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Abstract. The ripple filter was designed to broaden the Bragg maximum of carbon beams for the
raster-scan technique, a special type of tumour-conformal ion beam treatment. In this technique the
target volume is divided into individual layers that are treated sequentially by varying the energy
from the accelerator stepwise. Because the unmodified Bragg maximum has a small half-width,
below 1 mm for small energies (<160 MeV u−1), homogeneous irradiation at small penetration
depths of 2–6 cm can only be obtained by using a large number of energy steps. If the energy step
is too large, ripples are produced in the superimposed depth dose distribution.

The ripple filter widens a Bragg peak to a Gaussian peak with a half-width of more than
2 mm. This helps to smooth the extended Bragg peak and to reduce the number of energy steps
required by a factor of two to three, leading to significantly shorter overall irradiation times and
a higher particle fluence per layer. The ripple filter consists of a 2 mmthick Plexiglass (PMMA)
plate with a periodic structure of fine grooves. It can be mounted 60 cm upstream of the patient
as a stationary device, because the fine structure of the grooves is completely washed out by the
lateral scattering of the beam.

1. Introduction

Compared with conventional photon therapy, heavy-ion irradiation is characterized by an
inverse dose profile, i.e. a low-dose plateau in the entrance channel and a sharp maximum
(Bragg peak) near the end of the range. By varying the beam energy, the position of the Bragg
peak in the tissue can precisely be adjusted in the beam direction. This makes heavy-ion beams
a perfect tool for the treatment of deep-seated tumours (Tobias 1985, Kraft 1990).

At GSI Darmstadt a therapy unit has been constructed that realizes for the first time a three-
dimensional target-conformal treatment based on active energy variation by the accelerator and
lateral deflection by scanning the heavy ion beam with magnets (Goitein 1983, Habereret al
1993, Baduraet al 1998). For the irradiation the target volume is divided into individually
shaped slices. Starting with the most distal one, for example, these slices are scanned one
after the other, changing the accelerator energy from slice to slice. This technique allows
tumour-conformal irradiation of almost any shape and an optimum biological efficiency inside
and outside the tumour (Krämer and J̈akel 1997).

However, if the range steps from one slice to the next are wider than the width of the Bragg
maximum, a periodic fluctuation (i.e. a ripple) is produced on top of the flat dose distribution
(see figure 1, full curve). There are two approaches to solving this problem:

(a) One can increase the number of slices, leading to smaller range steps and a smoother
depth dose profile. But for low energies and low penetration depths in particular the Bragg
peaks are quite sharp (see figure 2, full curves), so that a large number of energy steps are
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Figure 1. Comparison of an extended Bragg peak composed of 16 individual carbon Bragg curves
with and without use of the ripple filter. The lower part shows the peak positions and the fluences
of the superimposed Bragg curves.
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Figure 2. Comparison of individual carbon Bragg curves with and without a ripple filter at three
different energies of 100, 220 and 310 MeV u−1 respectively. The broadening of the peaks
connected with a shift to lower depth is clearly visible in the zoomed inserts.

required for a homogeneous dose distribution in the target volume. For instance a tumour
at a depth between 2 and 5 cm would require more than 50 energy steps. This results
in long irradiation times and difficulties in monitoring the beam currents and positions,
because the particle fluence per energy step becomes low.

(b) The second and more favourable solution is to widen the Bragg peak using an additional
energy spreading device.

In particle therapy performed up to now, the depth dose profile of the Bragg curve is greatly
widened by passive devices like range-modulating propellers and ridge filters which produce
an extended Bragg peak covering the whole depth of the tumour. Normally, those modulators
are either rotated or moved very fast in order to mix the shifted peaks. On the other hand
stationary ridge filters have been produced with narrow ridges (e.g. 1 cm), where the mixing
takes place via the multiple scattering in the ridge filter itself. A synopsis of modulating devices
and some relevant publications were compiled by Chuet al (1993). However, for a raster scan
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system the requirements of an energy spreading system are different from that of the devices
already described. Thanks to the energy variation of the beam, there is no need for a widening
of the Bragg peak that covers the whole depth range of the target volume. Just a small peak
widening is necessary in order to smooth the ripple of the superimposed depth dose profiles.
Therefore, we have developed a so-called ‘ripple filter’, which is a stationary mini ridge filter
that generates a small but exactly defined modulation effect.

