This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2019-0341.R2 <

Energy-aware Mixed-criticality Sporadic Task Scheduling Algorithm

Yi-wen Zhang

Abstract—The mixed-criticality system provides multiple

real-time applications with different criticalities in a single system.

Poor energy saving performance of the previous studies on
mixed-criticality sporadic tasks are mainly due to the fact that the
slack time generated from the random arrival of sporadic tasks is
not taken into account. In this paper, we focus on scheduling
energy aware mixed-criticality sporadic tasks and take the
random arrival of sporadic tasks into account. We proposed a
dynamically frequency updating mixed-criticality algorithm
(DFU). DFU based on earliest deadline first scheme can exploit the
slack time generated from high criticality tasks in a low criticality
mode to reduce processor frequency. In addition, it also can
dynamically update the utilization of sporadic tasks set to further
reduce processor frequency. The simulation experiments are
conducted to evaluate the performance of DFU and experimental
results show that DFU consumes 34.29% less energy than that of
the existing algorithms.

Index Terms—mixed-criticality system,
energy-awareness, real-time scheduling

sporadic task,

I. INTRODUCTION

Mixed-criticality (MC) real-time system provides multiple
real-time applications with different criticalities in a single
system. It has been applied in many domains such as avionics,
automotive and industrial standards (RTCA DO-178B) [4]. In
such systems, tasks have different criticality levels. The high
criticality level task must be completed correctly on time while
losing a part of low criticality level task is tolerable.

Energy consumption is also very important in MC real-time
systems. Actually, only a few recent studies focus on
scheduling energy aware sporadic tasks in MC real-time
systems. The authors in [16] first propose two speed levels
ideas to reduce energy consumption in dynamic priority MC
systems. But they only focus on the correction of the system.
The authors in [8] first focus on scheduling energy aware
sporadic tasks in MC real-time systems and propose a novel
algorithm to reduce energy consumption. They expand the
work given in [16] and first apply dynamic voltage and
frequency scaling (DVFS) to adjust processor frequency. But

This paragraph of the first footnote will contain the date on which you
submitted your paper for review. It will also contain support information,
including sponsor and financial support acknowledgment. For example, “This
work was supported by the Natural Science Foundation of Fujian Province of
china, Grant 2019J01080.”

The next few paragraphs should contain the authors’ current affiliations,
including current address and e-mail. For example, Yi-wen Zhang is with the
College of Computer Science and Technology, Huagiao University, China, CO
361021, CHINA (e-mail:zyw(@ hqu.edu.cn).

they only exploit static slack time to reduce energy
consumption, which leads to poor energy savings. The novel
algorithm [9] not only exploits static slack time but also the
reserved time for high criticality tasks to reduce energy
consumption. But it ignores the random arrival of sporadic
tasks, which can generate much slack time at run-time.

All in all, previous studies about scheduling energy aware
sporadic tasks in MC real-time systems do not exploit the slack
time generated from the random arrival of sporadic tasks. In
this paper, we focus on scheduling energy aware MC sporadic
tasks and take the random arrival of sporadic tasks into account.
The main contributions are as follows:

1. A dynamically updating utilization algorithm is proposed
and it can reclaim the slack time generated from the random
arrival of sporadic tasks.

2. We proposed DFU based on earliest deadline first scheme,
which not only exploits the slack time generated from the high
criticality task in the low criticality mode, but also the slack
time generated from random arrival of sporadic tasks.

3. We analyze scheduling feasibility of DFU.

The rest of this paper is organized as follows. We introduce the
related work and the system model in Section II and Section III,
respectively. We recap of earliest deadline first with virtual
deadlines (EDF-VD) in Section IV. The proposed algorithm
and simulation experiment are introduced in Section V and
Section VI, respectively. Finally, we conclude with the
summary in Section VII.

II. RELATED WORK

Many researchers focus on scheduling sporadic tasks in MC
systems [1-2, 17-18]. The authors in [17] first address MC
scheduling problem and then propose fixed priority scheduling
schemes such as partitioned criticality (PC), static mixed
criticality (SMC), and adaptive mixed criticality (AMC) [2]. In
addition, the authors in [1] study the schedulability analysis for
fixed priority sporadic tasks scheduling in MC systems and
propose the own criticality based priority (OCBP)-schedulable
method. Moreover, the generalizing fixed priority scheduling
based on OCBP is proposed in [18]. Furthermore, the
schedulability analysis to enable integration Preemption
Threshold Scheduling with MC is proposed in [19]. Note that
previous studies focus on fixed priority scheduling in MC
systems. The authors in [15] focus on dynamic priority
scheduling in MC systems and propose an Earliest Deadline
First with Virtual Deadlines algorithm (EDF-VD).The MC
sporadic task with multiple virtual deadlines based on EDF-VD
is studied in [20]. In addition, a new demand-based
schedulability test for general MC sporadic task systems and
the new deadline tightening strategy based on this test are
proposed in [27]. Furthermore, the flexible mixed-criticality

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2019-0341.R2 <

(FMC) model is proposed in [21] and the authors derive a
utilization-based technique based on EDF-VD to analyze the
schedulability of FMC model.

Note that the above studies focus on the schedulability
analysis of MC systems and do not take energy consumption
into account. DVFS is a general technology to reduce energy
consumption. Many researchers [12, 22-25] apply DVFS to
reduce energy consumption in traditional real-time systems.
The event-triggered method is proposed to reclaim the slack
time generated from sporadic tasks [22]. But it ignores the static
power and does not exploit the slack time generated at run-time.
The algorithm based on a slack time management queue is
proposed in [12]. It not only exploits the slack time generated at
run-time, but also considers the general power model. The
above studies do not take shared resources into account. The
problem of scheduling sporadic task with shared resources is
addressed and a dynamic task synchronization algorithm is
proposed in [23]. It combines DVFS and dynamic power
management techniques to save energy. But it ignores the
energy consumption of other components. The problem of
system level energy consumption consisting of processor and
other components is studied in [24].

