
0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2019-0341.R2 <

1

Abstract—The mixed-criticality system provides multiple

real-time applications with different criticalities in a single system.

Poor energy saving performance of the previous studies on

mixed-criticality sporadic tasks are mainly due to the fact that the

slack time generated from the random arrival of sporadic tasks is

not taken into account. In this paper, we focus on scheduling

energy aware mixed-criticality sporadic tasks and take the

random arrival of sporadic tasks into account. We proposed a

dynamically frequency updating mixed-criticality algorithm

(DFU). DFU based on earliest deadline first scheme can exploit the

slack time generated from high criticality tasks in a low criticality

mode to reduce processor frequency. In addition, it also can

dynamically update the utilization of sporadic tasks set to further

reduce processor frequency. The simulation experiments are

conducted to evaluate the performance of DFU and experimental

results show that DFU consumes 34.29% less energy than that of

the existing algorithms.

Index Terms—mixed-criticality system, sporadic task,

energy-awareness, real-time scheduling

I. INTRODUCTION

ixed-criticality (MC) real-time system provides multiple

real-time applications with different criticalities in a single

system. It has been applied in many domains such as avionics,

automotive and industrial standards (RTCA DO-178B) [4]. In

such systems, tasks have different criticality levels. The high

criticality level task must be completed correctly on time while

losing a part of low criticality level task is tolerable.

Energy consumption is also very important in MC real-time

systems. Actually, only a few recent studies focus on

scheduling energy aware sporadic tasks in MC real-time

systems. The authors in [16] first propose two speed levels

ideas to reduce energy consumption in dynamic priority MC

systems. But they only focus on the correction of the system.

The authors in [8] first focus on scheduling energy aware

sporadic tasks in MC real-time systems and propose a novel

algorithm to reduce energy consumption. They expand the

work given in [16] and first apply dynamic voltage and

frequency scaling (DVFS) to adjust processor frequency. But

This paragraph of the first footnote will contain the date on which you

submitted your paper for review. It will also contain support information,

including sponsor and financial support acknowledgment. For example, “This
work was supported by the Natural Science Foundation of Fujian Province of

china, Grant 2019J01080.”

The next few paragraphs should contain the authors’ current affiliations,
including current address and e-mail. For example, Yi-wen Zhang is with the

College of Computer Science and Technology, Huaqiao University, China, CO

361021, CHINA (e-mail:zyw@ hqu.edu.cn).

they only exploit static slack time to reduce energy

consumption, which leads to poor energy savings. The novel

algorithm [9] not only exploits static slack time but also the

reserved time for high criticality tasks to reduce energy

consumption. But it ignores the random arrival of sporadic

tasks, which can generate much slack time at run-time.

All in all, previous studies about scheduling energy aware

sporadic tasks in MC real-time systems do not exploit the slack

time generated from the random arrival of sporadic tasks. In

this paper, we focus on scheduling energy aware MC sporadic

tasks and take the random arrival of sporadic tasks into account.

The main contributions are as follows:

1. A dynamically updating utilization algorithm is proposed

and it can reclaim the slack time generated from the random

arrival of sporadic tasks.

2. We proposed DFU based on earliest deadline first scheme,

which not only exploits the slack time generated from the high

criticality task in the low criticality mode, but also the slack

time generated from random arrival of sporadic tasks.

3. We analyze scheduling feasibility of DFU.

The rest of this paper is organized as follows. We introduce the

related work and the system model in Section II and Section III,

respectively. We recap of earliest deadline first with virtual

deadlines (EDF-VD) in Section IV. The proposed algorithm

and simulation experiment are introduced in Section V and

Section VI, respectively. Finally, we conclude with the

summary in Section VII.

II. RELATED WORK

Many researchers focus on scheduling sporadic tasks in MC

systems [1-2, 17-18]. The authors in [17] first address MC

scheduling problem and then propose fixed priority scheduling

schemes such as partitioned criticality (PC), static mixed

criticality (SMC), and adaptive mixed criticality (AMC) [2]. In

addition, the authors in [1] study the schedulability analysis for

fixed priority sporadic tasks scheduling in MC systems and

propose the own criticality based priority (OCBP)-schedulable

method. Moreover, the generalizing fixed priority scheduling

based on OCBP is proposed in [18]. Furthermore, the

schedulability analysis to enable integration Preemption

Threshold Scheduling with MC is proposed in [19]. Note that

previous studies focus on fixed priority scheduling in MC

systems. The authors in [15] focus on dynamic priority

scheduling in MC systems and propose an Earliest Deadline

First with Virtual Deadlines algorithm (EDF-VD).The MC

sporadic task with multiple virtual deadlines based on EDF-VD

is studied in [20]. In addition, a new demand-based

schedulability test for general MC sporadic task systems and

the new deadline tightening strategy based on this test are

proposed in [27]. Furthermore, the flexible mixed-criticality

Energy-aware Mixed-criticality Sporadic Task Scheduling Algorithm

Yi-wen Zhang

M

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2019-0341.R2 <

2

(FMC) model is proposed in [21] and the authors derive a

utilization-based technique based on EDF-VD to analyze the

schedulability of FMC model.

Note that the above studies focus on the schedulability

analysis of MC systems and do not take energy consumption

into account. DVFS is a general technology to reduce energy

consumption. Many researchers [12, 22-25] apply DVFS to

reduce energy consumption in traditional real-time systems.

The event-triggered method is proposed to reclaim the slack

time generated from sporadic tasks [22]. But it ignores the static

power and does not exploit the slack time generated at run-time.

The algorithm based on a slack time management queue is

proposed in [12]. It not only exploits the slack time generated at

run-time, but also considers the general power model. The

above studies do not take shared resources into account. The

problem of scheduling sporadic task with shared resources is

addressed and a dynamic task synchronization algorithm is

proposed in [23]. It combines DVFS and dynamic power

management techniques to save energy. But it ignores the

energy consumption of other components. The problem of

system level energy consumption consisting of processor and

other components is studied in [24].

Few studies focus on scheduling energy aware sporadic tasks

in MC real-time systems. The first work in [8] studies the

problem of scheduling energy aware sporadic tasks in MC

real-time systems. The authors formulate a convex program by

integrating DVFS with a well-known MC scheduling technique

and propose an optimal algorithm. But they do not exploit the

reserved time for high criticality tasks to reduce energy

consumption. The authors in [9] extend the work in [8] and

propose a novel algorithm. It not only reclaims static slack time,

but also the reserved time for high criticality tasks to save

energy. In addition, the authors in [30] focus on precise

scheduling of all tasks of MC model and present schedulability

tests based on utilization. Moreover, a minimum necessary

execution speed is determined to reduce energy consumption.

