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Demand response programs offer efficient solutions for many power system problems, such as high generation
cost, high demand’s peak to average ratio, high emissions, reliability issues and congestion in generation,
transmission and distribution systems. Their main function is to assist power systems during peak demand hours
and also during contingencies. They are a subcategory of the family of demand side management (DSM) stra-
tegies. DR programs are classified into two broad categories; price-based DR programs and incentive-based DR

programs. In order to exploit their full potential, DR programs must be implemented optimally. Such a problem,
which here is referred to as “DR optimisation problem”, is a hot research topic and has been frequently re-
searched in the literature. This paper aims to review different research works on DR optimisation problems.
Based on the conducted review, some directions for future research are proposed.

1. Introduction

Electric power systems face different challenges such as reliability
issues, low efficiency, high energy losses, high emissions and high
possibility of market power exercise. In the traditional flat electricity
tariffs, the disconnect between wholesale electricity market price and
retail tariffs leads to inefficient usage of resources, because the con-
sumers have no motivation to adjust their usage according to supply
costs [1-7]. Moreover, the peak to average ratio (PAR) of demand in
electric power systems is high [8-10]. Although, peak hours spans only
a couple of hours per day, in order to supply peak demand, a high
investment should be made on generation, transmission and distribu-
tion systems. This results in an increase in the cost of electricity supply.
On the other hand, during contingencies, for instance during the outage
of generating units or transmission lines, power systems have many
problems in supplying the demand via the remaining generating units
and transmission lines and incur high amount of costs. Therefore,
during contingencies, power system reliability is jeopardized. A very
efficient strategy for dealing with all the above-mentioned challenges in
power systems, is to use demand side management (DSM) programs
[11-14]. DSM includes everything that can be done on the demand side
of a power system in order to improve its characteristics. As Fig. 1 il-
lustrates, two broad sub-categories of DSM are energy efficiency pro-
grams and demand response programs. Demand response (DR) is de-
fined as “changes in electric usage by end-use customers from their normal
consumption patterns in response to changes in the price of electricity over
time, or to incentive payments designed to induce lower electricity use at
times of high wholesale market prices or when system reliability is jeo-
pardized” [1,15]. This definition indicates that DR programs mainly aim
to help power systems during peak demand hours or contingencies. By
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DR programs, the utility incentivises consumers to reschedule their
consumption patterns [2]. They are becoming very popular in today’s
modern electric power systems [16-19].

1.1. Classification of demand response programs

DR programs can be classified into two broad categories. In the first
category of DR programs, referred to as “incentive-based DR programs”,
the consumers are awarded incentives for changing their consumption
patterns as per the desire of the supply-side. In the second category of
DR programs, referred to as “price-based DR programs”, the consumers
are charged with different rates at different consumption times, there-
fore, retail electricity tariff is affected by the cost of electricity supply.

1.1.1. Incentive-based DR programs

As mentioned before, these programs pay participating consumers,
who reduce their consumption at peak hours or during events. There
are different types of incentive-based DR programs that are introduced
and described below.

e Direct load control (DLC) programs
In these programs, some consumers or appliances are registered in
the program and allow the utility to shut down or cycle them, when
needed (normally during peak demand or events) [20-22]. The
participating consumers are paid incentives.

® Load curtailment programs
In these programs, the registered consumers are paid incentives for
curtailing their consumption as the wish of the utility. Typically,
registered consumers, who fail to respond to incentives, are severely
penalised [1].
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Fig. 1. Main sub-categories of DSM.

e Demand bidding programs
These programs are typically offered to large-scale consumers
(larger than 1 MW). During contingencies or peak demands, the
consumers may bid to curtail part of their consumption at a certain
bid price [1,23].

e Emergency demand reduction programs

As per this program, in severe contingencies, the consumers are paid
a considerable incentive for reducing their usage. These programs may
assist a power system to enhance its reliability.

1.1.2. Price-based DR programs

As mentioned before, in price-based DR programs, the consumers
are charged with different prices at different times of consumption. In
this way, the consumers are charged according to the supply cost of
electricity. By increasing tariffs during peak demand hours and con-
tingencies, utilities incentivise consumers to reduce their consumption.
The main types of price-based DR programs are described below.

e Time of use (TOU) pricing

In this DR program, the electricity price for consumers depends on
the time interval that the electricity is used. Typically, a day is di-
vided into three intervals, named as peak interval, mid-peak interval
and off-peak interval. The consumers are severely charged for con-
suming electricity at peak interval. In this way, they are encouraged
to reduce their consumption at peak hours and shift their shiftable
loads to off-peak hours [24]. The economic implications of TOU
pricing has been investigated in [25-29].

Critical peak pricing (CPP)

This program is akin to TOU, except for the time when the reliability
of the power system is jeopardized and then the normal peak price is
replaced by a very higher price [30,31]. This program is only em-
ployed for a couple of hours per year and improves power system
reliability [2].