Few studies focus on scheduling energy aware sporadic tasks
in MC real-time systems. The first work in [8] studies the
problem of scheduling energy aware sporadic tasks in MC
real-time systems. The authors formulate a convex program by
integrating DVFS with a well-known MC scheduling technique
and propose an optimal algorithm. But they do not exploit the
reserved time for high criticality tasks to reduce energy
consumption. The authors in [9] extend the work in [8] and
propose a novel algorithm. It not only reclaims static slack time,
but also the reserved time for high criticality tasks to save
energy. In addition, the authors in [30] focus on precise
scheduling of all tasks of MC model and present schedulability
tests based on utilization. Moreover, a minimum necessary
execution speed is determined to reduce energy consumption.
However, it does not exploit the dynamic slack time generated
from the random arrival of sporadic tasks at run-time. In
addition, the problem of scheduling energy aware sporadic
tasks in MC system on chip (SoC) has been studies in [26].
Moreover, the problem of reliability in MC systems has been
addressed in [4]. In short, poor energy saving performance of
previous studies on MC sporadic tasks are mainly due to the
fact that the slack time generated from the random arrival of
sporadic tasks is not exploited to reduce energy consumption.

III. SYSTEM MODEL
A. Task Model

We consider a MC sporadic task set I = {7,,7,,-:-,7,} which
includes n independent sporadic tasks on a uniprocessor. Each
MC sporadic task 7, can be described by a tuple of parameters
(1,,D,,L,,C,(LO),C,(HI)) , T, and D, are the minimum
inter-arrival separation and a relative deadline of <7, ,
respectively. C,(LO) and C,(HI) is the worst case execution
time (WCET) of 7, in alow criticality (LO) mode and in a high

criticality (HI) mode, respectively. L, is the criticality level set

of 7, (LO, HI, assuming a dual-criticality system). Each MC

sporadic task can generate a finite number of jobs. Major
notations can be found in Table 1. In this paper, we apply
implicit-deadlines i.e. the relative deadline of 7z, is equal to 7;.

If the criticality level of a task 7, is equal to LO, we have
C,(HI) = C,(LO). If the criticality level of a task 7, is equal to
HI, we have C,(LO)<C,(HI) because the WCET in a HI
mode is more conservative compared with WCET in a LO
mode. In addition, we assume that the actual execution time of
tasks is smaller or equal to its WCET in a LO mode. The
utilization parameter is defined as follows:

vin- ¥ 22

r,elALi=y i

Where each of y and z in {LO,HI} .Therefore, U} (T)

means the sum of utilization of all HI tasks in I (i.e. the
criticality level of a task is HI) in a LO mode.
System behavior. If a job of the task 7, ends and its

execution time is greater than C,(LO) and less than C,(HI),

the system is in a HI mode. In addition, a job of the task 7, ends

(1

and its execution time does not exceed C,(LO), the system is
in a LO mode. If a job of the task 7, does not complete its
execution and its execution time exceeds C,(HI), the system is
regarded as erroneous. The system is initially in a LO mode.
The system will switch to a HI mode when the execution time
of atask 7, exceeds C,(LO).

Correctness criteria. Consider MC sporadic task sets
I'={z,7,,"-,7,} including n independent sporadic tasks.
The algorithm scheduling MC sporadic task sets
I'={r,7,,---,7,} is correct if it should meet the following
conditions:

® All tasks end within their deadlines and their
execution time does not exceed WCET in a LO
mode.

® All HI tasks end within their deadlines and their
execution time does not exceed WCET in a HI mode.
In addition, all LO tasks (i.e. the criticality level of a
task is LO) will be dropped in a HI mode.

B. Power Model

The DVFS mechanism is presented in many of the
modern-day processors such as Intel Xscale and AMD A86410.
The processor can be operated in variable frequency levels vary
the minimum frequency to the maximum frequency S, . The

processor frequency is normalized with the maximum
frequency. We use the state-of-the-art power model [4] as
follows.

P= ljind +]3a;;:2mic (QS +S2) (2)
Where P, is an independent-frequency power which is
caused by I/O and memory operation; P07 = is dynamic

power which is caused by the circuit activity and it can be
normalized to 1; @ is the ratio of static power and dynamic

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2019-0341.R2 <

power at the maximum frequency; S is the normalized
frequency. The energy consumption E during [¢,¢,] is equal

t o, . . .
to £E= I * Pdt . In addition, we assume that the execution time
4

of a task 7, scales linearly proportional to its normalized
frequency S, [28-29].

TABLE 1
Symbols and notations
Notation Description
DVFS Dynamic voltage and frequency scaling
MC Mixed-criticality
Tl. The minimum inter-arrival separation of the jobs of 7,
D, A relative deadline of 7,
WCET Worst case execution time
LO Low criticality
HI High criticality
L, The criticality level set of 7,
C,(LO) The WCET of 7; ina LO mode
C.(HI) The WCET of 7, in a HI mode
U 15;7 @) The sum of the utilization of HI tasks in I in the LO mode
U LLg @) The sum of the utilization of LO tasks in I" in the LO mode
U 511 (r) The sum of the utilization of HI tasks in I" in the HI mode
(" The j* job of a task 7,
DFU A dynamically frequency updating MC algorithm
7 The released time of a job T,
s A subset of I, the inter-arrival separation between two
successive jobs of a task 7, in TS is greater than T} .
U The current utilization of I"
Sc The current frequency of the current executed tasks

IV. RECAP OF EARLIEST DEADLINE FIRST WITH VIRTUAL
DEADLINES (EDF-VD)

EDF has poor performance when it is applied to schedule
MC sporadic tasks [5-6]. Therefore, the EDF-VD algorithm
based on EDF is proposed to MC scheduling. The basic idea of
EDF-VD is to shorten the relative deadline of HI tasks which
will push HI tasks to finish earlier in a LO mode. The relative
deadline of HI task 7, is setto x7; inthe LO mode. In addition,

the relative deadline of HI task 7, resumes to 7, in a HI mode.

The parameter x can be calculated as follows [5]:

LO
> l_lLJOHI T) (3)
UL() (r)
Theorem 1 gives a sufficient condition that EDF-VD
scheduling all HI tasks in the HI mode is feasible.
Theorem 1 [5]: The following condition is sufficient for
ensuring that EDF-VD successfully schedules all HI tasks in
the HI mode:

xUMK(M+UI(T)<1 %)

An example which consists of two MC sporadic tasks
7,(6,6,L0,2,2) and 7,(8,8,HI,1,3) is applied to explain
EDF-VD. Note that the inter-arrival separation between two
successive jobs of 7,is fixed to 7. In addition, the jobs of 7,
and 7, are released simultaneously at time 0. According to the

method in [7], we compute the parameter x which can be
chosen in [%,1] . For simplicity, the parameter x is set to 0.5.