2. Materials and methods

2.1. Production of a ripple filter

The ripple filter is made of a thin plate of Plexiglass (PMMA, 260× 260× 2 mm) and has a
periodic structure of very fine and precisely cut grooves. They have to be manufactured to their
desired form with a mechanical precision of about 5–10µm. At a low speed (2–4 mm s−1)
a CNC machine cuts groove after groove into the Plexiglass using a fast rotating cutter
(600–800 rpm). Continuous fluid cooling and fixing of the ripple filter on a vacuum table
improves the cutting quality and the uniformity of the grooves. Figure 3 shows the design
and the accurate groove structure of a 2 mmripple filter used for heavy ion therapy at GSI.
Optimization of the shapetp(x) of the grooves (i.e. the cutter) is described in section 2.3.
However, a minimum thicknesstp,min of 0.3 mm is necessary for the stability of the Plexiglass
plate.
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Figure 3. General layout of the ripple filter (left) and detailed design of the shape of the grooves
defined by the functiontp(x)which describes the thickness of the Plexiglass at a positionx (right).

2.2. Bragg curve modulation by the ripple filter

The Bragg peak of a heavy ion beam passing perpendicularly through the ripple filter will be
transformed by the grooves into a superposition of displaced Bragg curves. In practice, the
typical beam diameter (4–10 mm) is far larger than the distance between the grooves (1 mm).
The fraction of the beam that passes through the filter at a positionx will be shifted by the
water-equivalent thicknesst (x) = 1.165tp(x) in thez direction (see figure 3), using the density
conversion factor 1.165 for PMMA to water (Jacob 1997). Provided that the lateral distribution
of the beam intensity does not change within half a periodλ of the groove structure, the depth
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dose profile of the modulated Bragg curvebmod in a water phantom is given by

bmod(z) = 2

λ

∫ λ/2

0
b(z + t (x)) dx = 2

λ

∫ tmax

tmin

b(z + t)X′(t) dt (1)

whereb(z) is the pristine Bragg curve. The periodic groove structure of the ripple filter
is described byt (x) or by its inverseX(t). The derivativeX′(t) describes the transfer
function of the ripple filter. For numerical computation of equation (1) we used Bragg curves
measured with a step size of 50µm in the Bragg peak region (see section 3.1). Calculating
a quadratic spline interpolation of the measured points, a discrete form of the Bragg curves
b(zi) = b(i1z) = bi with a very small step size of1z = 10µm was obtained. The appropriate
discrete form of equation (1) is

bmod,i = 21z

λ

jmax∑
j=jmin

bi+jwj (2)

with jmin = tmin/1z andjmax = tmax/1z. The weightswj = X′(j1z) are discrete values of
the transfer functionX′(t) with the same step size1z used for the Bragg curves.

2.3. Optimization of the shape of the grooves

Gaussian Bragg peaks can be superimposed very smoothly and are therefore especially suitable
for generating homogeneous depth dose profiles with a low ripple. This is numerically shown
in appendix A. Therefore, the groove profile of the ripple filter has to be shaped in such a way
that the resulting dose profile in the peak region is close to a Gaussian distribution. The ripple
filter was primarily optimized for the very sharp 90 MeV u−1 12C Bragg peak (see figure 4, full
curve), the lowest energy relevant for ion therapy. When the ripple filter modulates this peak
to a Gaussian shape, a Gaussian shape will be produced for higher energies as well. This is
due to the fact that the difference between the peak width of a 90 MeV u−1 beam and the peak
width of a beam with higher energy is mainly induced by energy loss straggling, which follows
a normal (Gaussian) distribution (Ahlen 1980). A convolution of two Gaussian distributions
(one from the ripple filter and the other from the energy loss straggling) again results in a
Gaussian distribution having a larger width.

The modified Bragg curve can only have a Gaussian form in the peak region. Therefore, the
shape of the grooves (resp. the weightswj ) was calculated to produce an enlarged 90 MeV u−1

Bragg curve with a Gaussian shape in a depth range from 18.5 to 20.5 mm which determines
the thickness of the ripple filter (2 mm). Using the method of least squares the weightswj
were optimized for a minimum differenceχ2 betweenbmod,i and the Gaussian function (see
Gaussian curve in figure 4):

χ2 =
imax∑
i=imin

(
exp

(−(i1z− z0)
2

2σ 2

)
−

jmin∑
j=jmin

bi+jwj

)2

wj > 0 (3)

with the parametersσ = 1.0 mm, z0 = 18.9 mm, imin = 18.5 mm/1z and imax =
20.5 mm/1z. After optimization the weightswj were normalized so that6wj = 1. As
described in section 2.2, the weightswj are discrete values of the derivative of the inverse of
the desired functiont (x). Therefore the points (tj , Xj ) of the shapet (x) (0 < x < λ/2) can
be calculated by integration (summation) ofwj :

tj = j1z, Xj = λ

2

j∑
l=jmin

wl, j = jmin . . . jmax. (4)

Including the conversion factor for Plexiglass the dataset (1.165tj , Xj ) was directly used to
manufacture the cutter (see section 2.1).
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Figure 4. Measured Bragg peaks of a 90 MeV u−1 carbon beam with (circles) and without (full
curve) use of the ripple filter. The broken curve represents the theoretical modulated Bragg curve
from the optimization (see section 2.3). The dotted curve is the Gaussian curve (σ = 1 mm) that
was aimed for in the optimization.