Real-time pricing (RTP)

In this type of pricing, the electricity tariffs typically change hourly,
reflecting the fluctuations in the price of wholesale electricity
market [32-37]. Typically, the consumers are notified on a day-
ahead or hour-ahead basis [2]. RTP is becoming very popular in DR
programs and smart homes. The economic advantages of RTP has
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been investigated in [38-42] and its environmental advantages have
been investigated in [43]. In the cases that the prices are not pub-
lished on day-ahead basis, a price prediction module is needed for
energy management of consumers. Research works in real-time
pricing may be classified into two categories; in the first category,
the response of consumers to the known real-time prices are in-
vestigated [44], while in the second category, the real-time prices
are set by the retailer or utility through an optimisation process and
the response of the consumers to those prices are investigated [45].
Inclining block rate (IBR)

This program offers a two-level price, based on the total consump-
tion of a consumer. The electricity price goes to a higher level, if the
consumption reaches a threshold [2,46,47]. This program reduces
the need for unnecessary investments in generation, transmission
and distribution systems [48]. IBR program has been widely
adopted by some utility companies since the 1980s. For instance the
Southern California Edison, San Diego Gas & Electric, and Pacific
Gas & Electric companies currently have two-level rate structures
where the price in the second level is 80% or higher than the first
level, depending upon the utility [49]. In Canada, the British Co-
lumbia Hydro Company adopts a two-level IBR with 40% higher
prices at the second level [46].

The classification of DR programs can be seen as Fig. 2.

1.2. Implementation of demand response programs

DR programs may be implemented for residential, commercial or
industrial consumers. For implementation of DR programs, advanced
metering infrastructures (AMI) are installed in consumers’ site. They
have the potential to measure and memorize energy usage at different
times and also have communication links that allow the utility to re-
motely retrieve current usage information [1]. Using innovative en-
abling technologies, including smart meters, communication devices
and energy controllers is crucial for effective implementation of DR
programs [50].

In order to make decision whether to enroll in DR programs or not,
the consumers do a cost-benefit analysis, considering the inherent un-
certainties and risks. Costs of DR for consumers are twofold; initial
costs, including initial investment, enabling technology’s cost and cost
of preparation of a response plan. Event-specific costs of consumers
includes discomfort costs, rescheduling costs and costs of on-site gen-
eration [1]. For utilities, the DR costs are also twofold; initial costs
including costs of metering and communication devices, costs of up-
grades of billing systems and consumers’ education costs. The utilities’
operating costs in DR include program administration costs and in-
centive payments to participating consumers [1]. Different types of DR
costs for utilities and consumers can be seen as Fig. 3.

Among different types of consumers, residential consumers have
proved to be more responsive in DR programs. This is due to the fact
that residential appliances are more curtailable, shiftable, interruptible
and elastic [2]. Typically, a two-way communication between utility
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Fig. 3. Different types of DR costs for utilities and consumers [1].

and home is built up, using wide area networks (WAN’s), neighborhood
area networks (NAN’s) and home area networks (HAN’s). In a home,
there exists a home energy management system (HEMS) that de-
termines ON-OFF status of different appliances at different time slots,
considering the information exchanged with the utility. Smart meters
collect the detailed information of consumption patterns. In residential
DR programs, home appliances are typically divided into three cate-
gories; must-run appliances such as lighting, shiftable and interruptible
appliances such as PHEV’s and shiftable but non-interruptible appli-
ances such as washers or dryers.

In [51], the characteristics of response of industrial and commercial
consumers to DR programs have been investigated. Although they are
fewer in number than residential consumers, have a more load reduc-
tion potential. Two factors highly affect the desire of industrial and
commercial consumers to respond to DR programs; the share of elec-
tricity bill in their total costs and the cost of participation in DR pro-
grams (production reduction,...). In [52], industrial sector has been
divided into three groups, providing aggregate level estimates of price
elasticities. The average elasticity of the most electricity-intensive
group including petrochemical and metal industries is more than twice
that of the least electricity-intensive group including textile printing
industries. Another research by [53], showed that in industrial section,
DR is mainly involved in manufacturing, transportation, agriculture,
mining and construction segments. These segments form the 40% of the
reference load but contribute more than 80% in DR programs.

Commercial businesses generally tend to show smaller response to
electricity prices and incentives [53]. This is due to the fact that the
majority of commercial businesses such as retail shops and office
buildings operate within a fixed hours with low flexibility and incentive
to shift their loads.

1.3. Advantages of demand response programs

DR programs offer many diverse advantages for electric power
systems, utilities, retailers and consumers. Their main advantages are
listed as below.

> DR programs lead to reduction in peak to average ratio (PAR) of
demand [54]. This prevents unnecessary investments in generation,
transmission and distribution systems and thereby supply cost of
electricity is decreased. For instance, it is estimated that DR pro-
grams together with energy efficiency measures will reduce the
needs for U.S new generation capacities from 214 GW in 2010 to
133 GW in 2030, by 38% [55].

During peak-demand hours, the generating units with high amount
of emissions are unavoidably commissioned, because the generating
units with lower emissions have already been fully loaded.
Therefore, DR programs, through reduction of peak-demand, de-
crease the amount of emissions.

