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ABSTRACT

This paper proposes a Differential Evolution (DE)
approach for the Unit Commitment Problem (UCP).
The propesed approach is tested on benchmark UCP
datasets as well as on real-world data obtained from
the Turkish interconnected power network system.
The results of the DE on the benchmark datasets are
comparable with the results of a current state-of-the-
art evolutionary approach found in literature. This
preliminary experimental study shows that DE is
suitable for the UCP and the promising results
promote further study.

L INTRODUCTION

The Unit Commitment Problem (UCP) is a constrained
optimization problem in which, optimal turn-on and turn-
off schedules need to be determined over a given time
horizon for a group of power generation units under some
operational constraints. The objective is to minimize the
power generation costs while meeting the hourly
forecasted power demands. The UCP is an important area
of research which has attracted increasing interest from
the scientific community due to the fact that even small
savings in the operation costs for each hour can lead to
major overall economic savings.

The UCP consists of two sub-problems [15]: In the first
part, a feasible, low-cost schedule for turn-on and turn-off
times of the power generation units over the given time
horizon is determined. In the second part, for each hour,
the power outputs for the units scheduled to be online for
that hour are obtained in such a way as to minimize the
fuel costs while meeting the forecasted power demands
for that hour. This second part is termed as the Economic
Dispatch Problem (14). Several approaches exist in
literature to tackle the UCP, such as  dynamic-
programming [1, 2], Lagrangian relaxation [3], branch
and bound [4], benders decomposition [5], simulated

annealing [6], tabu-search [7], evolutionary algorithms [8,
9, 10, 11, 15] and many hybrids. A detailed survey can be
found in [16].

Evolutionary Algorithms (EAs) [19] are population based
optimization techniques based on mechanisms found in
nature. The Differential Evolution (DE) [13] algorithm,
introduced by Storn and Price in 1995, belongs to the
group of evolutionary algorithms which operate in
continuous search spaces. DE has been successfully
applied to many problem domains. The solution to the
UCP is given as a set of binary decision variable
assignments showing which generator units are online and
which are offline for any given time slot. This makes it
impossible to apply a pure DE to the UCP. Therefore, in
this study a binary version of DE (BDE) is used to solve
the schedule determination part of the UCP. For the EDP,
a standard lambda-iteration method [12] is used. BDE is
tested on benchmark UCP data as well as on real-world
data of the Turkish interconnected power system.

This paper is organized as follows: In section 2, the UCP
is explained. Section 3 introduces the BDE approach used
in this study. In section 4, experiments and results are
given. Section 5 concludes the paper.

IL. THE UNIT COMMITMENT PROBLEM
The objective of the UCP is to minimize the total cost of
power generation over a given time horizon. Three main
factors effect this cost: Fuel costs, start-up costs and
operational constraints of units. The parameters used in
the UCP formulation are as follows:

P;(t): generated power by unit i at time t

Fi(p): cost of producing p MW power by unit i
PD(t): power demand at time t

PR(t): power reserve at time t

CS;(t): start-up cost of i-th unit at time t
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x;(t): duration that unit i has stayed offline since hour t
vi(t): status of i-th unit at time t (online-offline)

Fuel cost depends on the amount of power output
provided by each online unit for each time slot. The fuel
cost needs to be minimized subject to two constraints: The
power demands for each hour should be met and the
power generated by each unit should be within its
minimum and maximum capacities. This part of the
objective can be formulized as follows.

