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Process model comparison and similar processes retrieval are key issues to be addressed in many real
world situations, and particularly relevant ones in some applications (e.g., in medicine), where similarity
quantification can be exploited in a quality assessment perspective.

Most of the process comparison techniques described in the literature suffer from two main limita-
tions: (1) they adopt a purely syntactic (vs. semantic) approach in process activity comparison, and/
or (2) they ignore complex control flow information (i.e., other than sequence). These limitations over-
simplify the problem, and make the results of similarity-based process retrieval less reliable, especially
when domain knowledge is available, and can be adopted to quantify activity or control flow construct
differences.

In this paper, we aim at overcoming both limitations, by introducing a framework which allows to
extract the actual process model from the available process execution traces, through process mining
techniques, and then to compare (mined) process models, by relying on a novel distance measure.

The novel distance measure, which represents the main contribution of this paper, is able to address
issues (1) and (2) above, since: (1) it provides a semantic, knowledge-intensive approach to process
activity comparison, by making use of domain knowledge; (2) it explicitly takes into account complex
control flow constructs (such as AND and XOR splits/joins), thus fully considering the different seman-
tic meaning of control flow connections in a reliable way.

The positive impact of the framework in practice has been tested in stroke management, where our
approach has outperformed a state-of-the art literature metric on a real world event log, providing
results that were closer to those of a human expert. Experiments in other domains are foreseen in
the future.
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1. Introduction repository, process engineers have to check that a similar model

does not already exist, in order to prevent duplication.

Process model comparison is a key issue to be addressed in
many real world situations. For example, when two companies
are merged, process engineers need to compare processes originat-
ing from the two companies, in order to analyze their possible
overlaps, and to identify areas for consolidation. Moreover, large
companies build over time huge process model repositories, which
serve as a knowledge base for their ongoing process management/
enhancement efforts. Before adding a new process model to the
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Particularly interesting is the case of medical process model
comparison, where similarity quantification can be exploited in a
quality assessment perspective. Indeed, the process model actually
implemented at a given healthcare organization can be compared
to the existing reference clinical guideline, e.g., to check confor-
mance, or to understand the level of adaptation to local constraints
that may have been required. As a matter of fact, the existence of
local resource constraints may lead to differences between the
models implemented at different hospitals, even when referring
to the treatment of the same disease (and to the same guideline).
A quantification of these differences (and maybe a ranking of the
hospitals derived from it) can be exploited for several purposes,
like, e.g., auditing purposes, performance evaluation and funding
distribution.
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Various process model comparison techniques are described in
the literature (see Section 4). However, most of them suffer from
two main limitations:

1. they adopt a purely syntactic approach in process activity com-
parison, ignoring the semantics of the activities being com-
pared, often referring just to their names: activities with a
different name are considered as not matching, while they
could share very similar characteristics (e.g., have the same
goal);

2. they ignore complex control flow information (other than
sequence): in this way, a construct with, e.g., two parallel
activities, can be matched to a construct involving the same
activities, but in mutual exclusion.

Issues (1) and (2) above correspond to a strong simplification of
the process model semantic meaning, and may lead to unreliable
results in process comparison. This can be really unacceptable in
many real world domains, like the already mentioned medical
ones, where physicians and hospital managers need to guarantee
the highest quality of service to patients.

In this paper, we aim at overcoming the limitations outlined
above, by introducing a framework which allows to mine the
actual process model from the available process execution traces,
and then to compare (mined) process models.

While the framework, in its current version, relies on already
published process mining techniques to extract the process model
from traces, process comparison exploits a novel distance mea-
sure, which represents the main contribution of the paper.

Our distance measure is very innovative with respect to avail-
able literature approaches (see detailed discussion in Section 4).
Indeed, it is able to address issues (1) and (2) above, since:

1. it provides a semantic approach to process activity compari-
son, by making use of domain knowledge. Indeed, it rates two
activities as very similar, if they are connected through seman-
tic (i.e., ontological) relations. Specifically, the metric can be
properly adapted to operate with different knowledge repre-
sentation formalisms (e.g., taxonomy vs. semantic network
with different characteristics). Very interestingly, it also
exploits all the information that can be extracted through pro-
cess mining (e.g., temporal information), always in a semantic
and knowledge-intensive perspective;

2. it explicitly takes into account complex control flow con-
structs (such as AND and XOR splits/joins - also called gateway
nodes henceforth), thus considering the different semantic
meaning of control flow connections in a reliable way.

Fully exploiting the semantics of process models in comparison
and similarity quantification along the lines illustrated above rep-
resents a major development with respect to the literature in the
field, as extensively discussed in Section 4. Such a development
is likely to provide a significant impact in supporting the expert’s
work in quality assessment, particularly in those applications
where domain knowledge is rich and well consolidated, as is often
the case in medicine (Basu, Archer, & Mukherjee, 2012).

Indeed, the positive impact of the framework in practice has
already been tested in stroke management (see Section 3), where
our approach has outperformed a state-of-the-art metric (La
Rosa, Dumas, Uba, & Dijkman, 2013) on a real world event log, pro-
viding results that were closer to those of a human expert.

The paper is organized as follows. Section 2 provides the
details of our methodological approach. Section 3 showcases
experimental results. Section 4 compares our contribution to
related works. Section 5 illustrates our conclusions and future
research directions.

2. Methods

As stated in the Introduction, our framework first extracts the
actual process model from the execution traces, and then performs
process model comparison by means of a novel metric. The meth-
odological techniques supporting the first step (process mining)
are briefly presented in subSection 2.1, while subSection 2.2 is
devoted to the detailed description of our metric, which represents
the main contribution of this paper.

2.1. Mining process models

Process mining describes a family of a posteriori analysis tech-
niques (Van der Aalst et al, 2003) exploiting the information
recorded in process execution trace repositories (also called event
logs), to extract process related information (e.g., process models).
Typically, these approaches assume that it is possible to sequen-
tially record events such that each event refers to an activity (i.e.,
a well defined step in the process) and is related to a particular pro-
cess instance. Furthermore, some mining techniques use additional
information such as the timestamp of the event, or data elements
recorded with the event.

Traditionally, process mining has been focusing on discovery,
i.e., deriving process models and execution properties from event
logs. It is important to mention that, in discovery, there is no a
priori model, but, based on logs, some model, e.g., a Petri Net,
is constructed. However, process mining is not limited to process
models (i.e., control flow), and recent process mining techniques
are more and more focusing on other perspectives, e.g., the
organisational perspective, the performance perspective or the
data perspective. Moreover, as well stated in the Process Mining
Manifesto (IEEE Taskforce on Process Mining, 2011), process
mining also supports conformance analysis and process enhance-
ment. In this paper, however, we only deal with the process
perspective.