During power system contingencies, DR programs reduce the con-
sumption level, especially through direct load control (DLC) pro-
grams and emergency load reduction programs. Therefore, the stress
on power system is decreased, in a way that system operator is not
obliged to shed some loads and conclusively, power system
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reliability is improved.

Using DR programs that assist power systems during peak-demand

hours or contingencies, the probability of occurrence of price spikes

in wholesale electricity market is decreased and the need for market

interventions by regulatory agencies is reduced.

Using DR programs decreases the possibility of market power ex-

ercise by generation companies (GENCO’s) in wholesale electricity

markets, therefore, market efficiency is increased.

In DR programs, the dependence of retail tariffs on the wholesale

market price, leads to more efficient usage of resources in electric

power systems.

DR allows higher penetration of intermittent renewable energy re-

sources in electric power systems. In balancing generation and de-

mand, DR programs help power system to overcome difficulties

arising from uncertain nature of intermittent renewable energy re-

sources.

> Using DR programs, consumers enjoy bill savings by rescheduling
their consumption patterns.

1.4. Objectives and organization of the paper

In order to exploit their full potential, DR programs must be im-
plemented optimally. Such a problem, which here is referred to as DR
optimisation problem, has been frequently researched in the literature
[56]. This paper aims to review different research works on DR opti-
misation problems. The rest of the paper is organised as follows; in
Section 2, the review of research works on DR optimisation is provided
from different perspectives. Section 3 includes overall review and some
directions for future research. The conclusions have been drawn in the
Section 4.

2. Detailed review of research on demand response optimisation

In this section, the existing research works on DR optimisation are
reviewed from the perspective of the used optimisation algorithm, the
used DR program, the used objectives, constraints and decision vari-
ables. From the optimisation perspective, DR optimisation problem is
typically formulated as a constrained optimisation problem, including
binary decision variables. This review is mainly based on the used
optimisation algorithm. The optimisation algorithms, used for solving
DR optimisation problem, can be classified into two broad categories;
classic optimisation algorithms and metaheuristic optimisation algo-
rithms.

2.1. Classic optimisation algorithms for solving DR optimisation problems

DR optimisation problems may be formulated as linear or non-linear
optimisation problems. Depending on the formulation of the problem,
linear programming (LP) or nonlinear programming (NLP) may be
used. In most cases, the ON-OFF status of various consumers or appli-
ances at different time-slots must be determined, which represent
binary decision variables. Therefore, typically mixed-integer linear
programming (MILP) or mixed-integer nonlinear programming
(MINLP) are used for solving DR optimisation problem.
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2.1.1. Linear programming or mixed-integer linear programming for solving
DR optimisation problems

In the literature, in a couple of research works, LP or MILP has been
used for solving DR optimisation problem. In [46], DR optimisation
problem has been formulated as a linear optimisation problem, whose
objectives are minimisation of household’s bill payment and appliances’
waiting time. Linear programming has been used for optimising the
objective function and finding optimal consumption of various appli-
ances at different time-slots. A combination of RTP and IBR has been
used as DR program. Assuming that prices are published only a couple
of hours before scheduling, a price prediction module has been added.
The results show 25% bill saving and 38% reduction in PAR, achieved
by DR program. The simulation results also show that increasing the
number of households of the utility facilitates load balancing and PAR
reduction.

In [57], linear programming has been used for optimal scheduling
of users in direct load control (DLC) program and also finding the op-
timal number of users participating in DLC program. The objective is to
minimise peak demand of the utility. In [58], the consumptions of
different appliances of a household at different time-slots have been
determined in order to minimise the peak hourly load of the household.
DR optimisation problem has been formulated as a linear optimisation
problem, which is solved by MILP. The results show significant reduc-
tion in peak hourly load of the household. The results also imply that
using multiple households in the DR program, a more balanced hourly
load can be achieved.

In [59], optimal resource scheduling of a DR aggregator, which
participates in day-ahead wholesale electricity market, has been done
by mixed-integer linear programming (MILP). DR aggregation is ac-
knowledged as an efficient way for increasing the exposure of large
volumes of consumers to wholesale markets [59,60]. DR aggregator
signs contracts with consumers to participate in DR program through
load curtailment, load shifting, on-site generation and energy storage.
DR aggregator aims to use shares of different DR resources in a way that
its payoff, i.e., its revenue in wholesale electricity market minus its
payments to consumers participating in DR program, is maximised. The
results show the remarkable payoff, achieved for DR aggregator in
Pennsylvania New Jersey Maryland (PJM) wholesale electricity market.
The impact of market price and the impact of constraints of different DR
resources on optimal scheduling of DR aggregator and optimal payoff of
DR aggregator have been investigated.