N
min Ftotal(t) =i§1Fi(Pi(t))

Subject to constraints:

N
> P;(t)=PD(t)
i=1

P™* < B() < P™

Start-up costs depend upon the number of hours a unit has
been down. The formulation for the start-up cost is:

if x, ()<t
4 l() coldstart
otherwise
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There is also another constraint named minimum up/down.
Each generator should stay online for an arbitrary number
of hours after it is turned-on. It also should stay off for a
time after it is turned-off. This number of hours can vary
according to different power generating units. The
formulation for these constraints is:
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According to these fuel cost and start-up cost functions
and constraints, the formulation for the UCP for N units
and T hours is as given below:

T N
=2 X [Fi(Pi(t))~Vi(t)+CSi(t)]
t=1i=1

min F
total

Subject to constraints:
N
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i=1
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The fuel cost of generating p MW power for the i-th unit
is calculated using the following formula:

F,(p)=ay +a,p+ a2i'p2

As can be seen, this cost for a generating unit depends on
three parameters: ay, a;; and a,. The lambda-iteration
technique [12, 14] uses this formulation to find the lowest
cost for dispatching the amount of power to be generated
by the online generating units. This corresponds to the
EDP. To solve the EDP by lambda-iteration, an optimal
lambda value which also satisfies the constraints is
searched for.

IT1. BINARY DIFFERENTIAL EVOLUTION

The Differential Evolution (DE) [13] algorithm was
introduced by Storn and Price in 1995. DE is a form of an
evolutionary algorithm which operates in continuous
search spaces. DE is based on four main steps:
Initialization, mutation, recombination and selection.
While the initialization step is only done in the first
iteration, the other three steps take place in each iteration.
All individuals pass through these operations.

The chromosomes of an individual are made up of real
valued genes, X, (where j is the index of the parameter, i
is the index of the individual and g shows the generation
number), each of which correspond to the parameters of
the problem to be optimized.

All individuals in the population, called the farget vectors,
go through the mutation and recombination steps. There
are several mutation operators. One of the most
commonly used forms of these operators, the DE/rand/1
method, chooses three different vectors from the
population and creates a mutant vector from these, called
the donor vector, through the equation given below.

Vi,g =IYrO,g +F(Xr1,g _XrZ,g)

F takes values in the range (0,1+) and it is recommended
to set F less than 1 [13]. As can be seen from the
definition of the mutation operator of the DE algorithm, it
is not possible to use it for binary valued problems
without a modification. There are some approaches in
literature for modifying DE for such binary valued
problems. One of these methods uses an angle modulation
technique to transform the binary space into a continuous



space [17]. In the initial testing stage of this study, the
experimental results obtained using this technique turned
out to be insufficient. So the approach proposed in [18] is
used as the BDE implementation in this study. The details
of this algorithm are given below.

The initialization step randomly sets the initial values of
the parameters in the population. to be either 1 or 0. The
modification on DE to make it run within binary spaces, is
done to the mutation operator. According to the approach
proposed in [18], the multiplication, addition and
substitution operators are changed as explained below.
The value of any parameter in any of the vectors can be
either 0 or 1. To preserve this property, the result of
subtraction and the addition operators are obtained using
the hamming distance between the two vectors. After the
substitution step, each parameter in the vector is
multiplied with the F parameter. This operation forces the
values of the parameters to change from binary space to
continuous space. In the next step of the mutation
operator, which is the addition operator, the values are
transformed back into being either 0 or 1 through a
rounding mechanism. A sample application of the
substitution operator is given in Table-1.

Table 1: Sample application of the substitution operator

Xr2,g 1 1 0 1 0
Xrl,g 0 1 0 0 0
After Substitution 1 0 0 1 0

The aim of the recombination operation is to create a
different vector based on the donor and the target vectors.
The parameters of this vector are taken from the target
vector when a uniformly distributed random number is
greater than a predefined Cr value; otherwise, it is taken
from the donor vector [13] as shown in

if(randj ON<Crorj=j

- Vf,i’g rand)
Jig Xj Lg otherwise

There are two proposed ways [18] to implement this step:
binomial and exponential. The binomial crossover
operation considers each parameter in a vector separately,
however in the exponential crossover operation after
(rand;(0,1) < Cr) becomes true for the first time, the
remaining parameters are taken from the donor vector as a
block. The binomial crossover operator is chosen in this
study. Cr takes values in the range [0,1]. The vector that is
created through the recombination step is called the trial
vector.

In the selection step, either the target vector or the trial
vector is chosen for the next generation as shown below.

