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Abstract—The mixed-criticality system provides multiple 

real-time applications with different criticalities in a single system. 

Poor energy saving performance of the previous studies on 

mixed-criticality sporadic tasks are mainly due to the fact that the 

slack time generated from the random arrival of sporadic tasks is 

not taken into account. In this paper, we focus on scheduling 

energy aware mixed-criticality sporadic tasks and take the 

random arrival of sporadic tasks into account. We proposed a 

dynamically frequency updating mixed-criticality algorithm 

(DFU). DFU based on earliest deadline first scheme can exploit the 

slack time generated from high criticality tasks in a low criticality 

mode to reduce processor frequency. In addition, it also can 

dynamically update the utilization of sporadic tasks set to further 

reduce processor frequency. The simulation experiments are 

conducted to evaluate the performance of DFU and experimental 

results show that DFU consumes 34.29% less energy than that of 

the existing algorithms. 

 
Index Terms—mixed-criticality system, sporadic task, 

energy-awareness, real-time scheduling 

 

I. INTRODUCTION 

 

ixed-criticality (MC) real-time system provides multiple 

real-time applications with different criticalities in a single 

system. It has been applied in many domains such as avionics, 

automotive and industrial standards (RTCA DO-178B) [4]. In 

such systems, tasks have different criticality levels. The high 

criticality level task must be completed correctly on time while 

losing a part of low criticality level task is tolerable. 

Energy consumption is also very important in MC real-time 

systems. Actually, only a few recent studies focus on 

scheduling energy aware sporadic tasks in MC real-time 

systems. The authors in [16] first propose two speed levels 

ideas to reduce energy consumption in dynamic priority MC 

systems. But they only focus on the correction of the system. 

The authors in [8] first focus on scheduling energy aware 

sporadic tasks in MC real-time systems and propose a novel 

algorithm to reduce energy consumption. They expand the 

work given in [16] and first apply dynamic voltage and 

frequency scaling (DVFS) to adjust processor frequency. But 
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they only exploit static slack time to reduce energy 

consumption, which leads to poor energy savings. The novel 

algorithm [9] not only exploits static slack time but also the 

reserved time for high criticality tasks to reduce energy 

consumption. But it ignores the random arrival of sporadic 

tasks, which can generate much slack time at run-time.  

All in all, previous studies about scheduling energy aware 

sporadic tasks in MC real-time systems do not exploit the slack 

time generated from the random arrival of sporadic tasks. In 

this paper, we focus on scheduling energy aware MC sporadic 

tasks and take the random arrival of sporadic tasks into account. 

The main contributions are as follows: 

1. A dynamically updating utilization algorithm is proposed 

and it can reclaim the slack time generated from the random 

arrival of sporadic tasks. 

2. We proposed DFU based on earliest deadline first scheme, 

which not only exploits the slack time generated from the high 

criticality task in the low criticality mode, but also the slack 

time generated from random arrival of sporadic tasks.  

3. We analyze scheduling feasibility of DFU. 

The rest of this paper is organized as follows. We introduce the 

related work and the system model in Section II and Section III, 

respectively. We recap of earliest deadline first with virtual 

deadlines (EDF-VD) in Section IV. The proposed algorithm 

and simulation experiment are introduced in Section V and 

Section VI, respectively. Finally, we conclude with the 

summary in Section VII. 

II. RELATED  WORK 

Many researchers focus on scheduling sporadic tasks in MC 

systems [1-2, 17-18]. The authors in [17] first address MC 

scheduling problem and then propose fixed priority scheduling 

schemes such as partitioned criticality (PC), static mixed 

criticality (SMC), and adaptive mixed criticality (AMC) [2]. In 

addition, the authors in [1] study the schedulability analysis for 

fixed priority sporadic tasks scheduling in MC systems and 

propose the own criticality based priority (OCBP)-schedulable 

method. Moreover, the generalizing fixed priority scheduling 

based on OCBP is proposed in [18]. Furthermore, the 

schedulability analysis to enable integration Preemption 

Threshold Scheduling with MC is proposed in [19]. Note that 

previous studies focus on fixed priority scheduling in MC 

systems. The authors in [15] focus on dynamic priority 

scheduling in MC systems and propose an Earliest Deadline 

First with Virtual Deadlines algorithm (EDF-VD).The MC 

sporadic task with multiple virtual deadlines based on EDF-VD 

is studied in [20]. In addition, a new demand-based 

schedulability test for general MC sporadic task systems and 

the new deadline tightening strategy based on this test are 

proposed in [27]. Furthermore, the flexible mixed-criticality 
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(FMC) model is proposed in [21] and the authors derive a 

utilization-based technique based on EDF-VD to analyze the 

schedulability of FMC model.   