In [61], MILP has been used for DR optimisation and OPF in CHP
microgrids with energy storage systems. DR program in a bus has been
considered as a virtual generator with a defined cost function. The
problem has been formulated as a multi-objective optimisation pro-
blem, with both economic and environmental objectives. Fuzzy method
has been used to find compromised solution in pareto-front. The results
show the significant effect of DR on peak-load reduction, emission re-
duction and operational cost reduction. In [62], MILP has been used for
unit commitment in microgrids with demand bidding DR program,
while DR has been implemented for residential, commercial and in-
dustrial consumers. Industrial loads bid as multiple curtailment-price
steps. Uncertainties of wind and PV generators have been considered
and scenario-based analysis has been used for dealing with the un-
certainties.

In [63], MILP has been used for DR optimisation and day-ahead
operation cost minimisation in smart building microgrid. The smart
building includes some smart homes and has its own microgrid with
storage units. RTP has been used as DR program. Optimal schedule of
home appliances is found in optimisation process. The results on two
different smart buildings with 30 and 90 homes confirm the effect of DR
program in reduction of MG’s operational cost and peak demand.

In [64], MILP has been used for DR optimisation and generation
scheduling in a residential community grid with renewable generation
and ESS. The objective is to minimise the purchased energy cost of the
residential community. TOU, RTP and CPP have been used as DR
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programs. A normal distribution function has been used to simulate the
arrival time of EV’s. An interesting result indicates that while prior to
TOU program, most EV load is centralized in on-peak and mid-peak
hours, the TOU program shifts around 96% of EV load to off-peak
hours.

2.1.2. Non-linear programming or mixed-integer non-linear programming
for solving DR optimisation problems

NLP or MINLP have been frequently used for solving DR optimisa-
tion problem, where the relationship between objective(s) and decision
variables has been represented as a nonlinear function. In [65], NLP
and MINLP has been used for solving DR optimisation problem. A non-
linear problem formulation has been provided, wherein, it is assumed
that DNO has the authority to control demands in some nodes of the
system and the effect of DR incorporation in a bus of the power system
is modeled by the following equations.

Pipr(, t) = By, t). y (i, t) (@)

Qa,pr(, 1) = Qu(i, ). ¥ (i, 1) (2

where E; pr(i, t) represents active power demand of ith bus at time ¢
with demand response, F;(i, t) represents active power demand of ith
bus at time ¢ without demand response, Q4 pr (i, t) represents reactive
power demand of ith bus at time ¢t with demand response, Q,(i, t) re-
presents reactive power demand of ith bus at time t without demand
response and y (i, t) denotes DR coefficient of that bus at time ¢.

Optimal DR problem has been solved for two different scenarios,
while distribution network operator functions as decision maker and
does not consider the comfort of the consumers. In the first scenario, the
buses with DR program are assumed known and the DR coefficients for
buses with DR program at each time-slot are determined in a way that
the daily loss payment is minimised. Due to the fact that energy loss is a
nonlinear function of DR coefficients, this represents a nonlinear opti-
misation problem. In this scenario, the number of decision variables
equals the number of buses with DR programs, times the number of
time-slots. In the second scenario, the best buses for DR program are
also found in the optimisation process, that is, the best buses for DR
program and DR coefficients for those buses at each time slot are found
in DR optimisation problem. This represents a nonlinear optimisation
problem including both integer and non-integer decision variables and
is solved by mixed- integer nonlinear programming (MINLP). The prices
of day-ahead market are assumed unknown and are predicted by
forecasting modules. In formulating the optimisation problem, the un-
certainty of day-ahead prices are considered and robust optimisation
has been used for dealing with uncertainties.

In [66], NLP with dual decomposition has been used for finding
optimal consumption of different users at different time-slots in order to
minimise generation cost of utility and maximise convenience of con-
sumers. The preference of consumers and their consumption patterns
have been modeled in the form of a convenience function. For each
consumer, the convenience function has been formulated as a non-de-
creasing function of user’s consumption as below.

2
wx—“xT o<x< 2
Ux, ) = ¢
x>

(9]
a a

3
where x represents the consumption level of the consumer, a is a pre-
defined parameter and w is a parameter that varies from consumer to
consumer and from time to time.

The achieved results show significant reduction in generation cost
for utility and a high convenience for consumers.

In [67], MINLP has been used for solving residential DR optimisa-
tion problem. Optimal ON-OFF status of 10 residential appliances in 10-
min time-slots for a horizon of one day, has been found in DR program.
Daily bill and consumer’s inconvenience have been minimised for an
optimisation problem with lots of binary decision variables. Eskom’s
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tariff which is mainly based on TOU pricing and also incentivizes users
during peak hours, has been used. The sum of disparities between
baseline consumption of appliances and their scheduled consumption
has been defined as the inconvenience metric. The results show that the
described optimally-scheduled DR leads to more than 25% bill saving
for the consumer.

In [68], mixed-integer nonlinear programming (MINLP) has been
used for DR optimisation, wherein DR has been used in energy hubs and
optimal day-ahead scheduling of resources in energy hubs is intended.
Real-time pricing (RTP) program has been used. The consumption of
different loads at different time-slots are determined in a way that total
cost of energy hub, including the cost of purchased gas and the pur-
chased electricity from grid, is minimised. The uncertainty of load and
price has been modeled by normal probability density functions and has
been handled by 2m+ 1 point estimate method (PEM). Heat demand
has been considered both curtailable and shiftable, while electric de-
mand has been considered shiftable, but not curtailable. The effect of
DR on demand has been represented by (4).