In our work, we are currently relying on mining algorithms
available within ProM (Van Dongen, Alves De Medeiros,
Verbeek, Weijters, & Van der Aalst, 2005), an open source tool
which supports a wide variety of process mining and data mining
techniques.

In particular, we have mainly exploited ProM’s heuristic miner
(Weijters, Van der Aalst, & de Medeiros, 2006) for mining the pro-
cess models. Heuristic miner takes in input the event log, and con-
siders the order of the events within every single process instance
execution. The time stamp of an activity is used to calculate this
ordering. Heuristics miner can be used to express the main behav-
ior registered in a log. Some abstract information, such as the
presence of composite tasks (i.e., tasks semantically related to
their constituent activities by means of the “part-of” relation),
cannot be derived by heuristic miner, that will only build a model
including ground (i.e., not further decomposable) activities. On
the other hand, it can mine the presence of short distance and
long distance dependencies (i.e., direct or indirect sequence of
activities), and information about parallelism, with a certain reli-
ability degree (see also Section 2.2). The output of the mining pro-
cess is provided as a graph, also called “dependency graph”,
where nodes represent activities, and arcs represent control flow
information.

We have chosen to rely on heuristic miner because it is known
to be tolerant to noise, a problem that may affect many real world
event logs (e.g., in medicine sometimes the logging may be incom-
plete). Moreover, heuristic miner labels the output graph edges
with several mined information, that we are explicitly considering
in process comparison (such as reliability, see Section 2.2). The out-
put of heuristic miner can also be automatically converted into a
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Petri Net, making its semantics very clear (clearer with respect to
the output of other miners).

It is however worth noting that our approach also works with
different choices of the mining algorithm: as an example, in Sec-
tion 3 we will present some results obtained with ProM’s multi-
phase miner (Van Dongen & Van der Aalst, 2004).

2.2. Calculating process similarity

Since mined process models are represented in the form of
graphs, we define a distance based on the notion of graph edit dis-
tance (Bunke, 1997). Such a notion calculates the minimal cost of
transforming one graph into another by applying edit operations,
i.e., insertions/deletions and substitutions of nodes, and inser-
tions/deletions of edges. While string edit distance looks for an
alignment that minimizes the cost of transforming one string into
another by means of edit operations, in graph edit distance we
have to look for a mapping. A mapping is a function that matches
(possibly by substituting) nodes to nodes, and edges to edges.
Unmatched nodes/edges have to be deleted (or, dually, inserted
in the other graph). Among all possible mappings, we will select
the one that leads to the minimal cost, having properly quantified
the cost of every type of edit operation. We provide a normalized
version of the approach in Bunke (1997).

With respect to the available literature approaches (see Section
4 for an extensive comparison), we have introduced two novel
contributions:

1. we operate in a knowledge-intensive way in calculating the
cost of activity node substitution (see dt contribution in f subn,
Definition 3 below). Most literature approaches simply use an
overlap distance to provide the cost of node substitution (i.e., 0
if the nodes are identical, 1 otherwise; see Becker & Laue
(2012)). Some others (Dijkman, Dumas, & Garca-Banuelos,
2009) exploit string edit distance on node names. On the other
hand, we adopt a more semantic approach, in which domain
knowledge is exploited.’ We allow for the use of different metrics
to calculate the cost of activity node substitution, on the basis of
the available knowledge representation formalisms. We also add a
cost contribution related to edge substitution (f sube in Definition
3 below), able to exploit information learned through process min-
ing. Namely, at the moment we consider: (i) the reliability of a
given edge (learned by heuristic miner) - see Definition 1 below,
(ii) the percentage of traces that cross a given edge in the mined
model (learned, e.g., by some mining algorithms in ProM) - see
Definition 2 below, and (iii) statistics about the temporal duration
of a given edge. As for item (iii), we have directly calculated the
mean and the standard deviation of the temporal duration of
edges, by referring to the content of the event log. Different/addi-
tional information learned by a miner could be introduced as well
in the future;

2. we consider complex control flow information (i.e., other
than sequence) between the mined process activities. This
information, in our approach, is made explicit in the form of
gateway nodes (e.g., AND joins/splits) in the graph. In extend-
ing graph edit distance, we only map activity nodes to activity
nodes, and gateway nodes to gateway nodes. Our metric is
then able to explicitly take into account the cost of gateway
node substitution (see dg in f subn, Definition 3 below). In this
way, we consider the different semantic meanings of control
flow connections.

! If domain knowledge is unavailable, we can still adopt a syntactic distance (e.g.,
overlap distance).

Formally, the following definitions apply:

Definition 1 (Reliability). The reliability of the edge ei assessing
that activity a directly follows activity b in sequence (i.e., ei is an
arc from b to a) is calculated as Weijters et al. (2006):

la>b|—|b>aq|

rel(ef) = la>Db|+|b>al+1

where |a > b| is the number of occurrences in which activity a
directly follows activity b in the event log, and |b > a] is the number
of occurrences in which activity b directly follows activity a.

A negative reliability value means that we must conclude that
the opposite pattern holds, i.e., activity b follows activity a. Indeed,
the reliability of a relationship (e.g., activity a follows activity b) is
not only influenced by the number of occurrences of this pattern in
the logs, but is also (negatively) determined by the number of
occurrences of the opposite pattern (b follows a). However, edges
with a negative reliability do not appear in the output graph
(due to threshold mechanisms and proper heuristics (Weijters
et al., 2006), that rule them out). Therefore, we deal with reliability
values € (0,1).

Definition 2 (Percentage of traces). The percentage of traces that
crossed edge ei, assessing that activity a directly follows activity b
in sequence, is calculated as:

. la>b|
PEE) = AITTRACE|

where |a > b|, is the number of traces in which activity a directly
follows activity b in the event log, and |ALLTRACE| is the total num-
ber of available traces in the event log.

With this definition, the percentage of traces € [0, 1].

Definition 3 (Extended Graph Edit Distance). Let G1 = (N1,E1) and
G2 = (N2,E2) be two graphs, where Ei and Ni represent the sets
of edges and nodes of graph Gi. Let |Ni| and |Ei| be the number
of nodes and edges of graph Gi. Let M be a partial injective map-
ping (see Dijkman et al. (2009)) that maps nodes in N1 to nodes
in N2 and let subn, sube, skipn and skipe be the sets of substi-
tuted nodes, substituted edges, inserted or deleted nodes and
inserted or deleted edges with respect to M. In particular, a
substituted edge connects a pair of substituted nodes in M.
The fraction of inserted or deleted nodes, denoted f skipn, the
fraction of inserted or deleted edges, denoted f skipe, and the
average distance of substituted nodes, denoted f subn, are
defined as follows:

. |skipn|
skipn = ————
Jskipn = /1 2]
where |skipn| is the number of inserted or deleted nodes;
. |skipe|
skipe = —————
Jskipe = (11 JE2]

where |skipe| is the number of inserted or deleted edges;

2% (En,meMA dt(nv m) + Zx‘yeMGdg(va)>
|subn|

fsubn =

where M, represents the set of mapped activity nodes in the map-
ping M, M; represents the set of mapped gateway nodes in
M; dt(n,m) is the distance between two activity nodes m and n in
My, and dg(x,y) is the distance between two gateway nodes x and
y in Mg.