Note that the above studies focus on the schedulability 

analysis of MC systems and do not take energy consumption 

into account. DVFS is a general technology to reduce energy 

consumption. Many researchers [12, 22-25] apply DVFS to 

reduce energy consumption in traditional real-time systems. 

The event-triggered method is proposed to reclaim the slack 

time generated from sporadic tasks [22]. But it ignores the static 

power and does not exploit the slack time generated at run-time. 

The algorithm based on a slack time management queue is 

proposed in [12]. It not only exploits the slack time generated at 

run-time, but also considers the general power model. The 

above studies do not take shared resources into account. The 

problem of scheduling sporadic task with shared resources is 

addressed and a dynamic task synchronization algorithm is 

proposed in [23]. It combines DVFS and dynamic power 

management techniques to save energy. But it ignores the 

energy consumption of other components. The problem of 

system level energy consumption consisting of processor and 

other components is studied in [24]. 

Few studies focus on scheduling energy aware sporadic tasks 

in MC real-time systems. The first work in [8] studies the 

problem of scheduling energy aware sporadic tasks in MC 

real-time systems. The authors formulate a convex program by 

integrating DVFS with a well-known MC scheduling technique 

and propose an optimal algorithm. But they do not exploit the 

reserved time for high criticality tasks to reduce energy 

consumption. The authors in [9] extend the work in [8] and 

propose a novel algorithm. It not only reclaims static slack time, 

but also the reserved time for high criticality tasks to save 

energy. In addition, the authors in [30] focus on precise 

scheduling of all tasks of MC model and present schedulability 

tests based on utilization. Moreover, a minimum necessary 

execution speed is determined to reduce energy consumption. 

However, it does not exploit the dynamic slack time generated 

from the random arrival of sporadic tasks at run-time. In 

addition, the problem of scheduling energy aware sporadic 

tasks in MC system on chip (SoC) has been studies in [26]. 

Moreover, the problem of reliability in MC systems has been 

addressed in [4]. In short, poor energy saving performance of 

previous studies on MC sporadic tasks are mainly due to the 

fact that the slack time generated from the random arrival of 

sporadic tasks is not exploited to reduce energy consumption. 

III. SYSTEM MODEL 

A. Task Model 

We consider a MC sporadic task set 1 2{ , , , }nτ τ τΓ = ⋯ which 

includes n  independent sporadic tasks on a uniprocessor. Each 

MC sporadic task iτ  can be described by a tuple of parameters

( , , , ( ), ( ))i i i i iT D L C LO C HI , 
iT  and 

iD
 
are the minimum 

inter-arrival separation and a relative deadline of
 iτ , 

respectively. ( )iC LO  and ( )iC HI  is the worst case execution 

time (WCET) of 
iτ  in a low criticality (LO) mode and in a high 

criticality (HI) mode, respectively. 
iL  is the criticality level set 

of iτ  (LO, HI, assuming a dual-criticality system). Each MC 

sporadic task can generate a finite number of jobs. Major 

notations can be found in Table 1. In this paper, we apply 

implicit-deadlines i.e. the relative deadline of 
iτ  is equal to 

iT . 

If the criticality level of a task iτ  is equal to LO, we have 

( ) ( )i iC HI C LO= . If the criticality level of a task 
iτ  is equal to 

HI, we have ( ) ( )i iC LO C HI≤
 
because the WCET in a HI 

mode is more conservative compared with WCET in a LO 

mode. In addition, we assume that the actual execution time of 

tasks is smaller or equal to its WCET in a LO mode. The 

utilization parameter is defined as follows: 

                     
(z)

( )
i i

z i

y

L y i

C
U

Tτ ∈Γ∧ =

Γ = ∑                                (1) 

Where each of y  and z  in { , }LO HI .Therefore, ( )LO

HI
U Γ  

means the sum of utilization of all HI tasks in Γ (i.e. the 

criticality level of a task is HI) in a LO mode.  