The system is in a LO mode at the beginning. At time 0, the
deadline of 7,, and 7,, are 6 and 4, respectively. Therefore, 7,,
begins to execute and finish at time 1. At time 8, 7,, begins to
execute and it does not end at time 9. The system switches to a
HI mode and the jobs LO of 7, are dropped after then.
Therefore, 7,, ends at time 11 and 7, will need three time

units every period. The detail scheduling can be found in Fig.1.

LOmode HImode

>

Fig.1. An example of EDF-VD

V. THE PROPOSED ALGORITHM

In this section, we introduce the motivational example and
problem definition in Section V.A. The dynamically updating
utilization algorithm and DFU are presented in Section V.B and
Section V.C, respectively.

A. Motivational Example and Problem Definition

Some researchers [8-9] focus on power-aware MC sporadic
tasks scheduling based on EDF-VD. The inter-arrival
separation between two successive jobs of 7, is fixed to 7; in
these studies. In fact, it can be larger than 7, which leads to

calculated frequency is larger than the required frequency.
Therefore, there is still much room to further reduce energy
consumption, which is exemplified in Table 2 through three
MC sporadic tasks.

TABLE 2
THE PARAMETER OF MC SPORADIC TASKS
Tks DL CG(LO) C(HI)
7, 6 6 LO 2 2
7, 8 8 HI 2 3
T, 16 16 LO 4 4

We assume that the job of 7, is released at time 0, 10, 20, 32,
42. The job of 7, is released at time 0, 12, 20, 34, 42. The job
of 7, is released at time 0, 24. In addition, we assume that the
processor can provide continuous frequencies in [0.3, 1].The

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

>TCAD-2019-0341.R2 <

example is scheduled in [0, 48] and two power-aware MC
sporadic tasks algorithms are applied to explain that there is
much room to further reduce energy consumption.

Algorithm A [8] A static optimal solution algorithm—The
HI task runs at the frequency S,, in a LO mode and the

frequency S, in a HI mode, and the LO task runs at the

frequency S,, in LO modes.
Algorithm B [9] A dynamic solution algorithm—The HI

task runs at the frequency S,, in the LO mode and the
in the HI mode, and the LO task runs at the
frequency S,, in the LO mode. But the frequency S,, and

frequency S,

X

S, are not fixed. They dynamically change according to the
completion of HI tasks.

According to Algorithm A [8], we compute x=0.875,
S,,=0.86, and §,, =0.90. The MC sporadic task in Table 2

is scheduled by Algorithm A with the scheduling result shown
in Fig.2.

090

086
o L: o 1,

[/ s | °
[TTTTTTI

= i (.
[TTITTTTTTTTTTTT
20 ¥ 40 4 0“4 4

% N33

T ’ 1 i
FITEETEETETTTTTTT
0 4

3§10 1 16

Fig.2. An example of Algorithm A in a LO mode.

Algorithm B [9] first applies the parameter x, §,,,and S,

given in Algorithm A to dynamically compute the frequency
of both LO tasks and HI tasks. Therefore, the parameter x,
S,o,and S, are equal to 0.875, 0.86, and 0.90, respectively.

When 7, finishes at time 2.33, the frequency S,, and S,, are

updated as 0.83 and 0.86, respectively. The MC sporadic task in
Table 2 is scheduled by Algorithm B with the scheduling result
shown in Fig.3.

rr “ [T, Ty Ty l
| b . b

083
2 T T

1 & o - % [
[TTTTTTITTTT L ITTTTT L
% 28

23 3% 0o u 4

i 1, 1

W h ¢
WHHHHHHH

[T
4 § 10012 16 20

Fig.3. An example of Algorithm B in a LO mode.

As shown in Fig.2, there are some idle intervals such as [9.20,
10], [14.55, 20], [29.20, 32], [36.55, 42], and [46.55, 48].
Moreover, there are also some idle intervals [9.37, 10], [14.74,
201, [29.56, 32], [36.74, 42], and [46.74, 48] in Fig.3. The main
reason of such idle intervals is that the inter-arrival separation

between two successive jobs a MC sporadic task 7, is larger
than 7, which leads to lower actual utilization of task 7,

compared with the utilization used in Algorithm A [8] and
Algorithm B [9]. Therefore, we can exploit these idles
intervals to further reduce energy consumption.

Problem Definition. Given MC sporadic task sets
I'={z,7,,"-,7,} scheduled by EDF-VD, we should decide
the parameter x , S,,, S, and reclaim the slack time

generated from the random arrival of sporadic tasks to
dynamically compute S, to reduce energy consumption in LO
mode while meeting Correctness criteria of scheduling MC
sporadic tasks.

B. The Dynamically Updating Utilization Algorithm

Updating Utilization

. When 7, releases a joband 7, € TS

JIf L, = LO then

U=U+(C(LO)/S,,)/T,

. Else if the job of 7, ends before current time
U=U+(C(LO)/S;)IT,

Else
U=U+(C(LO)/S,;))IT.+(C.(H)-C.(LO))/T,

. 7, is removed from 7§ .

© X N U R W

. When 7, does not release a new job at time 7, +7; and
7, eTS
/1 1, s the released time of previous job of

10. If L, = LO then

11. U=U-(C.(LO)/S,,)/T,

12. Elseifthe job of a task 7, ends before current time

U=U~(C(LO)/S,)/T,

13. Else

4. U=U-(C(LO)/S,)/T,—(C,(HI)-C(LO))/T,

15. r, isaddedto TS .

16. When the processor in an idle mode
17. TS issetas ' and U=0

18.If U < 0 then

19. U=0

We use a similar method given in [11-13] to dynamically
update the utilization of MC sporadic task set I". It updates
according to whether the tasks release jobs. When the task first
releases a job, the utilization of MC sporadic task set I’
increases. The dynamically updating utilization algorithm is
presented by Updating Utilization.