However, it does not exploit the dynamic slack time generated

from the random arrival of sporadic tasks at run-time. In

addition, the problem of scheduling energy aware sporadic

tasks in MC system on chip (SoC) has been studies in [26].

Moreover, the problem of reliability in MC systems has been

addressed in [4]. In short, poor energy saving performance of

previous studies on MC sporadic tasks are mainly due to the

fact that the slack time generated from the random arrival of

sporadic tasks is not exploited to reduce energy consumption.

III. SYSTEM MODEL

A. Task Model

We consider a MC sporadic task set 1 2{ , , , }nτ τ τΓ = ⋯ which

includes n independent sporadic tasks on a uniprocessor. Each

MC sporadic task iτ can be described by a tuple of parameters

(, , , (), ())i i i i iT D L C LO C HI ,
iT and

iD

are the minimum

inter-arrival separation and a relative deadline of
 iτ ,

respectively. ()iC LO and ()iC HI is the worst case execution

time (WCET) of
iτ in a low criticality (LO) mode and in a high

criticality (HI) mode, respectively.
iL is the criticality level set

of iτ (LO, HI, assuming a dual-criticality system). Each MC

sporadic task can generate a finite number of jobs. Major

notations can be found in Table 1. In this paper, we apply

implicit-deadlines i.e. the relative deadline of
iτ is equal to

iT .

If the criticality level of a task iτ is equal to LO, we have

() ()i iC HI C LO= . If the criticality level of a task
iτ is equal to

HI, we have () ()i iC LO C HI≤

because the WCET in a HI

mode is more conservative compared with WCET in a LO

mode. In addition, we assume that the actual execution time of

tasks is smaller or equal to its WCET in a LO mode. The

utilization parameter is defined as follows:

(z)

()
i i

z i

y

L y i

C
U

Tτ ∈Γ∧ =

Γ = ∑ (1)

Where each of y and z in { , }LO HI .Therefore, ()LO

HI
U Γ

means the sum of utilization of all HI tasks in Γ (i.e. the

criticality level of a task is HI) in a LO mode.

System behavior. If a job of the task iτ ends and its

execution time is greater than ()iC LO and less than ()iC HI ,

the system is in a HI mode. In addition, a job of the task
iτ

ends

and its execution time does not exceed ()iC LO , the system is

in a LO mode. If a job of the task
iτ does not complete its

execution and its execution time exceeds ()iC HI , the system is

regarded as erroneous. The system is initially in a LO mode.

The system will switch to a HI mode when the execution time

of a task iτ exceeds ()iC LO .

Correctness criteria. Consider MC sporadic task sets

1 2{ , , , }nτ τ τΓ = ⋯ including n independent sporadic tasks.

The algorithm scheduling MC sporadic task sets

1 2{ , , , }nτ τ τΓ = ⋯ is correct if it should meet the following

conditions:

� All tasks end within their deadlines and their

execution time does not exceed WCET in a LO

mode.

� All HI tasks end within their deadlines and their

execution time does not exceed WCET in a HI mode.

In addition, all LO tasks (i.e. the criticality level of a

task is LO) will be dropped in a HI mode.

B. Power Model

The DVFS mechanism is presented in many of the

modern-day processors such as Intel Xscale and AMD A86410.

The processor can be operated in variable frequency levels vary

the minimum frequency to the maximum frequency
maxS . The

processor frequency is normalized with the maximum

frequency. We use the state-of-the-art power model [4] as

follows.

max 3()ind dynamicP P P S Sθ= + + (2)

Where
indP is an independent-frequency power which is

caused by I/O and memory operation; max

dynamicP is dynamic

power which is caused by the circuit activity and it can be

normalized to 1; θ is the ratio of static power and dynamic

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2019-0341.R2 <

3

power at the maximum frequency; S is the normalized

frequency. The energy consumption E during 1 2[,]t t is equal

to
2

1

t

t
E Pdt= ∫ . In addition, we assume that the execution time

of a task iτ scales linearly proportional to its normalized

frequency iS [28-29].

 TABLE 1

Symbols and notations

Notation Description

DVFS Dynamic voltage and frequency scaling

MC

Mixed-criticality

iT The minimum inter-arrival separation of the jobs of iτ

iD A relative deadline of
iτ

WCET Worst case execution time

LO Low criticality

HI
 High criticality

iL

The criticality level set of iτ

()iC LO

The WCET of iτ in a LO mode

()iC HI

The WCET of
iτ in a HI mode

()LO

HI
U Γ The sum of the utilization of HI tasks in Γ in the LO mode

()LO

LOU Γ The sum of the utilization of LO tasks in Γ in the LO mode

()HI

HIU Γ The sum of the utilization of HI tasks in Γ in the HI mode

ijτ The jth job of a task
iτ

DFU A dynamically frequency updating MC algorithm

ijr The released time of a job

ijτ

TS
A subset of Γ , the inter-arrival separation between two

successive jobs of a task iτ in TS is greater than iT .

U The current utilization of Γ

CS The current frequency of the current executed tasks

IV. RECAP OF EARLIEST DEADLINE FIRST WITH VIRTUAL

DEADLINES (EDF-VD)

EDF has poor performance when it is applied to schedule

MC sporadic tasks [5-6]. Therefore, the EDF-VD algorithm

based on EDF is proposed to MC scheduling. The basic idea of

EDF-VD is to shorten the relative deadline of HI tasks which

will push HI tasks to finish earlier in a LO mode. The relative

deadline of HI task
iτ is set to

ixT in the LO mode. In addition,

the relative deadline of HI task iτ resumes to iT in a HI mode.

The parameter x can be calculated as follows [5]:

1 ()

()

LO

HI

LO

LO

U
x

U

− Γ
≥

Γ
 (3)

Theorem 1 gives a sufficient condition that EDF-VD

scheduling all HI tasks in the HI mode is feasible.

Theorem 1 [5]: The following condition is sufficient for

ensuring that EDF-VD successfully schedules all HI tasks in

the HI mode:

 () () 1LO HI

LO HIxU UΓ + Γ ≤

 (4)

An example which consists of two MC sporadic tasks

1(6,6, , 2, 2)LOτ

and 2 (8,8, ,1,3)HIτ is applied to explain

EDF-VD. Note that the inter-arrival separation between two

successive jobs of
iτ is fixed to

iT . In addition, the jobs of
1τ

and 2τ are released simultaneously at time 0. According to the

method in [7], we compute the parameter x which can be

chosen in
3

[,1]
16

. For simplicity, the parameter x is set to 0.5.