3. Results

3.1. Modulated Bragg curves

A direct result of the optimization of the valueswj is the theoretical shape of the modulated
90 MeV u−1 Bragg peak (equation (2)). This theoretical curve is shown in figure 4 (broken
curve). In order to verify the optimization and the manufacturing process of the ripple filter we
measured the modulated Bragg curve of a 90 MeV u−1 12C beam with the same experimental
set-up (Schardt 1993) used previously for the measurement of the pristine Bragg peaks. These
measurements have a resolution in depth of 50µm and were repeated several times to improve
the accuracy for the relative dose to 1–3%. Figure 4 shows the measured points of the pristine
and the modulated Bragg curve, which agrees very well with the theoretical curve. Small
differences at the maximum and at the end of the range are due to the fact that the peaks of the
grooves could not be cut as sharply as desired. The mechanical realization has a peak width
of about 60µm where 30µm is desired. However, the modulated peak has a nearly Gaussian
shape in the desired depth range (see section 2.3).

Comparison of the measurements for the modulated and the pristine Bragg curves clearly
determines experimental values of the weightswj (equation (2)), which can be calculated
with the help of a Fourier transformation. These weights agree quite well with the optimized
weights, which before determined the form of the cutter. For treatment planning we use the
experimental weights instead of the optimized weights. Because the weightswj are always
the same, regardless of the beam energy, it is possible to calculate the modulated Bragg curve
for all relevant energies on the basis of the pristine Bragg curve by equation (2). Figure 2
shows the calculated effect of the ripple filter on12C Bragg curves for energies of 100, 220
and 310 MeV u−1 respectively. It demonstrates very well the increasing influence of the ripple
filter with decreasing energy.
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Actually, two types of ripple filter have been used for heavy ion therapy at GSI, one of
thickness 2 mm which is described in this paper and a similar one with a thickness of 3 mm
and groove distances of 1.5 mm for a stronger modulation effect.

3.2. The smoothing effect on extended Bragg peaks

The widening of the Bragg peaks to a Gaussian shape has a strong smoothing effect on an
extended Bragg peak produced by active energy variation. The ripple filter works as a Gaussian
filter and the inhomogeneity—or ripple—is wiped out, thus explaining why this device is called
a ripple filter. This smoothing effect is best demonstrated in figure 1 (broken curve). The ripple
filter reduces the required number of energy steps drastically by a factor of two to three or
improves the homogeneity in the case of a given number of energy steps (see table 1). On the
other hand it reduces the steepness of the distal fall-off (80–20%) from values between 0.2 and
2 mm (depending on the energy of the deepest Bragg curve) without a ripple filter to values
between 1.3 and 2.2 mm with a ripple filter. However, this small loss of precision can easily
be accepted.

Table 1. Calculated percentage amplitude (maximum deviation from the mean value) of the ripple
on an extended carbon Bragg peak for different step sizes of the periodically superimposed Bragg
curves. The maximum energy (deepest Bragg curve) and the step size determine the maximum
ripple which always appears at the distal edge of an extended Bragg peak (see figure 1). The
numbers in parentheses show the appropriate results with application of the ripple filter.

Step size (mm)

Max. energy (MeV u−1) 1.0 2.0 3.0

100 25 (2.0) 34 (3.8) 35 (14.0)
150 17 (1.5) 26 (2.6) 30 (12.0)
200 5.0 (0.9) 19 (1.5) 25 (9.5)
250 1.8 (0.5) 11 (0.9) 18 (6.5)
300 0.5 (0.3) 4.0 (0.7) 12 (4.0)
350 0.3 (0.2) 1.6 (0.5) 6.5 (1.5)

Using the ripple filter for treatment at GSI, the range steps of the scanned layers are set
to 2 mm (3 mm for the ripple filter of 3 mm thickness) which guarantees a dose ripple always
smaller than 4% and a very good target conformation with an acceptable number of slices.