We update the utilization of 7S according to Updating
Utilization. If a new job of 7, isreleased and it belongs to 7S,
we increase the utilization of 7S and remove it from 7S (line
1-8, Updating Utilization). Note that when the HI task 7, has
finished before current time, the increasing utilization of 7
will be (C.(LO)/S,,)/T, (line 4-5, Updating Utilization).

When 7, does not release a new job at time 7 +7, and it does

not belong to 7S , we decrease the utilization of 7S and add it
to 7S (line 9-15, Updating Utilization). When no jobs wait to
be scheduled i.e. the processor is in an idle mode, TS is set as
I' and U is set as O (line 16-17, Updating Utilization).

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

>TCAD-2019-0341.R2 <

C. The DFU Algorithm

There are two queues for DFU. Ready queues include
currently activated jobs which wait to execute on the processor.
Delay queues include the completed jobs or unreleased jobs
[10]. At the beginning, all jobs do not be released and they are
put into the delay queue. When the job of a task is released, it is
moved from delay queues to ready queues. In the initialization
step, DFU should compute the parameter x, S,,, and S,
through Algorithm A [8].

When the job of a LO task 7, is released at time ¢, its

deadline is set as ¢+ 7, in both modes. In addition, when the job

i

ofaHItask 7, isreleased attime ¢, its deadline is setas ¢+ x7,
in a LO mode and ¢+7, at a HI mode, respectively. Released
jobs are put into the ready queues to execute. The jobs are
scheduled by EDF in the ready queue.

The detail description of DFU is provided in Scheduling,
Updating Utilization and Select Frequency.

Scheduling

1. Calculate the parameter x, S,,, and §,, and set
7S=T,U=0.

2. Set ready queue into the empty list and all unreleased
jobs are put into the delay queue.

3. If a task releases a job, put it into a ready queue
according to EDF.

4. The highest priority task 7 is scheduled.

5. Apply Updating Utilization and Select Frequency to
dynamically determine the frequency of a task 7, (S.).

6. If the execution time of 7, exceeds C,(LO)/S,., the
system is changed to a HI mode.

7. Ifajobof z, finishes its execution.

8. ajobof 7, is removed from a ready queue and put

into the delay queue.

Before scheduling MC sporadic task sets, we first calculate
the parameter x , S and §,, . In addition, we set
7S =T,U =0 (line 1, Scheduling). Moreover, the ready queue
and delay are set to the empty list (line 2, Scheduling). When
7, release a job, it will be put into the ready queue according to
EDF and the highest priority task 7, will be first scheduled

(line 3-4, Scheduling). We should dynamically determine the
frequency of 7, by Updating Utilization and Select

LO >

Frequency (line 5, Scheduling). When the execution time of
v, exceeds C;(LO)/ S, the system will switch to a HI mode

(line 6, Scheduling). When a job of 7, finishes its execution, it

will be put into the delay queue (line 7-8, Scheduling).

We determine the frequency according to Select Frequency.
The reservation time for HI tasks can be freed in a LO mode
when the job of HI tasks finishes (line 1-2, Select Frequency).
When the system is in a HI mode, the frequency will be set as
S to ensure that the HI task will end within its deadline (line

max

5-6, Select Frequency). Note that there are no LO tasks in a HI

mode. The frequency of LO tasks and HI tasks is determined
(line 7-12, Select Frequency).

Select Frequency

1. If the first job of a HI task 7, finishes its execution
2. U=U—-(C,(H)-C,(LO)/T,

3.1f U >1 then

4. U=1

5. If the system is in a HI mode then

6. S.=8...

7. Else if the task is a LO task

8 S.=U*S,,

9. Else

10. S.=U*S,

11.If S. < S
12. S, =S

~ “min

min

The time complexity of Scheduling, Updating Utilization,
Select Frequency is O(rnlogn), O(1) and O(1), respectively.
Therefore, the time complexity of DFU is O(nlogn) .

1) Example of DFU

The MC sporadic task in Table 2 is scheduled by DFU in [0,
48]. We assume that the job of a task 7, is released at time 0, 10,
20,32,42. The job of a task 7, is released at time 0, 12, 20, 34,
42. The job of atask 7, is released at time 0, 24. The parameter
x, S,,,and §,, are equalto 0.875,0.86 and 0.90, respectively.
In addition, we assume that the processor can provide
continuous frequencies in [0.3, 1]. At time 0, jobs of 7,,7, and
7, are released simultaneously. Therefore, 7, executes with
the frequency of 0.86 and ends at time 2.33. At the same time,
the job 7, executes with the frequency of 0.90 and ends at
time 4.55. Due to 7,, is the first job of a HI task r,, the
utilization of T decreases (line 1-2, Select Frequency).
Therefore, 7,, begins to execute with the frequency of 0.83. At
time 6, the utilization of I" decreases due to 7, does not release
a job and it does not belong to 7S . Therefore, 7,, executes
with the frequency of 0.49. In addition, the utilization of T’
decreases at time 8. Thus, 7;, executes with the frequency of
0.30. Moreover, the utilization of I' increases at time 10.
Therefore, 7,, executes with the frequency of 0.58. In addition,
the utilization of I' increases at time 12. Thus, 7,, and 7,,
execute with the frequency of 0.83 and end at time 12.06 and
14.47, respectively. 7,, executes with the frequency of 0.86 at
time 14.47. In addition, the utilization of I" decreases at time
16. 7,, executes with the frequency of 0.34 and ends at time 18.
At time 20, 7,, executes with the frequency of 0.58 and ends at
time 23.45. At the same time, 7,, executes with the frequency
of 0.61. At time 24, 7, releases a job and it belongs to TS .

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

>TCAD-2019-0341.R2 <

Therefore, 7,, executes with the frequency of 0.86 and it ends
attime 25.93. 7,, executes with the frequency of 0.83 and 0.49
at time 25.93 and 26, respectively. In addition, 7,, executes
with the frequency of 0.30. At time 32, 7,, executes with the
frequency of 0.58. In addition, 7, and r,, execute with the

frequency of 0.83 and end at time 35.01 and 37.13, respectively.
7,, executes with the frequency of 0.86 and ends at time 37.13.

The final scheduling result can be found in Fig.4.