B, pr(t) = A=F ()R () + sd(t) 4

where F; pr(t) represents active power demand of a consumer at time ¢
with demand response, F;(t) represents active power demand of that
consumer at time t without demand response, F(t) represents the
fraction of the load, shifted to other time slots and sd(t) denotes the
load shifted from other time-slots to this time-slot.

DR has done both for thermal loads and electric loads, although
only electricity price changes as RTP program and gas price has been
considered constant. The simulations have been done for three different
energy hubs as case studies and for three different scenarios for each
energy hub. The first scenario conducts optimal scheduling of resources
without demand response, the second scenario conducts optimal sche-
duling of resources with electric load demand response and the third
scenario conducts optimal scheduling of resources both with electric
and thermal loads demand response. The simulation results show that
the implementation of electric load demand response decreases the
total cost of energy hub with respect to optimal scheduling without DR
and also show that the simultaneous implementation of electric and
thermal loads demand response leads to the least cost in optimal
scheduling. The results testify that the proposed 2m+ 1 point estimate
method for dealing with uncertainties of loads and prices outperforms
2m point estimate method.

In [69], NLP has been used for DR optimisation and unit commit-
ment in microgrids, while the amount of load reduction and paid in-
centives for each time interval are found in DR optimisation. The
benefit of the utility, in each time interval of DR program has been
formulated as below.

B=px—-y %)

where f3 represents the cost of not supplying 1 kWh of consumption, x
represents the reduced consumption in kWh and y represents the in-
centive paid to the consumer.

The total benefit of the utility in DR program is calculated by
summation of B values for all consumers and time intervals. It is as-
sumed that the parameters of customers’ benefit function is known to
the microgrid operator. A minimum benefit for consumers participating
in DR program is guaranteed in the formulation of the problem and a
maximum budget for incentives has been considered. The transferred
power between microgrid and upstream grid, ON-OFF status and gen-
erated power of dispatchable generating units along with the incentive
and load curtailment of different customers at different time intervals
form the decision vector of the problem. The operation cost of micro-
grid and the total benefit of utility in DR program form the objective
function. Linear weighted sum has been used for handling multiple
objectives. The results have been found for a microgrid including PV,
WT and diesel generators.

In [70], benders decomposition NLP has been used for unit
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commitment in microgrids with DR for residential, commercial and
industrial consumers. Different DR programs including direct load
control (DLC) and demand bidding programs have been used. The un-
certainties of PV and wind generation have been modeled by their
PDF’s and are dealt with scenario-based analysis method. Indeed, mi-
crogrid uses the curtailment of different loads as a resource in energy
and reserve management. The achieved results confirm that DR sig-
nificantly reduces the operational cost of the microgrid.

In [71], NLP has been used to find the ON-OFF status of appliances
of a smart home in different time-slots in different DR programs. The
considered smart home is equipped with home energy management
system (HEMS). It also includes renewable generation units, electric
vehicles (EV’s) and energy storage systems. The benefit of the home
owner is the objective function, while a response fatigue index has been
defined and it is assumed that the response fatigue in DR program
should be less than a predefined threshold.

The uncertainties of renewable generation units, electric vehicles
(EV’s) and energy storage systems have been considered and are dealt
with scenario-based analysis (SBA) method. Different price-based and
incentive-based DR programs including CPP, RTP and TOU have been
used. The degradation of batteries over time has been considered. The
response fatigue index has been defined based on three factors; the
frequency of DR signals/calls, duration of DR events and the im-
portance of the appliances affected by DR program. By setting a max-
imum fatigue index, the DR provider ensures that the customer keeps
participating in DR program. It is assumed that at the highest sa-
tisfaction level, the consumers charge their EV’s at the arrival time and
unplug them once their batteries are full. The results show that the
proposed stochastic formulation leads to more profit for home owners
than deterministic formulation. As expected, RTP leads to the highest
response fatigue index, due to the high frequency of DR signals.

Other than the above-mentioned research works, in [72], NLP has
been used for solving DR optimisation problem.

2.2. Metaheuristic optimisation algorithms for solving DR optimisation
problems

Metaheuristics are very popular optimisation algorithms for solving
formidable engineering optimisation problems. They are typically po-
pulation-based, stochastic optimisation algorithms that try to find a
near-optimal solution, with a limited computational burden.
Metaheuristics are global optimisation algorithms that can easily
handle constrained and discrete optimisation problems with large
number of decision variables [73,74]. Therefore, despite their chal-
lenges, metaheuristics are considered as good choices for solving DR
optimisation problem. Referring to the literature, it was found that four
different metaheuristic optimisation algorithms have been applied to
DR optimisation problem. They will be reviewed within this sub-sec-
tion.