System behavior. If a job of the task iτ ends and its 

execution time is greater than ( )iC LO  and less than  ( )iC HI ,
 

the system is in a HI mode. In addition, a job of the task 
iτ
 
ends 

and its execution time does not exceed ( )iC LO , the system is 

in a LO mode. If a job of the task 
iτ  does not complete its 

execution and its execution time exceeds ( )iC HI , the system is 

regarded as erroneous. The system is initially in a LO mode. 

The system will switch to a HI mode when the execution time 

of a task iτ  exceeds ( )iC LO . 

Correctness criteria. Consider MC sporadic task sets 

1 2{ , , , }nτ τ τΓ = ⋯  including n  independent sporadic tasks. 

The algorithm scheduling MC sporadic task sets 

1 2{ , , , }nτ τ τΓ = ⋯  is correct if it should meet the following 

conditions: 

� All tasks end within their deadlines and their 

execution time does not exceed WCET in a LO 

mode. 

� All HI tasks end within their deadlines and their 

execution time does not exceed WCET in a HI mode. 

In addition, all LO tasks (i.e. the criticality level of a 

task is LO) will be dropped in a HI mode. 

B. Power Model 

The DVFS mechanism is presented in many of the 

modern-day processors such as Intel Xscale and AMD A86410. 

The processor can be operated in variable frequency levels vary 

the minimum frequency to the maximum frequency 
maxS . The 

processor frequency is normalized with the maximum 

frequency. We use the state-of-the-art power model [4] as 

follows. 

                        
max 3( )ind dynamicP P P S Sθ= + +                                (2) 

Where 
indP  is an independent-frequency power which is 

caused by I/O and memory operation; max

dynamicP  is dynamic 

power which is caused by the circuit activity and it can be 

normalized to 1; θ  is the ratio of static power and dynamic 
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power at the maximum frequency; S  is the normalized 

frequency. The energy consumption E  during 1 2[ , ]t t  is equal 

to 
2

1

t

t
E Pdt= ∫ . In addition, we assume that the execution time 

of a task iτ  scales linearly proportional to its normalized 

frequency iS  [28-29].  

 TABLE 1 

Symbols and notations 

Notation Description 

DVFS Dynamic voltage and frequency scaling 

MC
 

Mixed-criticality 

iT  The minimum inter-arrival separation of the jobs of iτ   

iD  A relative deadline of 
iτ  

WCET Worst case execution time 

LO Low criticality  

HI
 High criticality  

iL
 

The criticality level set of iτ   

( )iC LO
 

The WCET of iτ  in a LO mode 

( )iC HI
 

The WCET of 
iτ  in a HI mode 

( )LO

HI
U Γ  The sum of the utilization of HI tasks in Γ  in the LO mode 

( )LO

LOU Γ  The sum of the utilization of LO tasks in Γ in the LO mode 

( )HI

HIU Γ  The sum of the utilization of HI tasks in Γ  in the HI mode 

ijτ  The jth job of a task 
iτ  

DFU A dynamically frequency updating MC algorithm 

 
ijr  The released time of a job 

ijτ  

TS  
A subset of Γ , the inter-arrival separation between two 

successive jobs of a task iτ  in TS  is greater than iT .    

U  The current utilization of Γ  

CS  The current frequency of the current executed tasks 

IV. RECAP OF EARLIEST DEADLINE FIRST WITH VIRTUAL 

DEADLINES (EDF-VD) 

EDF has poor performance when it is applied to schedule 

MC sporadic tasks [5-6]. Therefore, the EDF-VD algorithm 

based on EDF is proposed to MC scheduling. The basic idea of 

EDF-VD is to shorten the relative deadline of HI tasks which 

will push HI tasks to finish earlier in a LO mode. The relative 

deadline of HI task 
iτ  is set to 

ixT  in the LO mode. In addition, 

the relative deadline of HI task iτ  resumes to iT  in a HI mode. 

The parameter x  can be calculated as follows [5]: 

                             
1 ( )

( )

LO

HI

LO

LO

U
x

U

− Γ
≥

Γ
                                          (3) 

Theorem 1 gives a sufficient condition that EDF-VD 

scheduling all HI tasks in the HI mode is feasible. 