Ui 7 if ( ﬁtness(Vi, g )< ﬁtness(Xl_, a ))

’

X —
i,g+1 X, otherwise

Lg

These steps continue until an acceptable solution is found
or until a predefined number of maximum DE iterations
has been reached.

IV. EXPERIMENTS

The results of the tests on the benchmark data will be
compared to those of a state-of-the-art memetic algorithm
proposed in [10] and a genetic algorithm. In the BDE, the
population consists of 100 individuals, Cr is taken as 0.3
and F is taken as 0.8. In lambda iteration, the tolerance is
set to 0.0001.

The fitness values of the individuals are calculated as the
summation of the fuel cost, the cost of start-up and a
penalty value. Cost for power generation is calculated
using lambda-iteration based on the status of each power
generator unit. For each hour, depending on whether the
start-up is a cold start or a hot start, the appropriate cost is
added to the total cost. A penalty term is used if the
hourly power demands plus a specific amount of reserve
is not met or if t,, and tqows constraints are violated. The
multiplier M for the first penalty term is set to 200 for all
tests. The multiplier K for the second penalty term is
taken as 150 for the second and third tests but as 600 for
the first test. Details on the fitness evaluation and the
penalty calculation method can be found in [10]. Several
runs of the algorithm are performed and the best results
for the total cost are reported here. All parameter values
are determined using the best settings found as a result of
a series of experimental runs.

The first test problem [12] has four power generating
units and a time horizon of eight hours. The data for this
test system is given in Table-2 and Table-3. The results
are presented in Table-4. The best overall result obtained
using BDE is approximately 74,676 and the best result of
the genetic algorithm is given as 74,675 in [10].

For the second test, a larger dataset [8] consisting of 10
generating units and a time horizon of 24 hours is used.
The data and the results for this test are not reported here
due to space restrictions. The best result of the genetic
algorithm [10] is 565,866 and the best result of the
memetic algorithm [10] is 565,827 as compared to the
best BDE result which is 566,166 for this test set.

For the third test, real-world data from the Turkish
interconnected network system is used. There are 8
generating units and a time horizon of 8 hours. The data
for this test system is given in Table-5 and Table-6 and
the results are given in Table-7.