2.2.1. Particle swarm optimisation (PSO) for solving DR optimisation
problems

Particle swarm optimisation (PSO) is the most commonly used op-
timisation algorithm, for solving DR optimisation problem [75-82]. In
PSO, a swarm with N, particles search for a near-global solution. The
ith particle is represented as below.

Xi=[Xn, Xo, o Xidgye Xin] (6)

where n denotes the number of decision variables. The particles are
randomly initialised and their initial position and objective value are
set as their personal bests. The position with the best objective is set as
the global best. At iteration ¢, velocities and positions of particles are
updated by the following equations [83].

Vi(t+1) = oVi () + G 1B — X)+Con (B — X)) )
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Xi(t+1) = X (1) + Vi(t+1) ®

where V; denotes velocity of ith particle, C; and C, are respectively
cognitive and social acceleration coefficients, @ denotes inertia weight,
n and r, are two random numbers in [0,1] [84].

After updating particles’ positions, their objectives are calculated
and their personal bests and global best are updated, so, global best is
improved iteration by iteration. The process of updating velocities,
positions, personal bests and global best continues until stopping cri-
terion is met [84,85].

In most of the cases, the ON-OFF status of appliances at different
time-slots represent the decision vector of DR optimisation problem.
Such a problem with binary decision variables, must be solved with
binary version of PSO. In binary PSO, after updating velocities, sigmoid
function is used to map Vj; (dth dimension of ith particle’s velocity) into
interval [0,1] [86-89].

1

U P —
I ey

©
Then a random number r in [0,1] is generated and then, the fol-
lowing equation is applied.

1 r<s(Vy)

Xyt +1) =
ul ) {0 Otherwise

10

That is, Vy represents the probability that the variable X;4 takes the
1 value.

In [75], binary PSO has been used for scheduling some interruptible
loads for a 16-h time horizon in order to satisfy a schedule of required
hourly requirements. A total of 19 interruptible loads have been used
and the objective is to minimise the total payments (incentives) to the
consumers. The hourly ON-OFF status of the interruptible loads are
found in a way that the mentioned objective is minimised, therefore the
number of binary decision variables is 304. The optimisation has been
done from utility-side that aims to minimise the total incentive pay-
ments to consumers, but simultaneously aims to minimise the total
number of interruptions to make DR socially acceptable. The con-
straints of the optimisation problem have been added to the objective
function as a set of penalty functions. The results show the out-
performance of the proposed binary PSO over fuzzy dynamic pro-
gramming. Comparing the best scheduled curtailment, achieved by
binary PSO, with the required curtailment, shows that it closely follows
the required curtailment. Moreover, in [75], in order to improve the
search behavior of PSO, the swarm is subdivided into a couple of sub-
swarms, where the particles of each subswarm are attracted towards the
leader of their own subswarm. The results show that multi-swarm PSO
leads to better performance in DR optimisation problem than conven-
tional single-swarm PSO. It was also found that the multi-swarm PSO
performs better with independent sub-swarms than dependent sub-
swarms.

In [77], binary PSO has been used for optimal scheduling of electric
water heaters (EWH’s) of 200 households in direct load control program
(DLC). ON-OFF status of all electric water heaters in 15-min time-slots
are found in a way that peak load demand of utility is minimised and
the aggregate comfort of the consumers are maximised. Water tem-
perature of EWH’s as the criterion of consumers’ convenience is max-
imised. EWH’s represent a large portion of a household’s load. In
winter-dominated areas, they contribute to as much as 30% of house-
hold’s load. Due to two reasons, EWH’s are suitable candidates for DR
programs and their control in DLC has attracted much attention
[22,90-100]; The first reason is that the hot water in the their tank acts
as an energy storage. The second reason is that their load profile closely
mimics the aggregate load profile of the household, so using them in
DLC programs, significantly reduces the peak demand of the utility. The
thermal model of EWH has been described in [77] in order to find the
water temperature, based on the data collected from smart meters. The
results imply 500-700 W peak load reduction per household. Potential
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cost saving for utility for 200 households is as high as 1.260 $. The used
objective function is as follows.

NewH
T= Y WAlTy — Toil + WalB — Rl

i=1

(1)

where Ngyy denotes the total number of EWH’s, T, ; denotes the esti-
mated water temperature, T,; represents the maximum water tem-
perature, F; is the desired load, P,; denotes the load of ith EWH, W; and
W, respectively represent the weight factors of peak demand mini-
misation and comfort maximisation.

In [81], binary PSO has been used for finding optimal ON-OFF
status of manufacturing machines in different 15-min time-slots in TOU
demand response program. The optimisation has been separately done
for two different problem formulations. In the first formulation, which
does not seem realistic, the total electricity consumption is minimised,
while in the second formulation, the total cost of electricity consump-
tion is minimised. In both formulations, the average cumulative pro-
duction is bounded by a certain lower limit.