Theorem 1 [5]: The following condition is sufficient for 

ensuring that EDF-VD successfully schedules all HI tasks in 

the HI mode:  

       ( ) ( ) 1LO HI

LO HIxU UΓ + Γ ≤
                          

 (4) 

An example which consists of two MC sporadic tasks 

1(6,6, , 2, 2)LOτ
 
and 2 (8,8, ,1,3)HIτ  is applied to explain 

EDF-VD. Note that the inter-arrival separation between two 

successive jobs of 
iτ is fixed to 

iT . In addition, the jobs of 
1τ  

and 2τ  are released simultaneously at time 0. According to the 

method in [7], we compute the parameter x  which can be 

chosen in 
3

[ ,1]
16

. For simplicity, the parameter x  is set to 0.5. 

The system is in a LO mode at the beginning. At time 0, the 

deadline of 11τ  and 21τ  are 6 and 4, respectively. Therefore, 21τ  

begins to execute and finish at time 1. At time 8, 
22τ  begins to 

execute and it does not end at time 9. The system switches to a 

HI mode and the jobs LO of 1τ  are dropped after then. 

Therefore, 
22τ  ends at time 11 and 

2τ  will need three time 

units every period. The detail scheduling can be found in Fig.1. 

21τ 11τ

21τ

11τ

12τ 22τ

0 3 6 98 11 16 18 19

23τ

12τ

12

13τ 14τ
22τ

23τ

24

LO mode HI mode

 
Fig.1. An example of EDF-VD  

V. THE PROPOSED ALGORITHM 

In this section, we introduce the motivational example and 

problem definition in Section V.A. The dynamically updating 

utilization algorithm and DFU are presented in Section V.B and 

Section V.C, respectively. 

A. Motivational Example and Problem Definition 

Some researchers [8-9] focus on power-aware MC sporadic 

tasks scheduling based on EDF-VD. The inter-arrival 

separation between two successive jobs of 
iτ  is fixed to 

iT  in 

these studies. In fact, it can be larger than 
iT , which leads to 

calculated frequency is larger than the required frequency. 

Therefore, there is still much room to further reduce energy 

consumption, which is exemplified in Table 2 through three 

MC sporadic tasks. 
TABLE 2 

THE PARAMETER OF MC SPORADIC TASKS 

Tasks 
iT   

iD   
iL   ( )iC LO   ( )iC HI  

1τ   6 6 LO 2 2 

2τ   8 8 HI 2 3 

3τ   16 16 LO 4 4 

 

We assume that the job of 
1τ  is released at time 0, 10, 20, 32, 

42. The job of 2τ  is released at time 0, 12, 20, 34, 42. The job 

of 
3τ  is released at time 0, 24. In addition, we assume that the 

processor can provide continuous frequencies in [0.3, 1].The 
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example is scheduled in [0, 48] and two power-aware MC 

sporadic tasks algorithms are applied to explain that there is 

much room to further reduce energy consumption.  

Algorithm A [8] A static optimal solution algorithm—The 

HI task runs at the frequency 
HIS  in a LO mode and the 

frequency maxS  in a HI mode, and the LO task runs at the 

frequency LOS  in LO modes.  

Algorithm B [9] A dynamic solution algorithm—The HI 

task runs at the frequency HIS  in the LO mode and the 

frequency 
maxS  in the HI mode, and the LO task runs at the 

frequency LOS  in the LO mode. But the frequency HIS  and 

LOS  are not fixed. They dynamically change according to the 

completion of HI tasks. 

 According to Algorithm A [8], we compute 0.875x = , 

0.86LOS = , and 0.90HIS = . The MC sporadic task in Table 2 

is scheduled by Algorithm A with the scheduling result shown 

in Fig.2. 

21
τ

11τ

0 4 8 1612 20 28 32 36

12τ

24

22τ

48

0.86

  0.90

31
τ

10

13τ
23

τ

22τ12τ
31τ21τ

11
τ

23τ
13

τ

32τ

32
τ

 

14τ

34

24τ

14
τ 24τ

40 42 44

 

15τ

15
τ

25
τ

25τ

Fig.2. An example of Algorithm A in a LO mode. 

 

Algorithm B [9] first applies the parameter x , 
LOS , and 

HIS  

given in Algorithm A to dynamically compute the frequency 

of both LO tasks and HI tasks. Therefore, the parameter x , 

LOS , and HIS  are equal to 0.875, 0.86, and 0.90, respectively. 