An overview of the best total cost values for the three a; 7,0063 | 7,2592 | 5,682 | 3,1288
tests is summarized in Table-8. As can be seen, for the a, 0,0168 | 0,0127 | 0,0106 | 0,0139
first test, which is smaller in problem size than the other | tu(h) 8 1 1 10
two, BDE gives the same result as the genetic algorithn}. taown(h) 2 0,5 0,5 3
For the second test, results of the memetic and the genetic |5, ($) 200 300 600 400
algorithms are slightly better than the BDE. It should be ) 1600 1600 1200 200
kept in mind that while the BDE is in its most basic form, tootdstart(h) S 1 1 10
the mem;tic .alg(.)rithm ‘ [IQ] uses e).(tra. local search [pitia] ) 3 3 2
through hill-climbing during its run which is costly. Thus State(h)
BDE performs fewer actions to find comparable results to Us U6 U7 Us
the state-of-the-art memetic algorithm. P o (MW) 990 220 630 630
Poix(MW) 210 110 140 140
Table 2: Test 1[12
"b.e © ?ys“m L .] . a 5134,1 | 11595 | 1697 | 18228
Unit] | Unit2 | Unit3 | Unit4 ay 6,232 | 3,3128 | 32324 | 3472
Prsx(MW) | 300 250 80 60 a, 0,0168 | 0,021 | 0,013 | 0,0147
Prin(MW) | 75 60 25 20 | tup(h) 10 10 10 10
ag 684.74 | 585.62 | 213.0 | 252.0 taomn(h) 3 3 3 3
a; 16.83 16.95 20.74 | 23.60 Sot($) 500 400 400 400
a, 0.0021 | 0.0042 | 0.0018 | 0.0034 Scaa($) 1000 800 800 800
| tup(h) 5 5 4 1 teotdstar(h) 10 10 10 10
taown(h) 4 3 2 1 Initial -4 -4 -4 -4
Shot($) 500 170 150 0 State(h)
Scaa($) 1100 400 350 0.02
teoldstart(D) 5 5 4 0 Table 6: Demand and Reserve for Turkish Interconnected
Initial 8 8 -5 -6 Power System Network
State(h) Hour 1 2 3 4
Demand 2000 3000 6500 [ 1500
Table 3: Demand and Reserve for Test System 1 [12]. Reserve 200 300 650 150
Hour 1 2 3 4 Hour 5 6 7 8
Demand 450 530 600 540 Demand 4200 5100 2700 | 1750
Reserve 45 53 60 54 Reserve 420 510 270 175
Hour 5 6 7 8
Demand 400 280 290 500 Table 7: Results for Turkish Interconnected Power System
Reserve 40 28 29 [ 50 Network
Table 4: Results for Test System 1. Plou P2out P3out Pous
Hour 1 0 0 0 549.4
Pl,, P2,. P3,u P4,
out out out out Hour 2 0 0 740.7 | 600
Hour1 | 300.0 | 150.0 0 0
Hour 3 844.5 1107 1400.9 600
Hour 2 | 300.0 205.0 25.0 0.0
Hour 4 190 0 0 304.6
Hour 3 | 300.0 250.0 30.0 20.0
Hour 5 511.7 0 873.5 600
Hour 4 | 300.0 215.0 25.0 0.0
Hour 6 559.2 729.8 948.8 600
Hour 5 | 300.0 0.0 80.0 20.0
Hour 7 339 0 0 549.2
Hour 6 255 0.0 25.0 0.0
Hour 8 191.5 0 0 371
Hour7 | 265.0 0.0 25.0 0.0
Psout P6out P7out Psout
Hour 8 | 300.0 200.0 0.0 0.0
Hour 1 0 359.3 583.7 507.8
Table 5: Turkish Interconnected Power System Network Hour 2 0 420 630 609.3
Ul U2 U3 U4 Hour 3 867.5 420 630 630
P (MW) 1120 1350 1432 600
29 6595,5 | 7290,6 | 6780,5 | 15644 Hour 5 534.8 420 630 630




Hour 6 582.3 420 630 630
Hour 7 362 359 583.2 507.6
Hour 8 214.6 241.2 392.6 339
Table 8: Total Costs for Tests

BDE GA Memetic
Test System 1 74,676 74,675 -
Test System 2 566,166 565,866 565,827
Turkish 532,142 | - -
Interconnected Power
System Network

V. CONCLUSION AND FUTURE WORK

The use of a binary differential evolution algorithm
(BDE) for the unit commitment problem (UCP) is
explored in this study. Three sets of tests are performed.
The first two sets are on benchmark datasets obtained
from the literature. The results of these two sets are
compared to those of a current state-of-the-art
evolutionary algorithm, namely a memetic algorithm, and
a genetic algorithm found in literature. Then, the BDE is
applied to the real-word data obtained from the Turkish
interconnected network system. The results obtained for
the benchmark tests are comparable to those of the
memetic and genetic algorithms. As also stated above, it
should be noted that while the BDE used in this study is in
its most basic form, the memetic algorithm uses local
search through hill climbing during its execution, which is
costly. Thus BDE performs fewer actions to find
comparable results. This preliminary experimental study
shows that BDE is suitable for the UCP. Other, more
complicated mechanisms like in the memetic algorithm,
can be incorporated into the BDE to make it perform even
better. Also, a sensitivity analysis for the parameter
settings should be done. In this study, the best settings
determined as a result of experimental runs is used,
however it is seen that performance may be dependent on
the selection of some of the parameters. This should be
thoroughly explored. Also larger datasets can be used to
test the scalability of BDE. Average performances of the
different methods should also be compared in addition to
the best performance. Overall, the BDE performs well on
the UCP and the results promote further study.
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