T
3l

T,
¢

T o Ty

‘0‘84 090 | | l
e

06 049 Ofﬂ 058 030 038 061 049 030 058

083 L ‘ l l ‘ ‘ l

&
! G fe| T,

oy (O s [s 5
R

oo e Ty ™y
FITTTT FECTEPTTTTTTTITTITITT LI TTTTT 7T
0 u 8

I
4 $o0n 6 T R A T |
Fig.4. An example of the DFU algorithm a LO mode.

The red arrow and black arrow stand for the frequency and
the arriving time of job, respectively. We assume that

P, =01. P™

pmamic 18 NOrmalized to 1 and the & is set to 0.2 in
(2) [4]. In addition, the power is equal to 0.1 when the processor
is in an idle status. The energy consumption of Algorithm A in
Fig.2 and Algorithm B in Fig.3 is 32.14 and 30.46,
respectively. The energy consumption of DFU is 24.36.
Therefore, DFU can save energy up to 24.21% and 20.02%
compared with Algorithm A and Algorithm B, respectively.
2) Schedulability analysis

DFU applies the EDF policy to schedule MC sporadic task
sets I". If the utilization of I" is lower or equal to 1, the EDF
policy scheduling I' is feasible. Therefore, we should prove
that the utilization of I' is lower or equal to 1 with dynamically
frequency S, for DFU. The following Theorem 2 will prove

that DFU scheduling T" is feasible.

Theorem 2. If the utilization of T" is lower or equal to 1 with
the maximum frequency, DFU scheduling I" with dynamically
frequency S,. is feasible.

Let Ss={Bs,PBs:. "> Ps,} be the frequency
changed intervals where S, is the intervals between the end of

Proof:

idle intervals and the beginning of the next idle interval. S is

equal to the hyper-period of T" if there are no idle intervals (T°

is scheduled in the hyper-period). In addition, we denote
Js =1fs> fsar-- fsuy as the set of all frequencies
corresponding to the time intervals in S, . Moreover, we

-,a} as the set of the utilization of

um

denote a, ={a,.a,,,"
TS corresponding to the time intervals in £, . Furthermore, let
U, be the utilization of the interval S, with the frequency of
fs - Uy can be computed as follows:

i=l,7;€TS T;

U =)

Where C(S7) is the execution time of 7, with the frequency of

f5 and it can be computed as follows:

6
C(LO)/(a,.-S,)L =LO

C(Sl) — 1() (am LO) i (6)
C.(LO)/(a,-S,)L, = HI

From (5) and (6), we have

1 < C.(LO z C.(LO

vo- L quo), cuoy o
A i=l,r,eTSAL=LO T, ‘SLO i=l,r,eTS AL =HI Tl ‘SH1

The task set 7S includes all tasks which do not release jobs at
their minimum inter-arrival separation before the beginning of
the interval g, .Therefore, a, can be computed in (8).

C,(LO)

C.(LO .
(L0) |
T.-Sio

i=1,5,eTSAL =LO

i=l.r;eTS AL =HI Tr . SHI

(®)

(if a HI task t, has finished its first job)

(C,(LO) N C[(H[)fC‘.(LO))
T. 'SHI T.

i=lr;eTS AL =HI

C.(LO
(L0) |
T,'SL()

i=l,5,eTSAL=LO

(if a HI task 7, doesn't finish its first job)

The execution time will decrease when the frequency
becomes larger. The value of a,, is larger when a HI task r,

does not finish its first job from (8). The algorithm is feasible if
we apply smaller g, to calculate the frequency. Therefore, the

algorithm must be feasible if we use larger a,, to calculate the

frequency. Thus, we will use following a,, .

u C.(LO a C.(LO
.- (L0) | L0 o
i=1,7;,€TSAL,=LO T; 'SL() i=l,7;,€TS AL, =HI 7; : SH]
Applying (9) to (7), we have
U, =1 10)

The total utilization of time intervals B¢ can be computed as a

sum of the ratio of products of the utilizations over subintervals
times and the interval to the sum of all intervals. It can be
calculated as following:

m U
Uﬁs — zﬂ: Si (11)

j=1
! z ﬂSk
k=1

m
Due to z B, is a constant, we have
k=1

1 m
m 2 ﬁs, 'USi

z ﬂSA Jj=1
k=1

Due to Uy, =1, we have Uﬂs =1. Therefore, Theorem 2 is

U, = (12)

proved.
3) Discussion of the overhead of changing frequency

In this section, we will discuss the overhead of changing
frequency. It will generate the time and power overhead when
the processor frequency changes. According to [31], the time

overhead of changing frequency is equal to K ~|S,. -S j| , where
K isaconstant, S, and S, is currently frequency and changed

frequency, respectively.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

>TCAD-2019-0341.R2 <

Let O, be the time overhead of changing frequency for z,.
O, is variable and it is determined by the frequency of 7, .
Different jobs of 7, may have different frequencies during their
execution. Therefore, O, may different for the jobs of z,.

The frequency only changes in scheduling point. The
so-called scheduling point is the time that the task completes its
execution, released jobs, and the job does not be released after
the minimum inter-arrival separation. Specially, the frequency
is determined by Updating Utilization.

We build a queue called o queue to exactly compute O, .«

queue not only records the frequency for the jobs of 7, in the

scheduling point at run-time, but also includes the minimum
inter-arrival separation, a relative deadline, WCET in a LO
mode and in a HI mode.

When we take the overhead of changing frequency into
account, the utilization of task will increase and the slack time
will decrease. Therefore, the WECT of 7, in a LO and a HI

mode is equal to C;,(LO)+O, and C,(HI)+ O, , respectively.

i

When the job of 7, completes its execution, we then apply
C.(LO)+O, and C,(HI)+O; to instead of WCET in a LO
mode and a HI mode for the next job of 7,, respectively.