When 
21τ  finishes at time 2.33, the frequency 

LOS  and 
HIS  are 

updated as 0.83 and 0.86, respectively. The MC sporadic task in 

Table 2 is scheduled by Algorithm B with the scheduling result 

shown in Fig.3. 

21τ

11τ

0
4 8 1612 20 28 32 36

12τ

24

22τ

48

0.83

  0.86

31
τ

10

13τ
23τ

22τ12τ
31

τ21
τ

11τ
23

τ
13

τ

32τ

32
τ

 

14τ
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24τ

14τ 24
τ
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15τ

15τ

0.90

25τ

25τ

Fig.3. An example of Algorithm B in a LO mode. 

 

As shown in Fig.2, there are some idle intervals such as [9.20, 

10], [14.55, 20], [29.20, 32], [36.55, 42], and [46.55, 48]. 

Moreover, there are also some idle intervals [9.37, 10], [14.74, 

20], [29.56, 32], [36.74, 42], and [46.74, 48] in Fig.3. The main 

reason of such idle intervals is that the inter-arrival separation 

between two successive jobs a MC sporadic task 
iτ
 
is larger 

than iT , which leads to lower actual utilization of task iτ  

compared with the utilization used in Algorithm A [8] and 

Algorithm B [9]. Therefore, we can exploit these idles 

intervals to further reduce energy consumption.  

Problem Definition. Given MC sporadic task sets 

1 2{ , , , }nτ τ τΓ = ⋯  scheduled by EDF-VD, we should decide 

the parameter x , 
LOS , 

HIS  and reclaim the slack time 

generated from the random arrival of sporadic tasks to 

dynamically compute CS  to reduce energy consumption in LO 

mode while meeting Correctness criteria of scheduling MC 

sporadic tasks.  

B. The Dynamically Updating Utilization Algorithm  

Updating Utilization  

    1. When  
iτ  releases a job and 

i TSτ ∈  

 2. If iL LO=  then 

 3.  ( ( ) / ) /i LO iU U C LO S T= +  

 4. Else if the job of 
iτ  ends before current time 

 5.       ( ( ) / ) /i HI iU U C LO S T= +  

    6. Else  

 7.    ( ( ) / ) / ( ( ) ( )) /i HI i i i iU U C LO S T C HI C LO T= + + −  

 8. 
iτ  is removed from TS . 

9. When 
iτ  does not release a new job at time 

i ir T+   and 

i TSτ ∉  

   //
ir is the released time of previous job of 

iτ  

10.   If 
iL LO=  then 

 11.   ( ( ) / ) /i LO iU U C LO S T= −  

 12. Else if the job of a task 
iτ  ends before current time 

                  ( ( ) / ) /i HI iU U C LO S T= −  

 13. Else 

    14.       ( ( ) / ) / ( ( ) ( )) /i HI i i i iU U C LO S T C HI C LO T= − − −  

 15.    iτ  is added to TS . 

16. When the processor in an idle mode 

17.   TS  is set as Γ  and 0U =  

18. If 0U <  then 

19.   0U =   

 

We use a similar method given in [11-13] to dynamically 

update the utilization of MC sporadic task set Γ . It updates 

according to whether the tasks release jobs. When the task first 

releases a job, the utilization of MC sporadic task set Γ  

increases. The dynamically updating utilization algorithm is 

presented by Updating Utilization. 

We update the utilization of TS  according to Updating 

Utilization. If a new job of iτ  is released and it belongs to TS , 

we increase the utilization of TS  and remove it from TS  (line 

1-8, Updating Utilization). Note that when the HI task iτ  has 

finished before current time, the increasing utilization of TS  

will be ( ( ) / ) /i LO iC LO S T  (line 4-5, Updating Utilization). 

When 
iτ  does not release a new job at time 

i ir T+  and it does 

not belong to TS , we decrease the utilization of TS and add it 

to TS (line 9-15, Updating Utilization). When no jobs wait to 

be scheduled i.e. the processor is in an idle mode, TS  is set as 

Γ  and U  is set as 0 (line 16-17, Updating Utilization).  
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C. The DFU Algorithm 

There are two queues for DFU. Ready queues include 

currently activated jobs which wait to execute on the processor. 

