the model and vice versa.
Pearson’s correlation coefficient (R) and coefficient of determina-
tion (R2) measure the strength of association between the two vari-
ables. R and R2 statistics are dependent on the linear relationships
between the observed and predicted values and may sometimes
give biased results when this relationship is not linear or when
the values contain many outliers. For perfect association between
the observed and predicted values, the value of R2 is unity. The
coefficient of efficiency (E) or Nash Sutcliffe efficiency (Nash &
Sutcliffe, 1970) is a ratio of residual error variance to measured
variance in observed data. A value close to unity indicates the accu-
racy of model. RSR statistics was formulated by Moriasi et al.
(2007). RSR incorporates the benefits of error index statistics and
includes a scaling/normalization factor, so that the resulting statis-
tic and reported values can apply to various constituents (Chen, Xu,
& Guo, 2012). The optimal value of RSR is zero. Hence a lower value
of RSR indicates good prediction. NMBE measures the ability of the
model to predict a value which is situated away from the mean
value. A positive NMBE indicates over-prediction and a negative
NMBE indicates under-prediction of the model (Srinivasulu &
Jain, 2006). A combined use of the performance metrics narrated
above can provide an unbiased estimate for prediction ability of
the neural network models.

4. Results

As discussed in the previous sections, the ANN is trained using
GA for evolving the optimal set of initial weights and biases for
subsequent training of neural networks using BP algorithm. GA
was able to search the optimal values of weights and biases in
32 generations (Fig. 4). The time taken by GA to reach the satura-
tion RMSE (fitness function) 9.4308 mm was evaluated as
32.6822 s. During this period, GA performed 1600 function evalu-
ations for arriving at an optimized value of fitness function.

The neural network architecture selected for the modeling
slump of concrete (7-8-1) is trained using BP algorithm. The
ANN-GA model was initialized with optimal weights and biases
derived through GA assisted training of ANN. The hybrid model
was able to achieve the desired performance goal 0.003 in 43
epochs taking 1.3728 s (Fig. 5(a)). The same neural network
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Fig. 4. Evolving optimal weights and biases using genetic algorithms.

Table 2
Statistical performance of ANN models for training, validation and test data-sets.

Model RMSE (mm) MAPE (%) R E RSR NMBE (%)

Training
GA 9.4308 4.8595 0.6322 0.3995 0.7749 0.1024
BPNN 3.0638 1.3714 0.9678 0.9366 0.2518 �0.0144
ANN-GA 1.8494 0.9298 0.9884 0.9769 0.1520 0.0048

Validation
GA 19.1416 10.9884 0.6593 �1.5108 1.5846 9.8154
BPNN 3.2567 1.5151 0.9633 0.9273 0.2696 0.1064
ANN-GA 2.6895 1.2527 0.9754 0.9504 0.2226 0.0293

Testing
GA 30.6507 19.6310 0.4194 �4.6479 2.3765 18.6721
BPNN 3.3409 1.4807 0.9667 0.9329 0.2590 0.2802
ANN-GA 3.0703 1.4805 0.9753 0.9436 0.2375 0.1012
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architecture was trained using BP algorithm initialized with ran-
dom draw of weights and biases. The BPNN algorithm took 2688
epochs and 68.604 s to reach the desired performance (Fig. 5(b)).

Both ANN-GA and BPNN models subsequent to training were
validated and tested. The results in terms of the performance sta-
tistics are presented in Table 2. The results of GA assisted training
of ANN have also been included in table.

The entire RMC data was also used for evaluating the prediction
ability of the trained models viz., BPNN and ANN-GA. The regres-
sion plots showing the prediction of trained BPNN and ANN-GA
models are exhibited at Fig. 6(a) and (b) respectively. The statisti-
cal performance for the entire data set is tabulated at Table 3.
5. Discussions