The system is in a LO mode at the beginning. At time 0, the

deadline of 11τ and 21τ are 6 and 4, respectively. Therefore, 21τ

begins to execute and finish at time 1. At time 8,
22τ begins to

execute and it does not end at time 9. The system switches to a

HI mode and the jobs LO of 1τ are dropped after then.

Therefore,
22τ ends at time 11 and

2τ will need three time

units every period. The detail scheduling can be found in Fig.1.

21τ 11τ

21τ

11τ

12τ 22τ

0 3 6 98 11 16 18 19

23τ

12τ

12

13τ 14τ
22τ

23τ

24

LO mode HI mode

Fig.1. An example of EDF-VD

V. THE PROPOSED ALGORITHM

In this section, we introduce the motivational example and

problem definition in Section V.A. The dynamically updating

utilization algorithm and DFU are presented in Section V.B and

Section V.C, respectively.

A. Motivational Example and Problem Definition

Some researchers [8-9] focus on power-aware MC sporadic

tasks scheduling based on EDF-VD. The inter-arrival

separation between two successive jobs of
iτ is fixed to

iT in

these studies. In fact, it can be larger than
iT , which leads to

calculated frequency is larger than the required frequency.

Therefore, there is still much room to further reduce energy

consumption, which is exemplified in Table 2 through three

MC sporadic tasks.
TABLE 2

THE PARAMETER OF MC SPORADIC TASKS

Tasks
iT

iD
iL ()iC LO ()iC HI

1τ 6 6 LO 2 2

2τ 8 8 HI 2 3

3τ 16 16 LO 4 4

We assume that the job of
1τ is released at time 0, 10, 20, 32,

42. The job of 2τ is released at time 0, 12, 20, 34, 42. The job

of
3τ is released at time 0, 24. In addition, we assume that the

processor can provide continuous frequencies in [0.3, 1].The

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2019-0341.R2 <

4

example is scheduled in [0, 48] and two power-aware MC

sporadic tasks algorithms are applied to explain that there is

much room to further reduce energy consumption.

Algorithm A [8] A static optimal solution algorithm—The

HI task runs at the frequency
HIS in a LO mode and the

frequency maxS in a HI mode, and the LO task runs at the

frequency LOS in LO modes.

Algorithm B [9] A dynamic solution algorithm—The HI

task runs at the frequency HIS in the LO mode and the

frequency
maxS in the HI mode, and the LO task runs at the

frequency LOS in the LO mode. But the frequency HIS and

LOS are not fixed. They dynamically change according to the

completion of HI tasks.

 According to Algorithm A [8], we compute 0.875x = ,

0.86LOS = , and 0.90HIS = . The MC sporadic task in Table 2

is scheduled by Algorithm A with the scheduling result shown

in Fig.2.

21
τ

11τ

0 4 8 1612 20 28 32 36

12τ

24

22τ

48

0.86

 0.90

31
τ

10

13τ
23

τ

22τ12τ
31τ21τ

11
τ

23τ
13

τ

32τ

32
τ

14τ

34

24τ

14
τ 24τ

40 42 44

15τ

15
τ

25
τ

25τ

Fig.2. An example of Algorithm A in a LO mode.

Algorithm B [9] first applies the parameter x ,
LOS , and

HIS

given in Algorithm A to dynamically compute the frequency

of both LO tasks and HI tasks. Therefore, the parameter x ,

LOS , and HIS are equal to 0.875, 0.86, and 0.90, respectively.

When
21τ finishes at time 2.33, the frequency

LOS and
HIS are

updated as 0.83 and 0.86, respectively. The MC sporadic task in

Table 2 is scheduled by Algorithm B with the scheduling result

shown in Fig.3.

21τ

11τ

0
4 8 1612 20 28 32 36

12τ

24

22τ

48

0.83

 0.86

31
τ

10

13τ
23τ

22τ12τ
31

τ21
τ

11τ
23

τ
13

τ

32τ

32
τ

14τ

34

24τ

14τ 24
τ

40 42 44

15τ

15τ

0.90

25τ

25τ

Fig.3. An example of Algorithm B in a LO mode.

As shown in Fig.2, there are some idle intervals such as [9.20,

10], [14.55, 20], [29.20, 32], [36.55, 42], and [46.55, 48].

Moreover, there are also some idle intervals [9.37, 10], [14.74,

20], [29.56, 32], [36.74, 42], and [46.74, 48] in Fig.3. The main

reason of such idle intervals is that the inter-arrival separation

between two successive jobs a MC sporadic task
iτ

is larger

than iT , which leads to lower actual utilization of task iτ

compared with the utilization used in Algorithm A [8] and

Algorithm B [9]. Therefore, we can exploit these idles

intervals to further reduce energy consumption.

Problem Definition. Given MC sporadic task sets

1 2{ , , , }nτ τ τΓ = ⋯ scheduled by EDF-VD, we should decide

the parameter x ,
LOS ,

HIS and reclaim the slack time

generated from the random arrival of sporadic tasks to

dynamically compute CS to reduce energy consumption in LO

mode while meeting Correctness criteria of scheduling MC

sporadic tasks.

B. The Dynamically Updating Utilization Algorithm

Updating Utilization

 1. When
iτ releases a job and

i TSτ ∈

 2. If iL LO= then

 3. (() /) /i LO iU U C LO S T= +

 4. Else if the job of
iτ ends before current time

 5. (() /) /i HI iU U C LO S T= +

 6. Else

 7. (() /) / (() ()) /i HI i i i iU U C LO S T C HI C LO T= + + −

 8.
iτ is removed from TS .

9. When
iτ does not release a new job at time

i ir T+ and

i TSτ ∉

 //
ir is the released time of previous job of

iτ

10. If
iL LO= then

 11. (() /) /i LO iU U C LO S T= −

 12. Else if the job of a task
iτ ends before current time

 (() /) /i HI iU U C LO S T= −

 13. Else

 14. (() /) / (() ()) /i HI i i i iU U C LO S T C HI C LO T= − − −

 15. iτ is added to TS .

16. When the processor in an idle mode

17. TS is set as Γ and 0U =

18. If 0U < then

19. 0U =

We use a similar method given in [11-13] to dynamically

update the utilization of MC sporadic task set Γ . It updates

according to whether the tasks release jobs. When the task first

releases a job, the utilization of MC sporadic task set Γ

increases. The dynamically updating utilization algorithm is

presented by Updating Utilization.