The average distance of substituted edges f sube is defined as
follows:
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2 % 32 1 na) m ma)em ([rel(e1) —rel(e2)[ + |pt(e1) — pt(e2)| + [mt(e1) — mt(e2)| + |st(el) — st(e2)])

fsube = 7 4 « |sube|

where edge el (connecting node n1 to node m1) and edge e2
(connecting node n2 to node m2) are two substituted edges in
M; rel(ei) is the reliability of edge ei (see Definition 1); pt(ei) is the
percentage of traces that crossed edge ei (see Definition 2); mt(ei)
and st(ei) are statistical values (mean and standard deviation of the
elapsed times) calculated over all the occurrences of the mi > ni
pattern in the traces, and normalized in [0,1] dividing by the
duration of the longest mi > ni pattern in the log. If one of these
parameters is unavailable (e.g., reliability is unavailable because
heuristic miner was not used), its contribution is simply set to 0.
Different/additional parameters learned by a miner could be
considered as well in f sube in the future.

The extended graph edit distance induced by the mapping M is:

wskipn = fskipn +wskipe x fskipe + wsubn  f subn + wsube  f sube
wskipn +wskipe +wsubn + wsube

€Xledit =

where wsubn, wsube, wskipn and wskipe are proper weights
€ [0,1].

The extended graph edit distance of two graphs is the minimal
possible distance induced by a mapping between these graphs.

The distance dt(n, m) between two activity nodes m and n in My
(see Definition 3) is a proper knowledge-intensive distance defi-
nition, to be chosen on the basis of the available knowledge
representation formalism in the domain at hand. In our experi-
ments, we could rely on a complete, goal-based domain taxonomy
on stroke management activities (see Section 3), and adopted
Palmer’s taxonomic distance (Palmer & Wu, 1995) for calculating
dt. Other distance definitions can be relied upon if domain
knowledge is available as a semantic network with different
characteristics. As an example, the metric in Chiabrando, Likavec,
Lombardi, Picardi, and Theseider-Dupré (2011) can be relied upon
when dealing with an incomplete ontology, or with a ontology
containing many dense sub-ontologies. Our framework is modular
and easily adaptable to this end.

To calculate the distance dg(x,y) between two gateway nodes x
and y we proceed as follows:

1. if x and y are nodes of different types (i.e., a XOR and an AND),
their distance is set to 1;

2. if x and y are of the same type (e.g., two ANDs), we have to
calculate the difference between:
(a) the incoming gateway nodes;
(b) the incoming activity nodes;
(c) the outgoing gateway nodes;
(d) the outgoing activity nodes.

As regards item 2. (b), let S1 be the sequence of incoming activity
nodes of the first gateway node x; let S2 be the sequence for the
second gateway node y. Without loss of generality, suppose that S2
is not longer than S1. In order to compare S1 ad S2, we try all
possible permutations in the order of the activity nodes in S2, and
take the one that leads to the minimal distance with respect to S1.
The distance between the two sequences is the average of the
distance between single elements (i.e., pairs of activities), over the
length of the longest sequence. The distance between a pair of
activities is calculated exploiting the knowledge-intensive
approach and the distance dt described above. Every activity in S1

that cannot be mapped to any activity in S2 (because S1 is longer
than S2) contributes with a distance of 1.

Item 2. (d) works analogously.

Items 2. (a) and 2. (c) are simpler: identical incoming (respec-
tively, outgoing) gateway nodes in the two sequences (e.g., two
ANDs) provide a contribution of 0; different gateway nodes (i.e., an
AND and a XOR) provide a contribution of 1. As above, we then
calculate the average over the length of the longest sequence of
gateway nodes. This procedure is obviously a simplification, since
incoming gateway nodes may have other gateway nodes in input
as well, but we do not consider this (recursive) information. Similar
considerations hold for outgoing gateway nodes. This choice was
motivated by computational complexity issues, but could be
reconsidered in the future.

The four contributions are then combined as a weighted
average dg(x,y) in Definition 3 (in which, at the moment, we are
setting all the weights to 1, but the choice can of course be
differently set in other domains/experiments).

It can be easily verified that our metric, being an extension of
the edit distance, preserves the metric properties of non-negativ-
ity, identity of indiscernibles, and symmetry. Some versions of the
normalized edit distance may fail the triangle inequality in a few
very specific experimental situations (see Marzal & Vidal (1993)),
but the problem can be tackled, as discussed in Yujian and Bo
(2007). Moreover, as clearly stated in Becker and Laue (2012),
triangle inequality is not considered to be essential for measuring
process distance.

To find the mapping that leads to the minimal distance we
resort to a greedy approach, in order to contain computational
costs. It can be shown that the algorithm works in cubic time on
the number of nodes of the larger graph (Dijkman et al., 2009). As
is well known, a greedy algorithm is an algorithm that follows the
problem-solving heuristic of making the locally optimal choice at
each stage, with the hope of finding a global optimum. A greedy
strategy does not in general produce an optimal solution, but
nonetheless a greedy heuristic may yield locally optimal solutions
that approximate a global optimal solution in a reasonable time.

3. Results

In this section, we will present our experiments. SubSection 3.1
will introduce the testbed we realized for testing our approach.
SubSection 3.2 will then provide the details of the application
domain, the available data, and the results.

3.1. The experimental testbed

We have realized a testbed, which easily allows to set up differ-
ent experimental configurations. Within the testbed, it is possible
to select different mining algorithms (e.g., different miners avail-
able in ProM, or obtained from other sources, or implemented from
scratch) and different similarity metrics.

Since not all the miners are supposed to provide their output in
the same format, our testbed includes a translation module, that
produces an XML output, specifying node and edge properties in
an interoperable way. It is worth noting that not even the different
ProM miners provide the same output format. Specifically, they can
export output graphs in the DOT language, but the type of
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information, and the way it is coded, may differ from miner to
miner. For instance, typically gateway nodes are not explicit in
the heuristic miner output graph,? but control flow information is
provided by means of some node parameters. On the other hand,
multi-phase miner provides explicit gateway nodes. It is therefore
necessary to translate the output formats in a common format to
guarantee interoperability, and XML represent a natural solution to
this end.