We apply the same example in Fig.4 to explain DFU while
taking the overhead of changing frequency into account. In
addition, we assume that K =0.1 [31]. Before scheduling,
0,=0,=0,. At time 0, 7,, executes with the frequency of

0.86 and ends at time 2.33. We compute O, =0.014 . At the
same time, the job 7,, executes with the frequency of 0.90 and
ends at time 4.55. We compute O, =0.004 . Therefore, we add
this overhead to re-compute frequency. rz,, begins to execute

with the frequency of 0.83. At time 6, it executes with the
frequency of 0.49. In addition, it executes with the frequency
of 0.30 and 0.58 at time 8 and 10, respectively. Moreover, it
executes with the frequency of 0.83 at time 12 and ends at time
12.06. We compute O,=0.113 . 7, executes with the
frequency of 0.83 and ends 14.47. Then, we compute O, =0.
7, executes with the frequency of 0.86 at time 14.47. It
executes with the frequency of 0.34 at time 16 and ends at time
18. We compute O, =0.055 . At time 20, 7,, executes with the
frequency of 0.58 and ends at time 23.45. We compute
0, =0.024 . At the same time, 7,, executes with the frequency
of 0.61. It executes with the frequency of 0.88 at time 24 and
ends at time 25.89. We compute O, =0.03. r,, executes with
the frequency of 0.84 at time 25.89. In addition, it executes with
the frequency of 0.50 and 0.30 at time 26 and 28, respectively.
Attime 32, 7,, executes with the frequency of 0.59. In addition,
it executes with the frequency of 0.84 and ends at time 34.98.
We compute O, =0.054 . 7,, executes with the frequency of
0.84 at time 34.98 and ends at time 37.02. We compute
0, =0.058. 7,, executes with the frequency of 0.88 and 0.53

at time 37.02 and 38, respectively. At time 40, it executes with
the frequency of 0.30 and ends at time 40.27. We compute

0, =0.062 . 7, executes with the frequency of 0.58 at time 42
and ends at time 45.45. We compute O, =0.028 . 7,; executes

with the frequency of 0.61 at time 45.45 and ends at time 48.73.
We compute O, =0.003.

The energy overhead of changing frequency is 0.05. The
energy consumption of DFU while considering the overhead of
changing frequency is 24.65. Therefore, the total energy
consumption of DFU is 24.70. DFU can save energy up to
23.15% and 18.91% compared with Algorithm A and
Algorithm B, respectively.

4) A real-world application

In this section, we discuss the application of DFU in a
real-world. Flight Management System (FMS) is an MC system
in a real-world. FMS includes the localization and flight plan
tasks (DO-178B level B and level C, where B corresponds to
the HI criticality and C corresponds to the LO criticality) [32].
In fact, FMS includes seven HI tasks and four LO tasks. In
addition, the tasks of FMS are also sporadic tasks with
implicit-deadlines, which is consistent with the task model in
this paper. Moreover, the processor for FMS only provides
discrete frequencies. However, DFU assumes that the processor
can provide continuous frequencies. If the processor for FMS
does not provide frequency given by DFU, we can apply the
next higher frequency or two adjacent frequencies to solve this
problem. Therefore, DFU can easily apply to FMS.

VI. SIMULATION EXPERIMENT

We apply extensive simulation experiment to evaluate the
effectiveness of our proposed approach. The simulation
experiments are performed on a MC sporadic task scheduling
simulator written by C language and based on the EDF policy.
Three algorithms are implemented in the simulator.

Algorithm A [8]. A static optimal solution algorithm.

Algorithm B [9]. A dynamic solution algorithm.

DFU. It can dynamically compute S,, and S, . In addition,
it can exploit the time reservation for HI tasks in the LO mode.

Based on the well-known MC task generation scheme in [3, 8,
14]. The uniform distribution method is applied to generate a
synthetic random task set. The synthetic random task set
includes two LO tasks and two HI tasks [8]. The minimum
inter-arrival separation of the jobs of 7, (i.e. 7,) can be

randomly chosen within the range of [10,100]. C,(LO) is
randomly chosen within the range of [1,7;]. C,(HI) is equal to
C,(LO) for all LO tasks. C,(HI) is randomly chosen within
the range of [C,(LO),T;] for all HI tasks. The value of U}J(T"),

LO
UM(T), and U/J(I') does not exceed the given value by
modifying C,(LO) and C,(HI). In addition, we generate 100
synthetic random task sets and measure average energy

consumption. Moreover, we set the simulation time to 10° time
units because different task sets have different hyper-periods.

We assume that P, =0.1. P

“mamic 18 NOrmalized to 1 and the 6
is set to 0.2 in (2) [4]. In addition, we will analyze different
static power situations affect our algorithm by modifying the
value of #. Note that we focus on the energy consumption of

the algorithm in the LO mode. Moreover, the energy

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

>TCAD-2019-0341.R2 <

consumption of Algorithm A is applied as baseline i.e. the
energy consumption of other algorithm is normalized with
Algorithm A.
A. Effect of UL (T)

U(T) is fixed to 0.5 and the ratio of U} (T") and U}Y ()
is setto 1.3. We vary U} (T) from 0.05 to 0.45, stepped by 0.5

and investigate U (") affecting on the energy consumption
of the algorithm. The experimental result is shown in Fig.5.

4

o
©
T

—— Algorithm A
—#— Algorithm B B
DFU

o
=)

o o o
o o ~
T T T
L L L

Normalized Energy Consumption

o
IS
T
.

o
w
T

. .
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
The utilization of LO task in LO mode

o
N

o
o
a2l

Fig.5. The effect of U (')

The normalized energy consumption of Algorithm B is not
sensitive to U5 (") and the normalized energy consumption
of DFU is highly dependent on U/J(I') in Figs5.
The energy consumption of all algorithms is positively related
to ULJ(T). As U;J(T) increases, the energy consumption of

Algorithm A and Algorithm B grows with similar magnitude,
whereas DFU grows much slower. In addition, we normalize
energy consumption with respect to the energy consumption of
Algorithm A. Furthermore, the normalized energy
consumption of DFU and Algorithm B is less than that of
Algorithm A. DFU consumes 46.20% less energy than that of
Algorithm B.