We update the utilization of TS according to Updating

Utilization. If a new job of iτ is released and it belongs to TS ,

we increase the utilization of TS and remove it from TS (line

1-8, Updating Utilization). Note that when the HI task iτ has

finished before current time, the increasing utilization of TS

will be (() /) /i LO iC LO S T (line 4-5, Updating Utilization).

When
iτ does not release a new job at time

i ir T+ and it does

not belong to TS , we decrease the utilization of TS and add it

to TS (line 9-15, Updating Utilization). When no jobs wait to

be scheduled i.e. the processor is in an idle mode, TS is set as

Γ and U is set as 0 (line 16-17, Updating Utilization).

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2019-0341.R2 <

5

C. The DFU Algorithm

There are two queues for DFU. Ready queues include

currently activated jobs which wait to execute on the processor.

Delay queues include the completed jobs or unreleased jobs

[10]. At the beginning, all jobs do not be released and they are

put into the delay queue. When the job of a task is released, it is

moved from delay queues to ready queues. In the initialization

step, DFU should compute the parameter x , LOS , and HIS

through Algorithm A [8].

When the job of a LO task
iτ is released at time t , its

deadline is set as it T+ in both modes. In addition, when the job

of a HI task
iτ is released at time t , its deadline is set as

it xT+

in a LO mode and it T+ at a HI mode, respectively. Released

jobs are put into the ready queues to execute. The jobs are

scheduled by EDF in the ready queue.

The detail description of DFU is provided in Scheduling,

Updating Utilization and Select Frequency.

Scheduling

1. Calculate the parameter x , LOS , and HIS and set

, 0TS U= Γ = .

2. Set ready queue into the empty list and all unreleased

jobs are put into the delay queue.

3. If a task releases a job, put it into a ready queue

according to EDF.

4. The highest priority task
jτ is scheduled.

5. Apply Updating Utilization and Select Frequency to

dynamically determine the frequency of a task
jτ (

CS).

6. If the execution time of
jτ exceeds () /j CC LO S , the

system is changed to a HI mode.

7. If a job of
jτ finishes its execution.

8. a job of
jτ is removed from a ready queue and put

into the delay queue.

Before scheduling MC sporadic task sets, we first calculate

the parameter x ,
LOS , and

HIS . In addition, we set

, 0TS U= Γ = (line 1, Scheduling). Moreover, the ready queue

and delay are set to the empty list (line 2, Scheduling). When

iτ release a job, it will be put into the ready queue according to

EDF and the highest priority task
jτ will be first scheduled

(line 3-4, Scheduling). We should dynamically determine the

frequency of
jτ by Updating Utilization and Select

Frequency (line 5, Scheduling). When the execution time of

jτ exceeds () /j CC LO S , the system will switch to a HI mode

(line 6, Scheduling). When a job of
jτ finishes its execution, it

will be put into the delay queue (line 7-8, Scheduling).

We determine the frequency according to Select Frequency.

The reservation time for HI tasks can be freed in a LO mode

when the job of HI tasks finishes (line 1-2, Select Frequency).

When the system is in a HI mode, the frequency will be set as

maxS to ensure that the HI task will end within its deadline (line

5-6, Select Frequency). Note that there are no LO tasks in a HI

mode. The frequency of LO tasks and HI tasks is determined

(line 7-12, Select Frequency).

Select Frequency

1. If the first job of a HI task
iτ finishes its execution

2. (() ()) /i i iU U C HI C LO T= − −

3. If 1U > then

4. 1U =

5. If the system is in a HI mode then

6. maxCS S=

7. Else if the task is a LO task

8. *C LOS U S=

9. Else

10. *C HIS U S=

11. If
minCS S<

12. minCS S=

The time complexity of Scheduling, Updating Utilization,

Select Frequency is (log)O n n , (1)O and (1)O , respectively.

Therefore, the time complexity of DFU is (log)O n n .

1) Example of DFU

The MC sporadic task in Table 2 is scheduled by DFU in [0,

48]. We assume that the job of a task 1τ is released at time 0, 10,

20, 32, 42. The job of a task
2τ is released at time 0, 12, 20, 34,

42. The job of a task 3τ is released at time 0, 24. The parameter

x , LOS , and HIS are equal to 0.875, 0.86 and 0.90, respectively.

In addition, we assume that the processor can provide

continuous frequencies in [0.3, 1]. At time 0, jobs of 1τ , 2τ and

3τ are released simultaneously. Therefore,
11τ executes with

the frequency of 0.86 and ends at time 2.33. At the same time,

the job
21τ executes with the frequency of 0.90 and ends at

time 4.55. Due to
21τ is the first job of a HI task

2τ , the

utilization of Γ decreases (line 1-2, Select Frequency).

Therefore,
31τ begins to execute with the frequency of 0.83. At

time 6, the utilization of Γ decreases due to 1τ does not release

a job and it does not belong to TS . Therefore,
31τ executes

with the frequency of 0.49. In addition, the utilization of Γ
decreases at time 8. Thus,

31τ executes with the frequency of

0.30. Moreover, the utilization of Γ increases at time 10.

Therefore,
31τ executes with the frequency of 0.58. In addition,

the utilization of Γ increases at time 12. Thus,
31τ and

12τ

execute with the frequency of 0.83 and end at time 12.06 and

14.47, respectively.
22τ executes with the frequency of 0.86 at

time 14.47. In addition, the utilization of Γ decreases at time

16.
22τ executes with the frequency of 0.34 and ends at time 18.

At time 20,
13τ executes with the frequency of 0.58 and ends at

time 23.45. At the same time, 23τ executes with the frequency

of 0.61. At time 24,
3τ releases a job and it belongs to TS .

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2019-0341.R2 <

6

Therefore, 23τ executes with the frequency of 0.86 and it ends

at time 25.93.
32τ executes with the frequency of 0.83 and 0.49

at time 25.93 and 26, respectively. In addition, 32τ executes

with the frequency of 0.30. At time 32, 14τ executes with the

frequency of 0.58. In addition,
14τ and

32τ

execute with the

frequency of 0.83 and end at time 35.01 and 37.13, respectively.

24τ executes with the frequency of 0.86 and ends at time 37.13.

The final scheduling result can be found in Fig.4.