The translation module exploits a java class, which is a parser
(e.g., a parser of a DOT file in the case of ProM miners). All the pars-
ers must implement a java interface, which establishes the parser
structure. It is therefore easy to add a new parser (for a new miner),
because the interface already provides the declarations of the
methods to be implemented.

The output XML file contains elements (nodes and edges), and
their associated attributes, such as node type (activity or gateway),
node information and edge information (e.g., edge input nodes,
edge output nodes, reliability, percentage of traces). By means of
this translation, we then always make gateway nodes explicit, as
required by our metric. Some attributes are optional (e.g., edge
reliability, calculated by heuristic miner, may be not provided by
other miners).

The testbed also includes a loading module, that loads two XML
files (describing the two processes to be compared) into the data
structure (an hash table) used for graph mapping and distance cal-
culation. At this stage, the test is fully independent of the exploited
miner.

The testbed allows to choose a proper similarity metric (e.g., the
distance described in this paper, the distance in La Rosa et al.
(2013), or another distance defined by users). Not necessarily the
distance must use all the node or edge parameters provided by
the miner (i.e., some XML attributes may be ignored in graph
comparison).

In our experiments (see Section 3.2), we have tested four differ-
ent configurations: (a) heuristic miner+the new distance
described in this paper; (b) heuristic miner + the distance in La
Rosa et al. (2013), (c) multi-phase miner + the new distance
described in this paper; (d) multi-phase miner + the distance in
La Rosa et al. (2013).

ProM’s multi-phase miner (Van Dongen & Van der Aalst, 2004)
provides in output an Event-driven Process Chain (EPC), i.e., a
graph that contains three types of nodes: activities, gateway nodes,
events. Events describe the situation before/after the execution of
an activity; they do not provide additional information about the
process control flow. We have therefore ignored events in distance
calculation. By means of the testbed translation module, the EPCs
have been converted into standard XML files, as described above.

The distance in La Rosa et al. (2013) has been chosen because it
is one of the very few literature contributions (see Section 4) that
somehow considers gateway nodes (but not domain knowledge,
nor additional mined information reported on edges) in graph
comparison.

Results are provided in the next section.

3.2. Testing the framework in stroke management

We have applied our framework to stroke management
processes.

A stroke is the rapidly developing loss of brain function(s) due
to disturbance in the blood supply to the brain. This can be due
to ischemia (lack of glucose and oxygen supply) caused by a
thrombosis or embolism, or to a hemorrhage. As a result, the

2 Actually, ProM version 6 allows to convert the dependency graph in a form that
makes some gateway nodes (i.e., XOR joins/splits) explicit in the graph representa-
tion. AND/OR gateway nodes, on the other hand, are not explicitly represented.

affected area of the brain is unable to function, leading to inability
to move one or more limbs on one side of the body, inability to
understand or formulate speech, or inability to see one side of
the visual field. A stroke is a medical emergency and can cause per-
manent neurological damage, complications, and death. It is the
leading cause of adult disability in the United States and Europe
and the number two cause of death worldwide.

In our experiments, we could rely on a database of 9929 traces,
collected at 16 stroke units of the Stroke Unit Network (SUN) of
Regione Lombardia, Italy (Micieli, Cavallini, Quaglini, Fontana, &
Dué, 2010). Such stroke units are all equipped with similar human
and instrumental resources. The number of traces varies from 266
to 1149. Traces are composed of 13 activities on average. Data refer
to the period 2009-2012.

We also could exploit domain knowledge, in the form of a
taxonomy of stroke management activities. In such a taxonomy,
classes are defined on the basis of their goal. In our distance
calculation (contribution dt in f subn, see Definition 3), Palmer’s
taxonomic distance was exploited (Palmer & Wu, 1995). This dis-
tance allows us to exploit the hierarchical structure, since the dis-
tance between two activities is set to the normalized number of
arcs on the path between the two activities themselves in the tax-
onomy. The underlying idea is that two different activities are
more or less distant on the basis of their goal.

We asked a stroke management expert other than our medical
co-authors (i.e., Dr. . Canavero, see Acknowledgments) to provide a
ranking of the SUN stroke units (see Table 1, column 2), on the
basis of the quality of service they provide. The top level unit will
be referred as HO in the experiments. The expert identified 5 hos-
pitals (H1-H5) with a high similarity level with respect to HO; 5
hospitals (H6-H10) with a medium similarity level with respect
to HO; and 5 hospitals (H11-H15) with a low similarity level with
respect to HO. The ordering of the hospitals within one specific
similarity level is not very relevant. It is instead important to dis-
tinguish between different similarity levels.

The medical expert also provided the following values for
distance weights: wsubn = 1; wsube = 0.2; wskipn = 1; wskipe
= 0.6. The rationale behind this choice is the following: in stroke
management, for most of the processes, activities are more impor-
tant than their sequential connection, therefore a node substitution
(see wsubn) or deletion (see wskipn) have the highest weights. Edge
deletion (see wskipe) is more important than edge substitution (see
wsube), because a change in the activity execution sequence must
still be strongly penalized (even if not as strongly as a change in
the activities themselves). The penalty for edge substitution is the
lowest, because it refers to situations in which the activity sequence
is identical in the models; only, information (e.g., reliabilities or
times) associated to the edges at hand may be different. It is impor-
tant to take into account these differences, but they do not impact
as much as a change in the model control flow.

It is however worth noting that a sensitivity analysis can be
conducted to automate weight setting, when expert knowledge is
not available.

As explained in Section 3.1, thanks to our testbed we were able
to set up four different experimental configurations. Namely, we
could mine the process models according to heuristic miner, and
to multi-phase miner. We then ordered the two available process
model sets with respect to HO, resorting to the new distance
defined in this paper (see Section 2.2), and to the distance in La
Rosa et al. (2013), globally obtaining four rankings. Results are
shown in Table 1.

Column 1, in Table 1, shows the levels of similarity with respect
to the reference hospital. Column 2 shows the ranking according to
the human medical expert; columns 3 and 4 show the results
obtained by mining the process models by means of heuristic
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Ordering of 15 hospitals, with respect to a given query model. Correct positions in the rankings with respect to the expert’s qualitative similarity levels are highlighted in bold.

Similarity Medical expert ranking New dist. heuristic LaRosa dist. heuristic New dist. M-phase LaRosa dist. M-phase
High H1 H14 H14 H9 H14
High H2 H3 H3 H2 H3
High H3 H2 H9 H3 H1
High H4 H1 H1 H1 H7
High H5 H11 H12 H11 H8
Medium H6 H10 H6 H12 H5
Medium H7 H4 H11 H7 H6
Medium H8 H7 H10 H4 H13
Medium H9 H9 H2 H10 H11
Medium H10 H6 H4 H15 H2
Low H11 H8 H13 H8 H10
Low H12 H12 H8 H13 H15
Low H13 H15 H15 H6 H4
Low H14 H13 H7 H14 H12
Low H15 H5 H5 H5 H9

miner, relying on the distance defined in this paper and on the one
defined by La Rosa et al. (2013), respectively. Similarly, columns 5
and 6 show the results obtained by mining the process models by
means of multi-phase miner.