In [101], a mutation-incorporated PSO has been used for DR opti-
misation and finding optimal setting of on-load tap changers (OLTC’s)
in a low-voltage network. The setting of OLTC’s and ON-OFF status of
appliances are found in a way that the over-voltages and voltage un-
balances are removed, DR costs and network losses are minimised,
considering the comfort of the consumers. EV’s. Washing machines,
dishwashers, driers and pool-pumps have been included in the DR
program. The utility collects each DR appliance’s rated power, con-
sumption preference and bid price for participation in DR program. DR
and OLTC optimisation has been formulated as a mixed-integer non-
linear optimisation problem, while the constraints have been added as
penalties to the objective function. In the proposed mutation-in-
corporated PSO, the mutation operator is applied if the global best is
not improved after a certain number of iterations. A random particle is
selected and a random perturbation is added to its velocity. In the
proposed PSO, constriction factor is used instead of the common inertia
weight. The results show that the simultaneous usage of DR and OLTC
significantly reduces the overvoltages, voltage balances, network losses
and network costs, while the consumers’ comfort is respected. The re-
sults confirm the outperformance of the proposed mutation-in-
corporated PSO over conventional PSO, simulated annealing (SA) and
GA. However, the uncertainties of PV generation and EV’s have not
been taken into account.

In [76], mutation operator is incorporated into PSO and is used for
optimal scheduling of generating resources and DR resources. The re-
sults on a large-scale distribution network with 937 buses, 20,310
consumers and 548 DG’s approve the efficacy of the proposed mutation-
incorporated PSO. In [78], again PSO has been applied to DR optimi-
sation problem. The problem has been formulated as a bi-level opti-
misation problem, wherein the objective of the upper level is the
maximisation of retailer’s payoff and the objective of the lower level is
minimisation of the consumer’s bill payment. The consumption of dif-
ferent appliances have been found for a time horizon of 24-h and with
15-min time resolution. The simulation results show that PSO performs
better than GA. Moreover, in [82], fuzzy-based PSO has been used for
solving DR optimisation problem in order to minimise power losses of
the distribution network.

2.2.2. Genetic algorithm (GA) for solving DR optimisation problems

Genetic algorithm (GA) is a well-established evolutionary-based
metaheuristic optimisation algorithm [102,103]. In few cases, it has
been used for solving DR optimisation problem. It is inspired of the
evolution of human beings from generation to generation and is mainly
based on selection, crossover and mutation operators. At each iteration,
crossover and mutation operators produce new individuals and a sto-
chastic-based selection operator is used to select fitter individuals
among the previous individuals and newly-generated ones.
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Fig. 4. Classification of optimisation algorithms, used for DR optimisation.

In [104], GA has been used for optimal scheduling of residential,
commercial and industrial shiftable loads in RTP demand response
program within a smart grid. The control system receives the desired
load curve as an input and calculates the required load control actions
to take the load curve as close as possible to the desired load curve.
When a customer presses ON button of an appliance, the connection
request is sent to the demand response controller. The DR controller
either permits immediate connection of the appliance or permits it to
connect at a later time-slot. The objective function of the optimisation
process is as below.

N
T =3 (Pioa(t) — target (1))?

t=1

12)

where target(t) and Pj.4(t) respectively represent the desired con-
sumption and actual consumption at time ¢. It must be pointed out here
that target (t) is chosen in a way to be inversely proportional to elec-
tricity market prices.

The results of [104] approved that the proposed methodology
manages to keep the consumptions close to the desired consumption
levels. The savings in operating costs, achieved for residential, com-
mercial and industrial loads were respectively 5%, 5.8% and 10%. The
results also approved the benefits of the proposed DR to both consumers
and the utility.

In [105], GA has been used for optimal scheduling of inverter air
conditioners in RTP program, while the RTP prices are published as a
day-ahead basis. DR optimisation has been done in a way that the
maximum bill saving is achieved and peak demand is minimised, while
thermal comfort of the residents has been included as the constraints of
the problem.

In [106], GA has been used for DR optimisation of industrial con-
sumers including EV and HVAC loads for minimisation of costs and
maximising consumers’ comfort. The results showed the significant ef-
fect of DR on cost reduction.

Moreover, in [107], GA has been used for DR optimisation in a
smart home.

2.2.3. Simulated annealing algorithm (SA) for solving DR optimisation
problems

Simulated annealing (SA) is another metaheuristic optimisation al-
gorithm that in few cases has been used for solving DR optimisation
problem. It takes inspiration from annealing process in metallurgy,
wherein heating and then cooling of the material is done in a way to
increase the size of its crystals and decrease its defects [108-110].

In [111], simulated annealing (SA) algorithm has been used for
finding optimal set of the real-time prices in DR optimisation. The
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prices in RTP are set in a way that the aggregate surplus of consumers,
retailer and utility is achieved, that is, demand’s peak to average ratio
(PAR) is minimised, the retailer’s cost is minimised and consumers’
payoff is maximised. The prices are determined at the beginning of each
scheduling horizon. The consumers respond to the real-time prices in a
way that their own payoff is maximised. This DR program has been
applied to a smart grid with a retailer and 100 users which purchase
their electricity from the retailer. The appliances have been classified
into must-run appliances, shiftable appliances and interruptible appli-
ances and have been scheduled for different time-slots through La-
grangian method. The achieved results show the benefit of the proposed
methodology for the utility, the retailer and the consumers. In [112],
SA has also been used for optimal scheduling of residential appliances
in order to simultaneous minimisation of the household’s bill payment
and utility’s generation cost.