Delay queues include the completed jobs or unreleased jobs 

[10]. At the beginning, all jobs do not be released and they are 

put into the delay queue. When the job of a task is released, it is 

moved from delay queues to ready queues. In the initialization 

step, DFU should compute the parameter x , LOS , and HIS  

through Algorithm A [8].  

When the job of a LO task 
iτ  is released at time t , its 

deadline is set as it T+  in both modes. In addition, when the job 

of a HI task 
iτ  is released at time t , its deadline is set as 

it xT+  

in a LO mode and it T+  at a HI mode, respectively. Released 

jobs are put into the ready queues to execute. The jobs are 

scheduled by EDF in the ready queue. 

The detail description of DFU is provided in Scheduling, 

Updating Utilization and Select Frequency. 

 

Scheduling  

 

1. Calculate the parameter x , LOS , and HIS  and set 

, 0TS U= Γ = . 

2. Set ready queue into the empty list and all unreleased 

jobs are put into the delay queue. 

3. If a task releases a job, put it into a ready queue 

according to EDF. 

4. The highest priority task 
jτ  is scheduled.  

5.  Apply Updating Utilization and Select Frequency to 

dynamically determine the frequency of a task 
jτ  (

CS ). 

6.  If the execution time of 
jτ  exceeds ( ) /j CC LO S , the 

system is changed to a HI mode. 

7.  If a job of 
jτ  finishes its execution. 

8.      a job of 
jτ  is removed from a ready queue and put 

into the delay queue. 

 

Before scheduling MC sporadic task sets, we first calculate 

the parameter x , 
LOS , and 

HIS . In addition, we set 

, 0TS U= Γ =  (line 1, Scheduling). Moreover, the ready queue 

and delay are set to the empty list (line 2, Scheduling). When 

iτ  release a job, it will be put into the ready queue according to 

EDF and the highest priority task 
jτ  will be first scheduled 

(line 3-4, Scheduling). We should dynamically determine the 

frequency of 
jτ  by Updating Utilization and Select 

Frequency (line 5, Scheduling). When the execution time of 

jτ  exceeds ( ) /j CC LO S , the system will switch to a HI mode 

(line 6, Scheduling). When a job of 
jτ  finishes its execution, it 

will be put into the delay queue (line 7-8, Scheduling). 

We determine the frequency according to Select Frequency. 

The reservation time for HI tasks can be freed in a LO mode 

when the job of HI tasks finishes (line 1-2, Select Frequency). 

When the system is in a HI mode, the frequency will be set as 

maxS  to ensure that the HI task will end within its deadline (line 

5-6, Select Frequency). Note that there are no LO tasks in a HI 

mode. The frequency of LO tasks and HI tasks is determined 

(line 7-12, Select Frequency). 

 
 

Select Frequency  

 

1. If the first job of a HI task 
iτ  finishes its execution 

2.   ( ( ) ( )) /i i iU U C HI C LO T= − −  

3. If 1U >  then 

4.   1U =   

5. If the system is in a HI mode then 

6.  maxCS S=   

7. Else if the task is a LO task 

8.       *C LOS U S=   

9. Else  

10.   *C HIS U S=  

11. If 
minCS S<   

12.   minCS S=  

 

The time complexity of Scheduling, Updating Utilization, 

Select Frequency is ( log )O n n , (1)O  and (1)O , respectively. 

Therefore, the time complexity of DFU is ( log )O n n . 

1) Example of DFU      

The MC sporadic task in Table 2 is scheduled by DFU in [0, 

48]. We assume that the job of a task 1τ  is released at time 0, 10, 

20, 32, 42. The job of a task 
2τ  is released at time 0, 12, 20, 34, 

42. The job of a task 3τ  is released at time 0, 24. The parameter 

x , LOS , and HIS  are equal to 0.875, 0.86 and 0.90, respectively. 

In addition, we assume that the processor can provide 

continuous frequencies in [0.3, 1]. At time 0, jobs of 1τ , 2τ  and 

3τ  are released simultaneously. Therefore, 
11τ  executes with 

the frequency of 0.86 and ends at time 2.33. At the same time, 

the job 
21τ  executes with the frequency of 0.90 and ends at 

time 4.55. Due to 
21τ  is the first job of a HI task 

2τ , the 

utilization of  Γ  decreases (line 1-2, Select Frequency). 