When exploiting heuristic miner, the distance defined in this
paper correctly rates three process models in the high similarity
group (60%), four process models in the medium similarity group
(80%), and three process models in the low similarity group (60%,
column 3). The distance in La Rosa et al. (2013), on the other hand,
correctly rates only two process models in every group (40%, col-
umn 4).

When exploiting multi-phase miner, the distance defined in this
paper correctly rates three process models in the high similarity
group (60%), two process models in the medium similarity group
(40%), and two process models in the low similarity group (40%,
column 5). The distance in La Rosa et al. (2013), correctly rates only
two process models in the high similarity group (40%), one process
model in the medium similarity group (20%), and two process
models in the low similarity group (40%, column 6).

Thus, our distance produces results that are closer to the qual-
itative ranking provided by the human expert. Very interestingly,
this situation holds both when relying on heuristic miner, and
when relying on multi-phase miner. However, our metric works
particularly well when adopting heuristic miner, probably because
it mines more information (e.g., reliability), that is later exploited
by the metric. These data are simply unavailable when using
multi-phase miner, therefore in this last case distance calculation
is less knowledge-intensive.

In conclusion, our knowledge-intensive approach to distance
calculation has proved to be able to provide a high quality process
model comparison in practice. As such, it could be confidently used
for comparing medical processes in a quality evaluation perspec-
tive, at least when comparing hospitals that are equipped with
similar resources, as it was the case in our experiments.

4. Related work

Similarity-based graph comparison is a very active research
area, which is giving birth to different methodological approaches
and software tools. Graph databases, like, e.g., HypergraphDB
(lordanov, 2010) and DEX (Martinez-Bazan, Gémez-Villamor, &
Escale-Claveras, 2011), are gaining popularity, for working in
emerging linked data such as social network data and biological
data. However, in this section we will focus on contributions that
are more closely related to graph similarity in process/workflow
management research.

As stated in Dijkman, Dumas, Van Dongen, Kaarik, and
Mendling (2011), Becker and Laue (2012), three classes of similar-
ity metrics can be considered to deal with process model compar-
isons: (i) node matching similarity, which compares the labels
attached to process model nodes; (ii) structural similarity, which
compares node labels, as well as graph topology; (iii) behavioral
similarity, which compares node labels, as well as the behavioral/
causal relations captured in the process models.

While class (i) somehow oversimplifies the problem, class (iii)
requires causal information, which we do not currently mine.
Indeed, our work is related to class (ii). Therefore, in the following
we will focus on structural similarity approaches.

The goal of comparing objects with a complex structure (i.e.,
graphs) entails the definition of a nontrivial notion of distance.
The issue of providing a proper graph distance definition has been
afforded in the literature, following three main directions, i.e.,:

1. relying on a local notion of similarity (two subgraphs are similar
if their neighboring nodes are similar), as in the similarity flood-
ing algorithm (Melnik, Garcia-Molina, & Rahm, 2002);

2. relying on subgraph isomorphism, e.g., to find maximum com-
mon sub-graphs (Valiente, 2002), and

3. adapting the edit distance notion to graphs (Bunke, 1997).

We are currently following direction (3), but directions (1) and
(2) could be considered in our future work for comparison.

The SAI toolkit (Kendall-Morwick & Leake, 2011) is transversal
with respect to the three directions (1)-(3) outlined above, since
it is a framework for workflow representation and comparison that
allows different similarity measures to be used.

The work in Madhusudan, Zhao, and Marshall (2004), on the
other hand, describes an approach specifically related to direction
(1). In Madhusudan et al. (2004), a retrieval system for supporting
incremental workflow modeling is presented. The system proposes
a similarity-based reuse of workflow templates using a planner
that employs an inexact graph matching algorithm based on simi-
larity flooding. For computing similarities, the algorithm relies on
the idea that elements of two distinct graphs are similar, when
their adjacent elements are similar. The algorithm propagates the
similarity from a node to its respective neighbors based on the
topology in the two graphs. However, edge similarity is not
considered.

The work in Kapetanakis, Petridis, Knight, Ma, and Bacon (2010)
belongs to direction (2), as it exploits a maximum common sub-
graph approach for similarity-based process retrieval, in a retrieval
system for supporting business process monitoring. Interestingly,
the metric in Kapetanakis et al. (2010) takes into account temporal
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information, since it combines a contribution related to activity
similarity, and a contribution related to delays between activities.

The approach in Goderis, Li, and Goble (2006) relies on graph
isomorphism (direction (2)) for retrieving scientific workflows
(e.g., pipelines for bioinformatics experiments). Unlike business
workflows, scientific workflows have a strong focus on the data
flow, typically restricting the control flow to a partial ordering of
the tasks. The work in Ma, Zhang, and Lu (2014) focuses on data
oriented workflows as well. It defines a formal structure called
Time Dependency Graph (TDG), and exploits it as a representation
model of data oriented workflows with variable time constraints. A
distance measure is proposed for computing workflow similarity
by their normalization matrices, established based on their TDGs.
The peculiarity of data oriented workflows, however, make these
contributions less closely related to our approach.

The works following direction (3), on the other hand, extend the
notion of graph edit distance (Bunke, 1997), which calculates the
minimal cost of transforming one graph into another, by applying
insertions/deletions and substitutions of nodes, and insertions/
deletions of edges.

The work in Minor, Tartakovski, Schmalen, and Bergmann
(2008) makes use of a normalized version of the graph edit dis-
tance. The approach is used to support workflow modification in
an agile workflow system, and takes into account control flow
information as well as activity information. However, Minor et al.
(2008) only makes use of syntactical information in the definition
of the edit operation costs. Moreover, the work is limited to consid-
ering (small) changes with respect to a running process instance.

The work in Kunze and Weske (2011) relies on graph edit dis-
tance, and exploits string edit distance on node names to deter-
mine the cost of node substitutions. The work in Li, Reichert, and
Wombacher (2008) encapsulates a set of edit operations into the
so-called “high-level change operations”, and measures distance
on the basis of the number of high-level change operations needed
to transform one graph into another. The work in Bae, Caverlee, Liu,
and Yan (2006) transforms a graph into an ordered tree, and then
exploits tree edit distance.

With respect to Minor et al. (2008), Kunze and Weske (2011), Li
et al. (2008) and Bae et al. (2006), we make use of semantic infor-
mation in activity comparison. We also make explicit use of the
information mined/learned from the data in the mapped edges
contribution.