Analyzing the results it can be seen that by initializing the BP
algorithm with optimal weights and biases, its drawback of getting
stuck in local minima and slow convergence can be easily avoided.
In comparison to BPNN learning which took 2688 epochs and
68.604 s to reach the desired level of performance, the ANN-GA
model took merely 43 epochs and a total time of 34.055 s (includ-
ing GA time) to achieve the same performance.
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Fig. 5. Training of ANN-G
The statistical performance metrics shows that GA alone cannot
effectively train an ANN. This is proved by a high training RMSE,
MAPE statistics of 9.4308 mm and 4.8595% respectively and lower
correlation coefficient (R) statistics of 0.6322. Moreover, negative
values of statistics E, �1.5108 and �4.6479 and very high value
of NMBE, 9.8154% and 18.6721% during validation and testing
respectively, indicates that training of ANN by GA alone leads to
unacceptable performance. The second phase comprising of BP
algorithm training ensures that the initial weights and biases
evolved using GA, are further fine tuned to increase the prediction
performance of the neural network. The ANN-GA model gave the
best training RMSE, MAPE, R, E, RSR and NMBE statistics of
1.8494 mm, 0.9298%, 0.9884, 0.9769, 0.1520 and 0.0048% respec-
tively. ANN-GA also provided the best performance statistics dur-
ing validation and testing of the trained neural network. The
NMBE statistics for training, validation and testing of BPNN model
was evaluated as �0.0144%, 0.1064% and 0.2802% respectively. The
negative value of this statistics during training and positive values
during validation and testing indicate the prediction inconsistency
of the BPNN model. A positive and lower value of statistics NMBE
0.0048%, 0.0293% and 0.1012% for ANN-GA model during training,
validation and testing phases respectively shows, its consistency
and improved prediction performance.

The performance statistics computed for the entire data-set
using the trained ANN-GA model, shows a lower RMSE, MAPE
(b)
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Fig. 6. Regression plot of BPNN and ANN-GA predicted slump versus observed slump.

Table 3
Statistical performance of the trained ANN models for the entire data-set.

Model RMSE (mm) MAPE (%) R E RSR NMBE (%)

BPNN 3.4634 1.6782 0.9605 0.9204 0.2822 �0.3163
ANN-GA 2.4994 1.1979 0.9791 0.9585 0.2037 0.0349
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and RSR value of 2.4994 mm, 1.1979% and 0.2037 respectively and
higher E and R value of 0.9585 and 0.9791 respectively, in compar-
ison to trained BPNN model. Moreover, NMBE statistics value of
�0.3163% and 0.0349% for BPNN and ANN-GA models shows that,
BPNN model is under-predicting the slump data, whereas ANN-GA
achieved near to optimal prediction accuracy. Overall, the perfor-
mance metrics shows that, ANN-GA model has consistently out-
performed the BPNN model.

6. Conclusions and future work

In this paper, the optimal initial weight and biases for ANN have
been evolved using GA assisted training of ANN. The hybridization
of two distinct nature inspired computational techniques has been
proposed for covering up the drawback of BP algorithm to con-
verge at suboptimal points and slow speed of convergence. The
proposed hybrid technique harnessed GA to evolve the optimal
set of initial neural network weights and biases which were further
fine tuned using Lavenberg Marquardt back-propagation training
algorithm. This two stage optimization of ANN helped in deriving
the best from global search ability of GA and local search ability
of BP algorithm. The study showed that in comparison to BPNN
approach which uses gradient descent for updating the weights
and biases, the hybrid ANN-GA model which utilized genetic algo-
rithm derived weights and biases, gave consistent predictions dur-
ing training, validation and testing phases, indicating the
robustness of the hybrid modeling approach. Moreover, the ANN-
GA model in comparison to BPNN model, took almost half the time
in reaching the desired performance, indicating its fast conver-
gence to global optimum. The proposed model based on past
experimental data can be very handy for predicting the complex
material behavior of concrete in quick time. It can be used as a
decision support tool, aiding the technical staff to easily predict
the slump value for a particular concrete design mix. This
technique will considerably reduce the effort and time to design
a concrete mix for a customized slump without undertaking multi-
ple trials.

In the present study trial and error technique has been
employed for determining the optimal architecture of the neural
network. The future work will concentrate on evolving the optimal
number of the hidden layers and hidden layer neurons, transfer
function, learning rate and momentum coefficient using genetic
algorithms. Another direction for future study will be the use of
Extreme Learning Machines (ELM) for modeling concrete’s mate-
rial behavior. ELMs are single layer feed-forward neural networks
(SLFN) which are known for their faster convergence and minimal
human intervention. However, the weights and biases of ELM are
randomly initialized, which in some cases may affect it’s the gen-
eralization performance. GA can be hybridized with ELM for evolv-
ing optimal initial weights and biases, thereby improving its
overall performance. GA can also be harnessed for evolving the
number of hidden layer neurons for ELM to strike a balance
between the generalization and convergence speed.
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