2.2.4. Teaching learning-based optimisation (TLBO) for solving DR
optimisation problems

Teaching learning-based optimisation (TLBO) algorithm is a meta-
heuristic optimisation algorithm, inspired from the interaction among
students and teacher in a classroom [113]. In [114], TLBO has been
used for optimal scheduling of residential consumers in a smart grid in
order to minimise their bill payment. The consumers are under different
DR programs, including TOU, RTP and CPP and some consumers are
under flat tariff policy. The results show remarkable reduction in con-
sumers’ bill payments after applying optimal DR by TLBO. The results
also indicate the outperformance of TLBO over shuffled frog leaping
algorithm (SFLA).

The classification of optimisation algorithms, used for DR optimi-
sation, can be seen as Fig. 4.

3. DR optimisation from other perspectives

From the perspective of the used objectives, five different objectives
have been mostly used in the existing research works on DR optimi-
sation. Bill saving maximisation [46,67,78,114], comfort maximisation
[46,67,77], generation cost minimisation [66,68,115] and PAR mini-
misation [58,77] are the most commonly used objectives in DR opti-
misation problem. From the perspective of the used DR program, RTP
[66,68,104,111,115] is the most commonly used DR program, although
DLC in [65,77], and TOU in [81,115] has been used. Moreover, in [46],
the combination of RTP and IBR and in [114], the combination of TOU,
CPP and RTP has been used.

From the perspective of the type of users under DR program, in most
of the cases, DR optimisation has been done for residential users
[46,58,67,75,77,78,104,114]. Only in [46,104], commercial users and
in [46,81,104], industrial users have been used. From the perspective of
the consideration of the inherent uncertainties in the DR optimisation
problem, only in [65,68], the uncertainties of some uncertain para-
meters have been considered. In [65], the uncertainty of the prices of
day-ahead wholesale market has been considered and dealt with robust
optimisation method, and in [68], the uncertainty of loads and price
have been taken into account and have been handled by 2m+ 1 point
estimate method. In other cases, the uncertainty of different parameters
such as loads, generated powers and prices have not been taken into
account. The main features of some selected research works on DR
optimisation problem, can be seen as Table 1.

4. Overall review and some directions for future research

After reviewing the existing research works on demand response
(DR) optimisation, the following points must be considered.

@ A detailed comparison among different DR programs in the term of
their effects on different objectives, such as PAR minimisation, re-
liability enhancement, etc. is missing in the literature and
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recommended as a direction for future research.

@ As per the conducted review, only in [65,68], the uncertainties have

been considered in DR optimisation problems, while loads and

generated powers are uncertain and metering and communication
devices add to the uncertainties of the problem. Most importantly,
the response of the consumers to DR program is very uncertain.

Considering the uncertainties leads to a more realistic formulation

and solutions for DR optimisation problem and is recommended as a

thread for future research.

Formulating DR optimisation problems in a more realistic way is

recommended as a thread for future research.

@ Despite the efforts made, due to the caused discomfort, most con-
sumers are not attracted to register or respond to DR programs.
Developing strategies to attract consumers, specially residential
consumers to DR programs is recommended for future research.

@ As per the conducted review, mostly DR optimisation have been

done for residential consumers and in few cases, it has been done for

industrial or commercial consumers. Putting more research effort on

DR programs for commercial and industrial consumers is re-

commended.

Only few research works have worked on the way that the real-time

prices in RTP programs are set by retailer/utility. Putting more re-

search effort on strategies for setting real-time prices is re-
commended.

Detailed investigation of the effects of DR programs on electricity

markets with imperfect competition is recommended as a thread for

future research.

Research efforts for mathematical modeling of DR programs is in-

sufficient. Focusing on proper mathematical modeling of DR pro-

grams is recommended for future research.

@ Few researches has been done on environmental effects of DR pro-
gram and considering pollutions in objective function of DR opti-
misation problem. Investigating the environmental implications of
DR programs and considering pollutions in the objectives of DR
optimisation problem is recommended for future research.

@ The comfort of the consumers is a paramount objective in DR op-
timisation problem. However, only in [66], a mathematical for-
mulation for comfort has been provided. Putting more effort on
mathematical formulation of the comfort is recommended.

@ Considering PHEV’s in optimisation of residential DR programs is
recommended as a thread for future research.

2

2

*

6. Conclusions

Demand response programs have proved to be efficient in mitiga-
tion of many power system challenges, such as high generation cost
during peak demand hours, reliability issues and congestion in gen-
eration, transmission and distribution systems. In order to achieve their
full potential, DR programs must be implemented optimally. Such a
problem, referred to as DR optimisation problem, has been frequently
researched. This paper has classified and reviewed different research
works on DR optimisation problems.
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