The use of semantic information in similarity calculation is a
very active research area in text understanding, where several
approaches have been proposed (see the survey in Sanchez,
Batet, [sern, & Valls (2012)), that compute the information content
of concepts from the knowledge provided by ontologies; the work
in Sanchez and Batet (2013), for example, proposes a similarity
measure that considers multiple ontologies in an integrated way.

In the field of business process management, process semantics
have been exploited in the literature to accomplish various tasks.
The work in Jung (2009), for instance, proposes a framework based
on aligning business ontologies for integrating heterogeneous
business processes, in order to provide efficient collaboration
(i.e., communication and sharing) between them.

However, these contributions are only loosely related to our
work.

Focusing more specifically on our research problem, the use of
semantic information in structured process model comparison
and retrieval is proposed in Bergmann and Gil (2014), a system
working on workflows represented as semantically labeled graphs.
The work in Bergmann and Gil (2014) adopts a graph edit distance-
based approach, which is particularly suitable for scientific work-
flows. The paper proposes to use a metric in which the similarity
between two mapped nodes or arcs makes explicit use of their
semantic description. However, the framework is presented in a

general, high-level way, and the specific costs of edit operations
are not provided. With respect to our work, Bergmann and Gil
(2014) is much more focused on the data flow, which was not con-
sidered in our current application. As already observed, this makes
this work less related to ours.

The closest works with respect to our approach are Dijkman
et al. (2009) and La Rosa et al. (2013) (which extends Dijkman
et al. (2009)). Specifically, Dijkman et al. (2009) provides a normal-
ized version of the graph edit distance (Bunke, 1997) for comparing
business process models, and defines syntactical edit operation
costs for activity node substitution, activity node insertion/dele-
tion, and edge insertion/deletion.

With respect to Dijkman et al. (2009), we have introduced sev-
eral novel contributions:

(a) we have moved towards a more semantic and knowledge-
intensive approach in activity node substitutions, by allow-
ing the exploitation of domain knowledge. The work in
Dijkman et al. (2009), on the other end, relies on edit dis-
tance between activity node names;
always in the knowledge-intensive perspective, we have
explicitly considered edge substitutions, which was disre-
garded in Dijkman et al. (2009). Indeed, some miners label
edges with information that can be relevant in graph com-
parison. Moreover, statistical temporal information can be
mined from the event log. All these data are exploited in
our metric;

(c) the work in Dijkman et al. (2009) does not take into account
control flow elements other than sequence, so that gateway
nodes are not represented in the graph, and not used in dis-
tance calculation. On the contrary, we have considered this
issue as well in our contribution.

—
o
—~

The work in La Rosa et al. (2013) extends the work in Dijkman
et al. (2009) specifically by dealing with issue (c) (but not with (a)
and (b)): indeed, the authors explicitly represent gateway nodes, in
order to describe, e.g., parallelism and mutual exclusion. With
respect to our approach, La Rosa et al. (2013) simplifies the treat-
ment of incoming/outgoing activity nodes with respect to a gate-
way node: in comparing two gateway nodes, it only calculates
the fraction of their incoming (respectively, outgoing) activity
nodes that were mapped; it does not consider the cost of their sub-
stitution, i.e., how similar this mapped activity nodes are. On the
other hand, we explicitly use domain knowledge in this phase of
distance calculation as well, as described in Section 2.2. The work
in La Rosa et al. (2013) also considers activity nodes that are con-
nected to the gateway node at hand indirectly, i.e., through a path
of nodes that can also include gateway nodes. On the contrary, we
limit our comparison to incoming/outgoing activity nodes that are
directly connected to the gateway node we want to examine. In La
Rosa et al. (2013) incoming/outgoing gateway nodes are com-
pletely disregarded.

Despite these differences, La Rosa et al. (2013) is still the closest
literature contribution with respect to our work. This justifies the
choice of comparing our results to the ones that can be obtained
by the metric in La Rosa et al. (2013), on the stroke dataset (see
Section 3). As observed, our metric outperformed the one in La
Rosa et al. (2013), probably thanks to the use of domain knowledge
and edge information (including temporal information). Indeed,
when domain knowledge is available, rich and well consolidated,
as is often the case in medicine, its exploitation can surely improve
the quality of any automated support to the expert’s work — includ-
ing process comparison (see e.g., Basu et al. (2012)). Moreover,
time is a very important parameter in medical application, partic-
ularly when referring to emergency medicine, as it is in the case of
stroke.
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Most of the approaches following directions (1)-(3) above typ-
ically suffer from problems related to their high computational
complexity, which is sometimes mitigated by resorting to greedy
techniques (see, e.g., Dijkman et al. (2009), and our own approach).
To avoid these problems, however, some previous works have
investigated structureless workflow retrieval, where workflow rep-
resentation is a plain textual description, a set of tags (Goderis
et al., 2006), or a set of abstract workflow features (Bergmann,
Fre@mann, Maximini, Maximini, & Sauer, 2006). Recently, a proba-
bilistic similarity model for workflow execution paths was also
proposed (Becker, Bergener, Breuker, & Rdckers, 2011). Other
approaches have suggested the use of a two-step procedure, which
combines an initial and comparatively inexpensive retrieval step,
to winnow the instances to be considered, with a more expensive
strategy that ranks the remaining instances (as in the well-known
MAC/FAC system (Forbus, Gentner, & Law, 1995)) (Kendall-
Morwick & Leake, 2011, 2012). In Bergmann and Gil (2014), some
procedures for non-exhaustive search, based on the A* algorithm,
are provided. More work on computational performances will be
considered in our future research as well.

5. Discussion, conclusions and future work

In this paper, we have described a novel framework for process
mining and process comparison.

The main research contribution of our work is represented by
the novel metric we have defined to support process comparison.
The strength of such a metric is twofold. First, it provides a seman-
tic approach to process activity comparison, by making use of
domain knowledge. In detail, it calculates activity similarity on
the basis of activity connections through semantic (i.e., ontologi-
cal) relations in the available domain knowledge representation
formalism. Interestingly, it also exploits all the information that
can be extracted through process mining (e.g., temporal informa-
tion), always in a semantic and knowledge-intensive perspective.
As a second development from the methodological viewpoint, our
metric explicitly takes into account complex control flow
constructs (such as AND and XOR splits/joins), often ignored or
oversimplified in available literature contributions.

Practical implications of the adoption of the new metric in pro-
cess similarity calculation are basically related to an increase in
the reliability of results. Indeed, out metric fully captures the
semantic meaning of process activities and of their connections,
and process semantics are explicitly resorted to in difference
quantification. A reliable comparison is of course the first step
towards a reliable conformance checking activity, a reliable per-
formance evaluation, or a reliable analysis of local adaptation
needs. This impact is particularly significant in medical domains,
where patient’s health is addressed, and best practices must be
correctly identified.