3.3. Scattering effects

The ripple filter only works as a static device because multiple Coulomb scattering blurs the
fine groove structure in thex-direction as demonstrated in figure 5. To avoid a transmission of
the groove structure into the tissue, the beam having passed through the filter needs to have a
sufficiently large angular distribution, and the distanced between ripple filter and patient has
to be large enough. This can be expressed by the following condition:

λ 6 1.6dσα (5)

whereλ is the periodic distance of the grooves andσα is the width of the Gaussian angular
distribution of the particle beam which is scattered by the exit window, the dose monitors and
the ripple filter. This width can be calculated with sufficient precision according to the Molière
formula for multiple Coulomb scattering (Gottschalket al1993). The particles passing through
a point of the ripple filter yield a Gaussian spatial distribution within the distanced with a width



Ripple filter for smoothed depth dose distribution 2771

Figure 5. Calculated effect of blurring the structure of the ripple filter through multiple scattering:
the upper stripe shows the two-dimensional dose distribution corresponding to figure 1 (full curve)
without the ripple filter. The middle and the bottom ones show this dose distribution modulated by
the ripple filter. The middle dose distribution was calculated without the scattering effect; therefore
the structure of the grooves is transferred into the target volume. Adding on the inevitable multiple
scattering the dose distribution becomes homogeneous (compare figure 1, broken curve).

of σx = dσα. The factor 1.6 in equation (5) results from the fact that a periodic superposition
of Gaussian curves is homogeneous (1 < 0.1%) if their distancesλ are less than 1.6σ (see
appendix B).

The design of the ripple filter shown in figure 3 yields a homogeneous dose distribution
for the following conditions:

• beam energyE < 400 MeV u−1 (12C);
• the overall thickness of the scattering materials in front of the patient (e.g. exit window,

detector system and air) is at least 150 mg cm−2;
• the distance between the ripple filter and the patient is approximately 65 cm.

These are typical parameters for a heavy ion therapy facility. For an irradiation unit with beam
scanning, the beam width has no influence on the conditions listed. The only condition is that
the scanning area should be much larger than the distanceλ of the grooves.

The lateral beam width is slightly increased due to the scattering at the ripple filter (see
table 2), but this side effect can be compensated for by the selection of a smaller beam diameter
from the ion optics.

4. Conclusions

The ripple filter modifies the Bragg curve to a depth dose profile having a widened Gaussian
peak. This offers significant advantages for irradiation with a scanning system using active
energy stacking: the filter reduces the necessary number of energy steps and smooths the
longitudinal dose distribution. This saves treatment time and increases the integral intensity
per energy step and therefore the precision of the controlling detector system.

On the other hand the ripple filter shows no significant disadvantages because the beam
quality with regard to the lateral beam profile is only slightly affected by the ripple filter and
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Table 2. Effect of beam scattering at the ripple filter in dependence on the energy for a12C beam.
The beam width (FWHM) in columns 2, 3 and 4 is always given at the patient position (65 cm
behind the ripple filter). The second column contains the beam widthw0 without scattering at the
ripple filter but with scattering at the exit window, air and the detectors. This width is mainly defined
by the ion optics of the beam line and can be adjusted to suit the treatment. The third column shows
the scattering effect for an infinitely thin parallel beam that is scattered (only) at the ripple filter.
These valuesws are calculated with the Highland formula (Highland 1975) assuming an average
thickness for the ripple filter of 120 mg cm−2. The width of the beam scattered additionally at the
ripple filterwr (fourth column) can be calculated by the addition of columns 2 and 3 in quadrature:
wr = (w2

0 +w2
s )

1/2. Because of the quadratic addition of the scattering effect of the ripple filter,
the total beam width increases only slightly through the ripple filter.

FWHM of the beam (mm)

Beam energy Without Scattering With
(MeV u−1) ripple filter,w0 effect,ws ripple filter,wr

100 8.0 2.4 8.4
150 6.0 1.6 6.2

8.0 1.6 8.2
200 5.0 1.3 5.2

8.0 1.3 8.1
250 5.0 1.0 5.1

8.0 1.0 8.1
300 5.0 0.8 5.1

8.0 0.8 8.0

the loss of steepness of the distal fall-off is in a tolerable range of 1 mm. The grooves of the
ripple filter are so fine that the groove structure is blurred by the angular scattering. Therefore,
the filter can be installed as a static device.