21τ

11τ

0 4 8 1612 20 28 32 36

12τ

24

22τ

48

0.83

 0.86

31τ

10

13τ
23τ

22τ12τ

31τ21τ
11τ 13τ

32τ

32τ

14τ

34

24τ

14τ

40 42 44

0.84 0.90

0.49 0.30 0.58
0.58 0.61

23τ

0.49 0.30 0.58

24τ

0.51 0.30

0.58

0.30

15
τ

0.61

25τ

25τ
15τ

Fig.4. An example of the DFU algorithm a LO mode.

The red arrow and black arrow stand for the frequency and

the arriving time of job, respectively. We assume that

0.1indP = .
max

dynamicP is normalized to 1 and the θ is set to 0.2 in

(2) [4]. In addition, the power is equal to 0.1 when the processor

is in an idle status. The energy consumption of Algorithm A in

Fig.2 and Algorithm B in Fig.3 is 32.14 and 30.46,

respectively. The energy consumption of DFU is 24.36.

Therefore, DFU can save energy up to 24.21% and 20.02%

compared with Algorithm A and Algorithm B, respectively.

2) Schedulability analysis

DFU applies the EDF policy to schedule MC sporadic task

sets Γ . If the utilization of Γ is lower or equal to 1, the EDF

policy scheduling Γ is feasible. Therefore, we should prove

that the utilization of Γ is lower or equal to 1 with dynamically

frequency
CS for DFU. The following Theorem 2 will prove

that DFU scheduling Γ is feasible.

 Theorem 2. If the utilization of Γ is lower or equal to 1 with

the maximum frequency, DFU scheduling Γ with dynamically

frequency
CS is feasible.

 Proof: Let 1 2{ , , , }S S S Smβ β β β= ⋯ be the frequency

changed intervals where
Siβ is the intervals between the end of

idle intervals and the beginning of the next idle interval.
Sβ is

equal to the hyper-period of Γ if there are no idle intervals (Γ
is scheduled in the hyper-period). In addition, we denote

1 2
{ , , , }

S S S Sm
f f f f= … as the set of all frequencies

corresponding to the time intervals in
Sβ . Moreover, we

denote 1 2{ , , , }U u u uma a a a= ⋯ as the set of the utilization of

TS corresponding to the time intervals in
Sβ . Furthermore, let

SiU be the utilization of the interval
Siβ with the frequency of

Sif . Si
U can be computed as follows:

1,

()

i

n

Si

i TS i

C Si
U

Tτ= ∈

= ∑ (5)

Where ()C Si is the execution time of
iτ with the frequency of

Sif and it can be computed as follows:

() / (),
()

() / (),

i ui LO i

i ui HI i

C LO a S L LO
C Si

C LO a S L HI

⋅ =
= 

⋅ =
 (6)

From (5) and (6), we have

1, 1,

() ()1
()

i i i i

n n
i i

Si

i TS L LO i TS L HIui i LO i HI

C LO C LO
U

a T S T Sτ τ= ∈ ∧ = = ∈ ∧ =

= +
⋅ ⋅∑ ∑ (7)

The task set TS includes all tasks which do not release jobs at

their minimum inter-arrival separation before the beginning of

the interval Siβ .Therefore, uia can be computed in (8).

1,

1,

1,

()()

()

() () ()
()()

 ('

i i

i i

i i

n
iin

i TS L HI i HIi LO

i TS L LO

iui

i i in
i

i HI i

i TS L HIi LO

i

C LOC LO

T ST S

if a HI task has finished its first joba

C LO C HI C LO
C LO

T S T
T S

if a HI task doesn t fin

τ
τ

τ

τ

τ

= ∈ ∧ =
= ∈ ∧ =

= ∈ ∧ =

+
⋅⋅

=

−
+

⋅+
⋅

∑∑

∑
1,

)

i i

n

i TS L LO

ish its first job

τ= ∈ ∧ =
















∑

(8)

The execution time will decrease when the frequency

becomes larger. The value of
uia is larger when a HI task

iτ

does not finish its first job from (8). The algorithm is feasible if

we apply smaller
uia to calculate the frequency. Therefore, the

algorithm must be feasible if we use larger
uia to calculate the

frequency. Thus, we will use following uia .

1, 1,

() ()

i i i i

n n
i i

ui

i TS L LO i TS L HIi LO i HI

C LO C LO
a

T S T Sτ τ= ∈ ∧ = = ∈ ∧ =

= +
⋅ ⋅∑ ∑ (9)

Applying (9) to (7), we have

1

Si
U = (10)

The total utilization of time intervals Sβ can be computed as a

sum of the ratio of products of the utilizations over subintervals

times and the interval to the sum of all intervals. It can be

calculated as following:

1

1

S

m
Si Si

m
j

Sk

k

U
Uβ

β

β=

=

⋅
= ∑

∑
 (11)

Due to
1

m

Sk

k

β
=

∑ is a constant, we have

1

1

1
S i

k

m

S Sim
j

S

k

U Uβ β
β =

=

= ⋅∑
∑

 (12)

Due to 1
Si

U = , we have 1
S

Uβ = . Therefore, Theorem 2 is

proved.

3) Discussion of the overhead of changing frequency

In this section, we will discuss the overhead of changing

frequency. It will generate the time and power overhead when

the processor frequency changes. According to [31], the time

overhead of changing frequency is equal to i jK S S⋅ − , where

K is a constant, iS and jS is currently frequency and changed

frequency, respectively.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2019-0341.R2 <

7

 Let iO be the time overhead of changing frequency for iτ .

iO is variable and it is determined by the frequency of
iτ .

Different jobs of iτ may have different frequencies during their

execution. Therefore, iO may different for the jobs of iτ .

The frequency only changes in scheduling point. The

so-called scheduling point is the time that the task completes its

execution, released jobs, and the job does not be released after

the minimum inter-arrival separation. Specially, the frequency

is determined by Updating Utilization.

We build a queue called α queue to exactly compute
iO .α

queue not only records the frequency for the jobs of iτ in the

scheduling point at run-time, but also includes the minimum

inter-arrival separation, a relative deadline, WCET in a LO

mode and in a HI mode.

When we take the overhead of changing frequency into

account, the utilization of task will increase and the slack time

will decrease. Therefore, the WECT of iτ in a LO and a HI

mode is equal to ()i iC LO O+ and ()i iC HI O+ , respectively.

When the job of iτ completes its execution, we then apply

()i iC LO O+ and ()i iC HI O+ to instead of WCET in a LO

mode and a HI mode for the next job of iτ , respectively.