Indeed, the positive impact of the framework in practice has
already been tested in stroke management (see Section 3), where
experimental results have favored our contribution, in comparison
to the distance definition reported in La Rosa et al. (2013), the most
similar already published work with respect to our approach.
Indeed our metric, that could take advantage of domain knowl-
edge, in the form of a taxonomy, outperformed the work in La
Rosa et al. (2013) on a real world stroke management event log,
and provided results that were closer to those of a human expert.
This held both when relying on heuristic miner to learn process
models, and when relying on multi-phase miner. However, our
metric worked particularly well when adopting heuristic miner,
probably because it mines more information, that are simply
unavailable when using multi-phase miner; therefore in this last
case distance calculation is less knowledge-intensive.

We believe that our metric could therefore be confidently used
for comparing medical processes in a quality evaluation perspec-
tive. However, our framework is modular enough to be adapted
and tested in very different application domains, and when dealing
with different knowledge representation formalisms; we would
like to plan further experiments in different applications in the
near future.

Besides this experimental future work, we plan to address more
theoretical and technological issues as well. Indeed, in its current
implementation, our framework still suffers from some limitations,
that need to be addressed. Specifically:

o currently, we have mainly focused on defining a proper metric,
able to overcome the limitations encountered in the process
comparison literature; as for the process mining step, we just
exploited some of available mining algorithms (chosen among
the most “popular” miners in ProM). In the future, we would like
to test different process mining algorithms as well, to increase
the practical applicability of our approach. The availability of
the testbed described in Section 3.1 will make these additional
experiments easily configurable. Notably, the exploitation of a
different algorithm might impact on distance calculation:
adjustments may be required, in order to take into account spe-
cific outputs that were not provided by heuristic miner or multi-
phase miner;

¢ as a further methodological enhancement in the process mining
step, we would also like to define a novel mining approach our-
selves, able to directly take into account temporal information
(see, e.g., Burattin & Sperduti (2010)), and to improve model
precision, reducing the number of mined paths that do not cor-
respond to any trace in the log (Canensi, Montani, Leonardi, &
Terenziani, 2014). We believe that a greater model precision
will enhance the reliability of adopting the whole framework
in practice, especially in the medical field;

o from a more technological point of view, we plan to integrate
our distance calculation as a plug-in in the ProM 6 environment.
This will allow us to make our work available to the process min-
ing community, facilitating the collection of feedback from other
users, and the testing also in very different application domains.

We believe that these enhancements could represent a relevant
added value in our work, by making process comparison even more
versatile, reliable and useful in practice.

Acknowledgments

We would like to thank Dr. I. Canavero for her independent
work in the experimental phase.

This research is partially supported by the GINSENG Project,
Compagnia di San Paolo.

References

Bae, J., Caverlee, |., Liu, L., & Yan, H. (2006). Process mining by measuring process
block similarity. In Proceedings of the 2006 international conference on business
process management workshops BPM'06 (pp. 141-152). Berlin, Heidelberg:
Springer-Verlag.

Basu, R., Archer, N., & Mukherjee, B. (2012). Intelligent decision support in
healthcare. Analytics, Jan-Feb 2012, 33-38.

Becker, J., Bergener, P., Breuker, D., & Rickers, M. (2011). On measures of behavioral
distance between business processes. In Proceedings Wirtschaftsinformatik (pp.
665-674).

Becker, M., & Laue, R. (2012). A comparative survey of business process similarity
measures. Computers in Industry, 63, 148-167.

Bergmann, R., FreBmann, A., Maximini, K., Maximini, R., & Sauer, T. (2006). Case-
based support for collaborative business. In Advances in case-based reasoning. In
T. Roth-Berghofer, M. Gker, & H. Gvenir (Eds.). Lecture notes in computer science
(Vol. 4106, pp. 519-533). Berlin Heidelberg: Springer.

Bergmann, R, & Gil, Y. (2014). Similarity assessment and efficient retrieval of
semantic workflows. Information Systems, 40, 115-127.


http://refhub.elsevier.com/S0957-4174(15)00042-1/h0005
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0005
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0005
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0005
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0010
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0010
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0020
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0020
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0025
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0025
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0025
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0025
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0030
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0030

S. Montani et al./Expert Systems with Applications 42 (2015) 4207-4215 4215

Bunke, H. (1997). On a relation between graph edit distance and maximum
common subgraph. Pattern Recognition Letters, 18(8), 689-694.

Burattin, A., & Sperduti, A. (2010). Heuristics miner for time intervals. In ESANN
2010, 18th European symposium on artificial neural networks, Bruges, Belgium,
April 28-30 (pp. 41-46).

Canensi, L., Montani, S., Leonardi, G., & Terenziani, P. (2014). Chapman: A context
aware process miner. In Proceedings of workshop on synergies between case-based
reasoning and data mining, international conference on case based reasoning,
September 9 (pp. 202-212).

Chiabrando, E., Likavec, S., Lombardi, I., Picardi, C., & Theseider-Dupré, D. (2011).
Semantic similarity in heterogeneous ontologies. In P. D. Bra & K. Grenbaek
(Eds.), HT'11, Proceedings of the 22nd ACM conference on hypertext and
hypermedia, Eindhoven, The Netherlands, June 6-9 (pp. 153-160). ACM.

Dijkman, R., Dumas, M., & Garca-Banuelos, R. (2009). Graph matching algorithms
for business process model similarity search. In Proceedings of the 7th
international conference on business process management BPM'09 (pp. 48-63).
Berlin, Heidelberg: Springer-Verlag.

Dijkman, R., Dumas, M., Van Dongen, B., Kaarik, R., & Mendling, J. (2011). Similarity
of business process models: metrics and evaluation. Information Systems, 36,
498-516.

Forbus, K. D., Gentner, D., & Law, K. (1995). Mac/fac: A model of similarity-based
retrieval. Cognitive Science, 19, 141-205.

Goderis, A., Li, P., & Goble, C. A. (2006). Workflow discovery: The problem, a case
study from e-science and a graph-based solution. In Proceedings of international
conference on web services, ICWS’06, September 18-22 (pp. 312-319).

IEEE Taskforce on Process Mining (2011). Process mining manifesto. Retrieved from
<http://www.win.tue.nl/ieeetfpm>. (last accessed on 4/11/2013).

lordanov, B. (2010). Hypergraphdb: A generalized graph database. In Web-Age
information management. In H. Shen, J. Pei, M. zsu, L. Zou, J. Lu, & T.-W. Ling, et al.
(Eds.). Lecture notes in computer science (Vol. 6185, pp. 25-36). Berlin
Heidelberg: Springer.