The ripple filter would be also beneficial for proton therapy. Considering the stronger
scattering of protons, the distance of the grooves can be larger and therefore the grooves
themselves could be deeper. This will result in a stronger modulation effect and could be
useful for the treatment of small tumours (e.g. eye tumours) with proton beams because no
further modulators such as linear or spiral ridge filters, are required.
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Appendix A. Gaussian curve as a best function for a smooth periodic superposition

In order to determine the ‘best’ functionf (x) for a smooth superposition a criterion for
smoothness has to be defined. Therefore, we calculate the integrated quadratic difference
between 1 and the superposition of an infinite number of functionsf (x) displaced periodically
by a distanceλ:

1(λ) = 1

λ

∫ λ

0

( ∞∑
i=−∞

λf (x − iλ)− 1

)2

dx. (6)

In practice equation (6) describes the (unidimensional) homogeneity of irradiation with a raster
or a pixel scanning system when superimposing many dose profiles with a given functionf (x)
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in a transverse or longitudinal direction. The lower is1(λ) the better is the homogeneity of
the superposition.

The optimization may be restricted to normalized functions which satisfy∫ ∞
−∞

f (x) dx = 1 (7)∫ ∞
−∞

f (x)x dx = 0 (8)

and

σ 2 =
∫ ∞
−∞

f (x)x2 dx = 1. (9)

Since the beam intensity cannot be negative, another necessary restriction is that

f (x) > 0. (10)

It is evident that many functions (e.g. the pulse square function) can be periodically
superimposed yielding a constant function. But this is possible for one value ofλ only.
For otherλ the homogeneity1(λ) is much worse. Therefore, the functionf (x) is searched,
which achieves the best (lowest) mean homogeneity for a range ofλ fromσ to 2σ . This seems
arbitrary, but superimposing dose profiles with a distance ofσ up to 2σ is typical for the raster
or pixel scan technique (Habereret al1993). In equation (11) we define the mean homogeneity
H , which has to be minimized

H =
∫ 2σ

σ

1(λ) dλ. (11)

Unfortunately we could not find an analytical solution for this variational problem because the
restrictions (7)–(10) make the problem too complicated. Therefore an iterative solution for a
discrete-valued functionf (xi) was found using an evolutionary Monte Carlo algorithm.

We start with a simple pulse square function that satisfies the conditions (7)–(10):

f (x) =


1

2
√

3
|x| < √3

0 otherwise.
(12)

For the Monte Carlo program a discrete form off (x) is used:

fi = f (xi) = f (i1x) −N 6 i 6 N (13)

with a fine step size1x = 0.05 and a rangeN1x = 5σ (a smaller step size and a larger range
do not change the result). For one iteration step we throw three random integer numbersl,m,
n with 0 6 l < m < n 6 N and a random value1ym in the interval (−0.001, 0.001). Then
six points of the discrete-valued function were changed

fl −→ fl +1yl, f−l −→ f−l +1yl
fm −→ fm +1ym, f−m −→ f−m +1ym
fn −→ fn +1yn, f−n −→ f−n +1yn (14)

where

1ym = random value

1yl = 1ym
(
n2 −m2

l2 − n2

)
1yn = −(1ym +1yl). (15)
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The sense of this randomized change is that the function with the six new points again satisfies
the restrictions (7)–(10).

Then we test with equation (11) whetherH becomes smaller with the new values. IfH
becomes smaller and if the six new points are all positive, the next iteration step proceeds with
the new values, otherwise with the old values.

After some 100 000 iteration steps this algorithm converges and the pulse function
(H ' 3×10−2) has changed to a smooth function with a mean deviation from the normalized
Gauss function that is smaller than 1% (H ' 7× 10−6). This is what we wanted to show.

Appendix B. Homogeneity of a superposition of Gaussian functions

A periodic superpositionF(x) of normalized Gaussian curves with a period ofλ can be written
as follows:

F(x) =
∞∑

i=−∞

λ√
2πσ

exp

(
− (x − iλ)

2

2σ 2

)
. (16)

The mean value ofF(x) is equal to 1 andF(x) oscillates around 1 with a period ofλ. The
amplitude of the oscillation depends onλ. The smallerλ, the lower the amplitude and the better
the homogeneity of the superposition. The amplitude1 can be set toF(0) − 1, because the
superposition has its maximum values at thex-positions{. . . ,−λ, 0, λ, . . .}. Table 3 shows
the amplitudes for some values ofλ/σ which are in a relevant range for raster scanning. If
λ/σ is less than 1.6 a very smooth superposition with an inhomogeneity1 of less than 0.1%
is obtained.

Table 3. Amplitude of the oscillation (inhomogeneity) of a periodic superposition of Gaussian
functions.

λ/σ 1 = F(0)− 1

1.0 <10−8

1.4 8.5× 10−5

1.6 9.0× 10−4

1.8 4.5× 10−3

2.0 0.014
2.2 0.033
2.4 0.065
2.6 0.107
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