B. Effect of U (")
U9(T) is fixed to 0.3 and the ratio of U}/ (T") and U} (T)
is set to 1.3. We vary U/} (T") from 0.05 to 0.6, stepped by 0.5

and investigate U, (') affecting on the energy consumption
of the algorithm. The experimental result is shown in Fig. 6.
The normalized energy consumption of Algorithm B and
DFU is sensitive to U} (T') in Fig.6. As U}}/ (T') increases, the
energy consumption of Algorithm B and DFU decreases. This
is because the ratio of U/ (') and U}’ (T) is fixed and the

slack time will increase when U} (') increases. Algorithm B
and DFU can exploit this slack time to reduce processor
frequency. In addition, the normalize energy consumption of
DFU is lower than that of Algorithm B and Algorithm A. The
reason is that DFU can dynamically update the utilization of I"

to dynamically reduce processor frequency. DFU consumes
34.29% less energy than that of Algorithm B.

4
1t e
+— T
0.9+ T
. —— Algorithm A
5 08f —+— Algorithm B
: DFU
5 07
o
>
5
g 06|
w
B
N 0.5
©
S
Z 041
0.3

0.2
0.05 01 015 02 025 03 035 04 045 05 055
The utilizaiton of Hl task in HI mode

Fig.6. The effect of U/} (T)

C. Effect of the ratio of U}}/(T') and U} ()
U(T) and UJI(T) are fixed to 0.4 and 0.5, respectively.
We vary the ratio of Usr (T') and U (T") from 1.1 to 1.9,
stepped by 0.1 and investigate the ratio of U,y (I') and

UL?(T) affecting on the energy consumption of the algorithm.
The experimental result is shown in Fig. 7.

1
L e
—

0ol e —
c
k)
B 0.8 |
§ —— Algorithm A
§ ol —+— Algorithm B il
S DFU
2
2 06f |
w
B
N 0.5F |
©
E
2 04f |

0.3F |

0.

2
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
The ratio of HI task's utilization in HI mode and in LO mode

Fig.7. The effect of the ratio of U1 (') and U} (T)

The normalized energy consumption of Algorithm B and
DFU is sensitive to the ratio of U}, (I') and U} (") in Fig.7.
As the ratio of U}, (I') and U}/ (T) increases, the normalized
energy consumption of Algorithm B decreases. This is because
U(T) is fixed and U.’(T') decreases when the ratio of

Ui'(T) and UL (T) increases. Therefore, the execution time

of tasks will decrease in the LO mode and Algorithm B can
exploit slack time generated from HI tasks to dynamically
reduce processor frequency. In addition, the normalized energy

of Algorithm B increases when the ratio of U (I') and
U} (T) increases. The energy consumption of DFU decreases
much slower than that of Algorithm A. In addition, we

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

>TCAD-2019-0341.R2 <

normalize energy consumption with respect to the energy
consumption of Algorithm A. Moreover, the dynamically
utilization of I changes slowly, which leads to slowly
changing of processor frequency. In short, DFU consumes
61.51% less energy than that of Algorithm B.

D. Effect of static power

U9(T) and UJI(T) are fixed to 0.3 and 0.6, respectively.

In addition, the ratio of Usr (T') and UL (T) is fixed to 1.3.
We vary the ratio of static power and dynamic power from 0.2
to 0.55, stepped by 0.05 and investigate the ratio of static power
and dynamic power affecting on the energy consumption of the
algorithm. Moreover, the energy consumption is normalized
with respect to Algorithm A when the ratio of static power and
dynamic power is equal to 0.55. The experimental result is
shown in Fig.8.

1 T T T T T T

0.9 -

08} — |

07p —* ~ | |
Algorithm A

—+— Algorithm B
0.6r DFU 1

0.5 B

Normalized Energy Consumption

0.4r B

0.3 B

02l ‘ ‘ ‘ ‘ ‘ ‘
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

The ratio of static power and dynamic power

Fig. 8. The effect of static power

As shown in Fig.8, the normalized energy consumption of
algorithms increases when the ratio of static power and
dynamic power increases. The reason is that the execution time
of tasks and processor frequency do not change. The energy
consumption is determined by the execution time of tasks,
processor frequency, and power. The power will increase when
the ratio of static power and dynamic power increases.
Therefore, the energy consumption will increase. In this case,
DFU consumes 60.87% less energy than that of Algorithm B.

E. Consider the overhead of changing frequency
UJII(T") is fixed to 0.5 and the ratio of U}/ (T') and U} ()

issetto 1.3. We vary Uo (") from 0.05 to 0.45, stepped by 0.5.

In addition, the energy consumption of DFU is used as baseline.
The energy consumption of DFU while considering the
overhead of changing frequency is represented as DFUO in
Fig.9. The experimental result is shown in Fig. 9.

As shown in Fig.9, the normalized energy consumption of
DFUO is higher than that of DFU. This is because DFUO
considers the overhead of changing frequency. In addition, the
DFUO has little added energy consumption compared with
DFU. It means that the overhead of changing frequency has a
small impact on the performance of DFU. In addition, the
overhead of changing frequency is determined by the frequency
of DFU. The frequency of DFU is determined by the utilization

of tasks. When U/J(T') varies, the overhead of changing

frequency also changes. All in all, DFUO has good energy
saving performance compared with previous studies.

1.00004

1.000035 A 4
1.00003 - 1
1.000025
1.00002

1.000015

Normelized Energy Consumgticn

1.00001 [~

1.000005

1 " " " " " " "
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
The utilization of LO task in LO mode

Fig.9. Consider the overhead of changing frequency

VII. CONCLUSION

We focus on scheduling energy aware MC sporadic tasks.
Firstly, we propose DFU. It based on EDF scheme can exploit
the slack time generated from the HI task in the LO mode to
reduce processor frequency. In addition, it also can
dynamically update the utilization of I' to further reduce
processor frequency. Secondly, we analyze the scheduling
feasibility of DFU. Finally, the simulation experiments are
conducted to evaluate the performance of DFU. The
experimental results show that DFU has better energy saving
effects than other algorithms.

DFU assumes that the MC sporadic tasks are independent.
We will focus on the dependent MC sporadic tasks in the future
work.

ACKNOWLEDGMENT

This work has been supported by the Natural Science
Foundation of Fujian Province of china under Grant
2019J01080.

REFERENCES

[1]S Baruah, A Burns, R Davis. Response-Time Analysis for Mixed Criticality
Systems. Real-Time Systems Symposium, 2012, pp. 34-43.

[2]S Baruah, B Chattopadhyay. Response-time analysis of mixed criticality
systems with pessimistic frequency specification. Inthe 19th IEEE
International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2013, pp. 237-246.