We apply the same example in Fig.4 to explain DFU while

taking the overhead of changing frequency into account. In

addition, we assume that 0.1K = [31]. Before scheduling,

1 2 3O O O= = . At time 0,
11τ executes with the frequency of

0.86 and ends at time 2.33. We compute 1 0.014O = . At the

same time, the job
21τ executes with the frequency of 0.90 and

ends at time 4.55. We compute
2 0.004O = . Therefore, we add

this overhead to re-compute frequency. 31τ begins to execute

with the frequency of 0.83. At time 6, it executes with the

frequency of 0.49. In addition, it executes with the frequency

of 0.30 and 0.58 at time 8 and 10, respectively. Moreover, it

executes with the frequency of 0.83 at time 12 and ends at time

12.06. We compute
3 0.113O = .

12τ

executes with the

frequency of 0.83 and ends 14.47. Then, we compute
 1 0O = .

22τ executes with the frequency of 0.86 at time 14.47. It

executes with the frequency of 0.34 at time 16 and ends at time

18. We compute
2 0.055O = . At time 20,

13τ executes with the

frequency of 0.58 and ends at time 23.45. We compute

1 0.024O = . At the same time, 23τ executes with the frequency

of 0.61. It executes with the frequency of 0.88 at time 24 and

ends at time 25.89. We compute 2 0.03O = . 32τ executes with

the frequency of 0.84 at time 25.89. In addition, it executes with

the frequency of 0.50 and 0.30 at time 26 and 28, respectively.

At time 32,
14τ executes with the frequency of 0.59. In addition,

it executes with the frequency of 0.84 and ends at time 34.98.

We compute
1 0.054O = .

32τ

executes with the frequency of

0.84 at time 34.98 and ends at time 37.02. We compute

3 0.058O = .
24τ executes with the frequency of 0.88 and 0.53

at time 37.02 and 38, respectively. At time 40, it executes with

the frequency of 0.30 and ends at time 40.27. We compute

2 0.062O = . 15τ

executes with the frequency of 0.58 at time 42

and ends at time 45.45. We compute
1 0.028O = .

25τ

executes

with the frequency of 0.61 at time 45.45 and ends at time 48.73.

We compute
 2 0.003O = .

The energy overhead of changing frequency is 0.05. The

energy consumption of DFU while considering the overhead of

changing frequency is 24.65. Therefore, the total energy

consumption of DFU is 24.70. DFU can save energy up to

23.15% and 18.91% compared with Algorithm A and

Algorithm B, respectively.

4) A real-world application

In this section, we discuss the application of DFU in a

real-world. Flight Management System (FMS) is an MC system

in a real-world. FMS includes the localization and flight plan

tasks (DO-178B level B and level C, where B corresponds to

the HI criticality and C corresponds to the LO criticality) [32].

In fact, FMS includes seven HI tasks and four LO tasks. In

addition, the tasks of FMS are also sporadic tasks with

implicit-deadlines, which is consistent with the task model in

this paper. Moreover, the processor for FMS only provides

discrete frequencies. However, DFU assumes that the processor

can provide continuous frequencies. If the processor for FMS

does not provide frequency given by DFU, we can apply the

next higher frequency or two adjacent frequencies to solve this

problem. Therefore, DFU can easily apply to FMS.

VI. SIMULATION EXPERIMENT

We apply extensive simulation experiment to evaluate the

effectiveness of our proposed approach. The simulation

experiments are performed on a MC sporadic task scheduling

simulator written by C language and based on the EDF policy.

Three algorithms are implemented in the simulator.

Algorithm A [8]. A static optimal solution algorithm.

Algorithm B [9]. A dynamic solution algorithm.

DFU. It can dynamically compute
LOS and

HIS . In addition,

it can exploit the time reservation for HI tasks in the LO mode.

Based on the well-known MC task generation scheme in [3, 8,

14]. The uniform distribution method is applied to generate a

synthetic random task set. The synthetic random task set

includes two LO tasks and two HI tasks [8]. The minimum

inter-arrival separation of the jobs of
iτ (i.e.

iT) can be

randomly chosen within the range of [10,100] . ()iC LO is

randomly chosen within the range of [1,]iT . ()iC HI is equal to

()iC LO for all LO tasks. ()iC HI is randomly chosen within

the range of [(),]i iC LO T for all HI tasks. The value of ()LO

LOU Γ ,

()
LO

HIU Γ , and ()
HI

HIU Γ does not exceed the given value by

modifying ()iC LO and ()iC HI . In addition, we generate 100

synthetic random task sets and measure average energy

consumption. Moreover, we set the simulation time to
610 time

units because different task sets have different hyper-periods.

We assume that 0.1indP = .
max

dynamicP is normalized to 1 and the θ

is set to 0.2 in (2) [4]. In addition, we will analyze different

static power situations affect our algorithm by modifying the

value of θ . Note that we focus on the energy consumption of

the algorithm in the LO mode. Moreover, the energy

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2019-0341.R2 <

8

consumption of Algorithm A is applied as baseline i.e. the

energy consumption of other algorithm is normalized with

Algorithm A.

A. Effect of ()
LO

LOU Γ

()
HI

HIU Γ is fixed to 0.5 and the ratio of ()
HI

HIU Γ and ()
LO

HIU Γ

is set to 1.3. We vary ()LO

LOU Γ from 0.05 to 0.45, stepped by 0.5

and investigate ()
LO

LOU Γ affecting on the energy consumption

of the algorithm. The experimental result is shown in Fig.5.

Fig.5. The effect of ()LO

LOU Γ

The normalized energy consumption of Algorithm B is not

sensitive to ()LO

LOU Γ and the normalized

energy consumption

of DFU is highly dependent on ()
LO

LOU Γ in Fig.5.

The energy consumption of all algorithms is positively related

to ()
LO

LOU Γ . As ()
LO

LOU Γ increases, the energy consumption of

Algorithm A and Algorithm B grows with similar magnitude,

whereas DFU grows much slower. In addition, we normalize

energy consumption with respect to the energy consumption of

Algorithm A. Furthermore, the normalized energy

consumption of DFU and Algorithm B is less than that of

Algorithm A. DFU consumes 46.20% less energy than that of

Algorithm B.

B. Effect of ()HI

HIU Γ

()LO

LOU Γ is fixed to 0.3 and the ratio of ()HI

HIU Γ and ()LO

HIU Γ

is set to 1.3. We vary ()
HI

HIU Γ from 0.05 to 0.6, stepped by 0.5

and investigate ()HI

HIU Γ affecting on the energy consumption

of the algorithm. The experimental result is shown in Fig. 6.