Jung, J. (2009). Semantic business process integration based on ontology alignment.
Expert Systems with Applications, 36, 11013-11020.

Kapetanakis, S., Petridis, M., Knight, B., Ma, ]., & Bacon, L. (2010). A case based
reasoning approach for the monitoring of business workflows. In Case-based
reasoning. Research and development. In 1. Bichindaritz & S. Montani (Eds.).
Lecture notes in computer science (Vol. 6176, pp. 390-405). Berlin Heidelberg:
Springer.

Kendall-Morwick, J., & Leake, D. (2011). A toolkit for representation and retrieval of
structured cases. In B. Diaz-Agudo & A. Cordier (Eds.), Proceedings of the ICCBR
2011 workshop on process-oriented case-based reasoning, PO-CBR’'11, September
12-15 (pp. 111-120). University of Greenwich.

Kendall-Morwick, ], & Leake, D. (2012). On tuning two-phase retrieval for
structured cases. In L. Lamontagne & J. A. Recio-Garcia (Eds.), Proceedings of
the ICCBR 2012 workshop on process-oriented case-based reasoning, PO-CBR’12,
September 3-6 (pp. 25-34). University of Lyon.

Kunze, M., & Weske, M. (2011). Metric trees for efficient similarity search in large
process model repositories. In Business process management workshops. In M. zur
Muehlen & J. Su (Eds.). Lecture notes in business information processing (Vol. 66,
pp. 535-546). Berlin Heidelberg: Springer.

La Rosa, M., Dumas, M., Uba, R,, & Dijkman, R. (2013). Business process model
merging: An approach to business process consolidation. ACM Transactions on
Software Engineering and Methodology, 22, 937-948.

Li, C., Reichert, M., & Wombacher, A. (2008). On measuring process model similarity
based on high-level change operations. In Conceptual modeling - ER 2008. In Q.
Li, S. Spaccapietra, E. Yu, & A. Oliv (Eds.). Lecture notes in computer science (Vol.
5231, pp. 248-264). Berlin Heidelberg: Springer.

Madhusudan, T., Zhao, J., & Marshall, B. (2004). A case-based reasoning framework
for workflow model management. Data and Knowledge Engineering, 50, 87-115.

Martinez-Bazan, N., Gémez-Villamor, S., & Escale-Claveras, F. (2011). Dex: A high-
performance graph database management system. In IEEE 27th international
conference on data engineering workshops, ICDEW'11, April 11-16 (pp. 124-127).

Marzal, A, & Vidal, E. (1993). Computation of normalized edit distance and
applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15,
926-932.

Ma, Y., Zhang, X., & Lu, K. (2014). A graph distance based metric for data oriented
workflow retrieval with variable time constraints. Expert Systems with
Applications, 41, 1377-1388.

Melnik, S., Garcia-Molina, H., & Rahm, E. (2002). Similarity flooding: A versatile
graph matching algorithm and its application to schema matching. In
Proceedings of 18th international conference on data engineering, February 26—
March 1 (pp. 117-128).

Micieli, G., Cavallini, A., Quaglini, S., Fontana, G., & Dué, M. (2010). The Lombardia
stroke unit registry: 1-Year experience of a web-based hospital stroke registry.
Neurological Sciences, 31(5), 555-564.

Minor, M., Tartakovski, A., Schmalen, D., & Bergmann, R. (2008). Agile workflow
technology and case-based change reuse for long-term processes. International
Journal of Intelligent Information Technologies, 4, 80-98.

Palmer, M., & Wu, Z. (1995). Verb semantics for english-chinese translation.
Machine Translation, 10, 59-92.

Sanchez, D., & Batet, M. (2013). A semantic similarity method based on information
content exploiting multiple ontologies. Expert Systems with Applications, 40,
1393-1399.

Sanchez, D., Batet, M., Isern, D., & Valls, A. (2012). Ontology-based semantic
similarity: A new feature-based approach. Expert Systems with Applications, 39,
7718-7728.

Valiente, G. (2002). Algorithms on trees and graphs. Berlin: Springer.

Van der Aalst, W., Van Dongen, B., Herbst, ]., Maruster, L., Schimm, G., & Weijters, A.
(2003). Workflow mining: A survey of issues and approaches. Data and
Knowledge Engineering, 47, 237-267.

Van Dongen, B., Alves De Medeiros, A., Verbeek, H., Weijters, A., & Van der Aalst, W.
(2005). The prom framework: A new era in process mining tool support. In
Applications and theory of petri nets 2005. In G. Ciardo & P. Darondeau (Eds.).
Lecture notes in computer science (Vol. 3536, pp. 444-454). Berlin Heidelberg:
Springer.

Van Dongen, B., & Van der Aalst, W. (2004). Multi-phase process mining: Building
instance graphs. In Conceptual modeling ER 2004. In P. Atzeni, W. Chu, H. Lu, S.
Zhou, & T.-W. Ling (Eds.). Lecture notes in computer science (Vol. 3288,
pp. 362-376). Berlin Heidelberg: Springer.

Weijters, A., Van der Aalst, W., & de Medeiros, A. A. (2006). Process mining with the
heuristic miner algorithm, WP 166. Eindhoven University of Technology,
Eindhoven.

Yujian, L., & Bo, L. (2007). A normalized Levenshtein distance metric. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29, 1091-1095.


http://refhub.elsevier.com/S0957-4174(15)00042-1/h0035
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0035
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0050
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0050
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0050
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0050
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0055
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0055
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0055
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0055
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0060
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0060
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0060
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0065
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0065
http://www.win.tue.nl/ieeetfpm
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0080
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0080
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0080
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0080
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0085
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0085
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0090
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0090
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0090
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0090
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0090
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0095
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0095
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0095
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0095
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0100
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0100
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0100
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0100
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0105
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0105
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0105
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0105
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0110
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0110
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0110
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0115
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0115
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0115
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0115
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0120
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0120
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0130
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0130
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0130
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0135
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0135
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0135
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0145
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0145
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0145
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0150
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0150
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0150
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0155
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0155
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0160
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0160
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0160
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0165
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0165
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0165
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0170
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0175
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0175
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0175
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0180
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0180
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0180
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0180
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0180
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0185
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0185
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0185
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0185
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0195
http://refhub.elsevier.com/S0957-4174(15)00042-1/h0195

	A knowledge-intensive approach to process similarity calculation
	1 Introduction
	2 Methods
	2.1 Mining process models
	2.2 Calculating process similarity

	3 Results
	3.1 The experimental testbed
	3.2 Testing the framework in stroke management

	4 Related work
	5 Discussion, conclusions and future work
	Acknowledgments
	References