[3]Q Zhao et al. Schedulability analysis and stack size minimization with
preemption thresholds and mixed-criticality scheduling. Journal of Systems
Architecture, vol 83, 57-74, 2018.

[4]A Taherin, M Salehi, A Ejlali. Reliability-Aware Energy Management in
Mixed-Criticality Systems. IEEE Transactions on Sustainable Computing,

vol 3, no 3, 195-208, 2018.

[5]S Baruah et al. The preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems. In2012 24th Euromicro
Conference on Real-Time System, 2012, pp. 145-154.

[6]D Miiller,A Masrur. The schedulability region of two-level mixed-criticality
systems based on EDF-VD. Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2014, pp. 1-6.

[7]S Baruah, Z Guo. Scheduling mixed-criticality implicit-deadline sporadic
task systems upon a varying-speed processor. Real-Time Systems
Symposium, 2014, pp. 31-40.

[8]P Huang et al. Energy efficient dvfs scheduling for mixed-criticality

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2019-0341.R2 < 10

systems. Proceedings of the 14th International Conference on Embedded
Software, 2014, pp. 11-20.
[91 Ali, J Seo, K Kim. A dynamic power-aware scheduling of mixed-criticalit

real-time systems. IEEE International Conference on Computer and Yi-wen Zhang received his B.E degree in

Information Technology, Ubiquitous Computing and Communications; Department of Mathematics, Yangtze
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and F 5 Normal University, Chongqing, China in
Computing, 2015, pp. 438-445. | ™ o . .

[10]Y Zhang, R Guo. Power-aware fixed priority scheduling for sporadic tasks) o 20 1 0 and PHD from . Unlve‘rsny of
in hard real-time systems. Journal of Systems and Software, vol 90, no 2, - Chinese Academy of Sciences in 2016.
128-137, 2014. Now he is associate professor in College

[11]A Qadi., S Goddard., S Farritor. A dynamic voltage scaling algorithm for of Computer Science and Technology,

;%(())gadic ta;k65.21n: Proceedings of the 24th Real-Time System Symposium, Huagqiao University, Xiamen, China. His
, pp. 52-62. > ’ .
[12]Y Zhang, C Wang, C Lin. Energy-aware sporadic tasks scheduling with current research interests include
shared resources in hard real-time systems. Sustainable Computing real-time system and low-power design.
Informatics & Systems, vol 15, 52-62, 2017.

[13]Y Zhang, C Xu. Low power fixed priority scheduling sporadic task with
shared resources in hard real time system. Microprocessors and
Microsystem, vol 45, 164-175, 2016.

[14]Z Li et al. Reliability guaranteed energy minimization on mixed-criticality
systems. Journal of Systems and Software, vol 112, 1-10, 2016.

[15]S Baruah et al. The Preemptive Uniprocessor Scheduling of
Mixed-Criticality Implicit-Deadline Sporadic Task Systems. 24th
Euromicro Conference on Real-Time Systems (ECRTS), 2012,
pp.145-154.

[16]S Baruah, Z Guo. Mixed-Criticality Scheduling upon Varying-Speed
Processors. IEEE34th Real-Time System Symposium (RTSS 2013), 2013,
pp. 68-77.

[17]S Vestal. Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance. In the 28th IEEE Real-Time Systems
Symposium (RTSS), 2007, pp. 239-243.

[18]Y Chen, G Kang, H Xiong. Generalizing fixed-priority scheduling for
better schedulability in mixed-criticality systems. Information Processing
Letters, vol 116, no 8, 508-512, 2016.

[19]Q Zhao et al. Schedulability Analysis and Stack Size Minimization with
Preemption Thresholds and Mixed-Criticality Scheduling. Journal of
Systems Architecture, vol 83, 57-74,2018.

[20]Y Chen et al. Efficient schedulability analysis for mixed-criticality systems
under deadline-based scheduling. Chinese Journal of Aeronautics, vol 27,
no 4, 856-866, 2014.

[21]G Chen et al. Utilization-Based Scheduling of Flexible Mixed-Criticality
Real-Time Tasks. IEEE Transactions on Computers, vol 67, no 4,543-558,
2018.

[22]M HorHorng, C Huang, Y Kuo, Hu. Scheduling sporadic, hard real-time
tasks with resources. Proceedings of 3rd International Conference on
Innovative Computing Information and Control, 2008, pp. 84-87.

[23]Y Zhang, C Wang, J Liu. Energy aware fixed priority scheduling for real
time sporadic task with task synchronization. Journal of Systems
Architecture, vol 83, 12-22, 2018.

[24]Y Zhang. System level fixed priority energy management algorithm for
embedded real time application, Microprocessors and Microsystems, vol 64,
170-177,2019.

[25 1Y Guo et al. Exploiting primary/backup mechanism for energy efficiency
in dependable real-time systems. Journal of Systems Architecture, vol 78,
68-80, 2017.

[26]M Fakih et al. SAFEPOWER project: Architecture for Safe and
Power-Efficient Mixed-Criticality ~Systems. Microprocessors —and
Microsystems, vol 52, 89-105, 2017

[27]A Easwaran. 2013. Demand-based scheduling of mixed-criticality sporadic
tasks on one processor. In Proceedings of the 34th Real-Time Systems
Symposium (RTSS), 2013, pp.78-87.

[28]Y Zhang, H Li. Energy aware mixed tasks scheduling in real-time systems,
Sustainable Computing-Informatics & Systems, vol 23, 38-48, 2019.

[29]Y Zhang. Energy-aware mixed partitioning scheduling in standby-sparing
systems, Computer Standards & Interfaces, vol 61, 129-136,2019.

[30]B, Ashikahmed et al. Precise scheduling of mixed-criticality tasks by
varying processor speed. "In Proceedings of the 27th International
Conference on Real-Time Networks and Systems, 2019, pp.123-132.

[31]Y Zhang, R Guo. Low power scheduling algorithms for sporadic task with
shared resources in hard real-time systems, The Computer Journal, vol 58,
no 7, 1585-1597, 2015.

[32]P Huang, G Giannopoulou, N Stoimenov, L Thiele. Service adaptions for
mixed-criticality systems. In ASP-DAC, 2014, pp. 125-130.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