The normalized energy consumption of Algorithm B and

DFU is sensitive to ()
HI

HIU Γ in Fig.6. As ()
HI

HIU Γ increases, the

energy consumption of Algorithm B and DFU decreases. This

is because the ratio of ()
HI

HIU Γ and ()
LO

HIU Γ is fixed and the

slack time will increase when ()HI

HIU Γ increases. Algorithm B

and DFU can exploit this slack time to reduce processor

frequency. In addition, the normalize energy consumption of

DFU is lower than that of Algorithm B and Algorithm A. The

reason is that DFU can dynamically update the utilization of Γ

to dynamically reduce processor frequency. DFU consumes

34.29% less energy than that of Algorithm B.

Fig.6. The effect of ()HI

HIU Γ

C. Effect of the ratio of ()
HI

HIU Γ and ()
LO

HIU Γ

()LO

LOU Γ and ()HI

HIU Γ are fixed to 0.4 and 0.5, respectively.

We vary the ratio of ()
HI

HIU Γ and ()
LO

HIU Γ from 1.1 to 1.9,

stepped by 0.1 and investigate the ratio of ()
HI

HIU Γ and

()LO

HIU Γ affecting on the energy consumption of the algorithm.

The experimental result is shown in Fig. 7.

Fig.7. The effect of the ratio of ()HI

HIU Γ and ()LO

HIU Γ

The normalized energy consumption of Algorithm B and

DFU is sensitive to the ratio of ()
HI

HIU Γ and ()
LO

HIU Γ in Fig.7.

As the ratio of ()
HI

HIU Γ and ()
LO

HIU Γ increases, the normalized

energy consumption of Algorithm B decreases. This is because

()
HI

HIU Γ is fixed and ()
LO

HIU Γ decreases when the ratio of

()HI

HIU Γ and ()LO

HIU Γ increases. Therefore, the execution time

of tasks will decrease in the LO mode and Algorithm B can

exploit slack time generated from HI tasks to dynamically

reduce processor frequency. In addition, the normalized energy

of Algorithm B increases when the ratio of ()HI

HIU Γ and

()
LO

HIU Γ increases. The energy consumption of DFU decreases

much slower than that of Algorithm A. In addition, we

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The utilization of LO task in LO mode

N
o

rm
a

liz
e

d
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

Algorithm A

Algorithm B

DFU
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The utilizaiton of HI task in HI mode

N
o
rm

a
li
z
e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Algorithm A

Algorithm B

DFU

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The ratio of HI task's utilization in HI mode and in LO mode

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Algorithm A

Algorithm B

DFU

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2019-0341.R2 <

9

normalize energy consumption with respect to the energy

consumption of Algorithm A. Moreover, the dynamically

utilization of Γ changes slowly, which leads to slowly

changing of processor frequency. In short, DFU consumes

61.51% less energy than that of Algorithm B.

D. Effect of static power

()
LO

LOU Γ and ()
HI

HIU Γ are fixed to 0.3 and 0.6, respectively.

In addition, the ratio of ()HI

HIU Γ and ()LO

HIU Γ is fixed to 1.3.

We vary the ratio of static power and dynamic power from 0.2

to 0.55, stepped by 0.05 and investigate the ratio of static power

and dynamic power affecting on the energy consumption of the

algorithm. Moreover, the energy consumption is normalized

with respect to Algorithm A when the ratio of static power and

dynamic power is equal to 0.55. The experimental result is

shown in Fig.8.

Fig. 8. The effect of static power

As shown in Fig.8, the normalized energy consumption of

algorithms increases when the ratio of static power and

dynamic power increases. The reason is that the execution time

of tasks and processor frequency do not change. The energy

consumption is determined by the execution time of tasks,

processor frequency, and power. The power will increase when

the ratio of static power and dynamic power increases.

Therefore, the energy consumption will increase. In this case,

DFU consumes 60.87% less energy than that of Algorithm B.

E. Consider the overhead of changing frequency

()
HI

HIU Γ is fixed to 0.5 and the ratio of ()
HI

HIU Γ and ()
LO

HIU Γ

is set to 1.3. We vary ()
LO

LOU Γ from 0.05 to 0.45, stepped by 0.5.

In addition, the energy consumption of DFU is used as baseline.

The energy consumption of DFU while considering the

overhead of changing frequency is represented as DFUO in

Fig.9. The experimental result is shown in Fig. 9.

As shown in Fig.9, the normalized energy consumption of

DFUO is higher than that of DFU. This is because DFUO

considers the overhead of changing frequency. In addition, the

DFUO has little added energy consumption compared with

DFU. It means that the overhead of changing frequency has a

small impact on the performance of DFU. In addition, the

overhead of changing frequency is determined by the frequency

of DFU. The frequency of DFU is determined by the utilization

of tasks. When ()
LO

LOU Γ varies, the overhead of changing

frequency also changes. All in all, DFUO has good energy

saving performance compared with previous studies.

Fig.9. Consider the overhead of changing frequency

VII. CONCLUSION

We focus on scheduling energy aware MC sporadic tasks.

Firstly, we propose DFU. It based on EDF scheme can exploit

the slack time generated from the HI task in the LO mode to

reduce processor frequency. In addition, it also can

dynamically update the utilization of Γ to further reduce

processor frequency. Secondly, we analyze the scheduling

feasibility of DFU. Finally, the simulation experiments are

conducted to evaluate the performance of DFU. The

experimental results show that DFU has better energy saving

effects than other algorithms.

DFU assumes that the MC sporadic tasks are independent.

We will focus on the dependent MC sporadic tasks in the future

work.

ACKNOWLEDGMENT

This work has been supported by the Natural Science

Foundation of Fujian Province of china under Grant

2019J01080.

REFERENCES

[1]S Baruah, A Burns, R Davis. Response-Time Analysis for Mixed Criticality

Systems. Real-Time Systems Symposium, 2012, pp. 34-43.

[2]S Baruah, B Chattopadhyay. Response-time analysis of mixed criticality
systems with pessimistic frequency specification. In the 19th IEEE

International Conference on Embedded and Real-Time Computing Systems

and Applications (RTCSA), 2013, pp. 237-246.
[3]Q Zhao et al. Schedulability analysis and stack size minimization with

preemption thresholds and mixed-criticality scheduling. Journal of Systems

Architecture, vol 83, 57-74, 2018.
[4]A Taherin, M Salehi, A Ejlali. Reliability-Aware Energy Management in

Mixed-Criticality Systems. IEEE Transactions on Sustainable Computing,

vol 3, no 3, 195-208, 2018.
[5]S Baruah et al. The preemptive uniprocessor scheduling of mixed-criticality

implicit-deadline sporadic task systems. In 2012 24th Euromicro

Conference on Real-Time System, 2012, pp. 145-154.
[6]D Müller,A Masrur. The schedulability region of two-level mixed-criticality

systems based on EDF-VD. Design, Automation & Test in Europe

 Conference & Exhibition (DATE), 2014, pp. 1-6.
[7]S Baruah, Z Guo. Scheduling mixed-criticality implicit-deadline sporadic

task systems upon a varying-speed processor. Real-Time Systems

 Symposium, 2014, pp. 31-40.
[8]P Huang et al. Energy efficient dvfs scheduling for mixed-criticality

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The ratio of static power and dynamic power

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Algorithm A

Algorithm B

DFU

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1

1.000005

1.00001

1.000015

1.00002

1.000025

1.00003

1.000035

1.00004

The utilization of LO task in LO mode

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

DFU

DFUO

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2992999, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

> TCAD-2019-0341.R2 <

10

systems. Proceedings of the 14th International Conference on Embedded

Software, 2014, pp. 11-20.
[9]I Ali, J Seo, K Kim. A dynamic power-aware scheduling of mixed-criticalit

real-time systems. IEEE International Conference on Computer and

Information Technology, Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and

Computing, 2015, pp. 438-445.

[10]Y Zhang, R Guo. Power-aware fixed priority scheduling for sporadic tasks
in hard real-time systems. Journal of Systems and Software, vol 90, no 2,

128-137, 2014.

[11]A Qadi., S Goddard., S Farritor. A dynamic voltage scaling algorithm for
sporadic tasks. In: Proceedings of the 24th Real-Time System Symposium,
2003, pp. 52-62.

[12]Y Zhang, C Wang, C Lin. Energy-aware sporadic tasks scheduling with
shared resources in hard real-time systems. Sustainable Computing

Informatics & Systems, vol 15, 52-62, 2017.

[13]Y Zhang, C Xu. Low power fixed priority scheduling sporadic task with
shared resources in hard real time system. Microprocessors and

Microsystem, vol 45, 164-175, 2016.

[14]Z Li et al. Reliability guaranteed energy minimization on mixed-criticality
systems. Journal of Systems and Software, vol 112, 1-10, 2016.

[15]S Baruah et al. The Preemptive Uniprocessor Scheduling of

Mixed-Criticality Implicit-Deadline Sporadic Task Systems. 24th
Euromicro Conference on Real-Time Systems (ECRTS), 2012,

pp.145-154.

[16]S Baruah, Z Guo. Mixed-Criticality Scheduling upon Varying-Speed
Processors. IEEE34th Real-Time System Symposium (RTSS 2013), 2013,

pp. 68-77.
[17]S Vestal. Preemptive scheduling of multi-criticality systems with varying

degrees of execution time assurance. In the 28th IEEE Real-Time Systems

Symposium (RTSS), 2007, pp. 239-243.
[18]Y Chen, G Kang, H Xiong. Generalizing fixed-priority scheduling for

better schedulability in mixed-criticality systems. Information Processing

Letters, vol 116, no 8, 508-512, 2016.
[19]Q Zhao et al. Schedulability Analysis and Stack Size Minimization with

Preemption Thresholds and Mixed-Criticality Scheduling. Journal of
Systems Architecture, vol 83, 57-74, 2018.

[20]Y Chen et al. Efficient schedulability analysis for mixed-criticality systems

under deadline-based scheduling. Chinese Journal of Aeronautics, vol 27,

no 4, 856-866, 2014.
[21]G Chen et al. Utilization-Based Scheduling of Flexible Mixed-Criticality

Real-Time Tasks. IEEE Transactions on Computers, vol 67, no 4,543-558,

2018.
[22]M HorHorng, C Huang, Y Kuo, Hu. Scheduling sporadic, hard real-time

tasks with resources. Proceedings of 3rd International Conference on

Innovative Computing Information and Control, 2008, pp. 84-87.
[23]Y Zhang, C Wang, J Liu. Energy aware fixed priority scheduling for real

time sporadic task with task synchronization. Journal of Systems

Architecture, vol 83, 12-22, 2018.
[24]Y Zhang. System level fixed priority energy management algorithm for

embedded real time application, Microprocessors and Microsystems, vol 64,

170-177, 2019.
[25]Y Guo et al. Exploiting primary/backup mechanism for energy efficiency

in dependable real-time systems. Journal of Systems Architecture, vol 78,

68-80, 2017.
[26]M Fakih et al. SAFEPOWER project: Architecture for Safe and

Power-Efficient Mixed-Criticality Systems. Microprocessors and

Microsystems, vol 52, 89-105, 2017
[27]A Easwaran. 2013. Demand-based scheduling of mixed-criticality sporadic

tasks on one processor. In Proceedings of the 34th Real-Time Systems
Symposium (RTSS), 2013, pp.78-87.

[28]Y Zhang, H Li. Energy aware mixed tasks scheduling in real-time systems,

Sustainable Computing-Informatics & Systems, vol 23, 38-48, 2019.

[29]Y Zhang. Energy-aware mixed partitioning scheduling in standby-sparing
systems, Computer Standards & Interfaces, vol 61, 129-136, 2019.

[30]B, Ashikahmed et al. Precise scheduling of mixed-criticality tasks by

varying processor speed. "In Proceedings of the 27th International
Conference on Real-Time Networks and Systems, 2019, pp.123-132.

[31]Y Zhang, R Guo. Low power scheduling algorithms for sporadic task with

shared resources in hard real-time systems, The Computer Journal, vol 58,
no 7, 1585-1597, 2015.

[32]P Huang, G Giannopoulou, N Stoimenov, L Thiele. Service adaptions for

mixed-criticality systems. In ASP-DAC, 2014, pp. 125-130.

Yi-wen Zhang received his B.E degree in

Department of Mathematics, Yangtze

Normal University, Chongqing, China in

2010 and PH.D from University of

Chinese Academy of Sciences in 2016.

Now he is associate professor in College

of Computer Science and Technology,

Huaqiao University, Xiamen, China. His

current research interests include

real-time system and low-power design.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on May 11,2020 at 03:08:50 UTC from IEEE Xplore. Restrictions apply.