Therefore, 
31τ  begins to execute with the frequency of 0.83. At 

time 6, the utilization of Γ  decreases due to 1τ  does not release 

a job and it does not belong to TS . Therefore, 
31τ  executes 

with the frequency of 0.49. In addition, the utilization of Γ  
decreases at time 8. Thus, 

31τ  executes with the frequency of 

0.30. Moreover, the utilization of Γ  increases at time 10. 

Therefore, 
31τ  executes with the frequency of 0.58. In addition, 

the utilization of Γ  increases at time 12. Thus, 
31τ  and 

12τ
 

execute with the frequency of 0.83 and end at time 12.06 and 

14.47, respectively. 
22τ  executes with the frequency of 0.86 at 

time 14.47. In addition, the utilization of Γ  decreases at time 

16. 
22τ  executes with the frequency of 0.34 and ends at time 18. 

At time 20, 
13τ  executes with the frequency of 0.58 and ends at 

time 23.45. At the same time, 23τ  executes with the frequency 

of 0.61. At time 24, 
3τ  releases a job and it belongs to TS . 
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Therefore, 23τ  executes with the frequency of 0.86 and it ends 

at time 25.93. 
32τ  executes with the frequency of 0.83 and 0.49 

at time 25.93 and 26, respectively. In addition, 32τ  executes 

with the frequency of 0.30. At time 32, 14τ  executes with the 

frequency of 0.58. In addition, 
14τ  and 

32τ
 
execute with the 

frequency of 0.83 and end at time 35.01 and 37.13, respectively. 

24τ  executes with the frequency of 0.86 and ends at time 37.13. 

The final scheduling result can be found in Fig.4.  

21τ

11τ

0 4 8 1612 20 28 32 36

12τ

24

22τ

48

0.83

  0.86

31τ

10

13τ
23τ

22τ12τ

 

31τ21τ
11τ 13τ

32τ

32τ

 

14τ

34

24τ

14τ

40 42 44

0.84 0.90

0.49 0.30 0.58
0.58 0.61

23τ

0.49 0.30 0.58

 
24τ

0.51 0.30

 

0.58

 

0.30

15
τ

 

0.61

25τ

25τ
15τ

Fig.4. An example of the DFU algorithm a LO mode. 

 

The red arrow and black arrow stand for the frequency and 

the arriving time of job, respectively. We assume that 

0.1indP = . 
max

dynamicP  is normalized to 1 and the θ  is set to 0.2 in 

(2) [4]. In addition, the power is equal to 0.1 when the processor 

is in an idle status. The energy consumption of Algorithm A in 

Fig.2 and Algorithm B in Fig.3 is 32.14 and 30.46, 

respectively. The energy consumption of DFU is 24.36. 

Therefore, DFU can save energy up to 24.21% and 20.02% 

compared with Algorithm A and Algorithm B, respectively.  

2) Schedulability analysis 

DFU applies the EDF policy to schedule MC sporadic task 

sets Γ . If the utilization of Γ  is lower or equal to 1, the EDF 

policy scheduling Γ  is feasible. Therefore, we should prove 

that the utilization of Γ  is lower or equal to 1 with dynamically 

frequency 
CS for DFU. The following Theorem 2 will prove 

that DFU scheduling Γ  is feasible.  

 Theorem 2. If the utilization of Γ  is lower or equal to 1 with 

the maximum frequency, DFU scheduling Γ  with dynamically 

frequency 
CS  is feasible. 

 Proof: Let 1 2{ , , , }S S S Smβ β β β= ⋯  be the frequency 

changed intervals where 
Siβ  is the intervals between the end of 

idle intervals and the beginning of the next idle interval. 
Sβ  is 

equal to the hyper-period of Γ  if there are no idle intervals ( Γ  
is scheduled in the hyper-period). In addition, we denote 

1 2
{ , , , }

S S S Sm
f f f f= …  as the set of all frequencies 

corresponding to the time intervals in 
Sβ . Moreover, we 

denote 1 2{ , , , }U u u uma a a a= ⋯  as the set of the utilization of 

TS  corresponding to the time intervals in 
Sβ . Furthermore, let 

SiU  be the utilization of the interval 
Siβ  with the frequency of

Sif . Si
U  can be computed as follows: 

                                
1,

( )

i

n

Si

i TS i

C Si
U

Tτ= ∈

= ∑                                    (5) 

Where ( )C Si  is the execution time of 
iτ  with the frequency of

Sif  and it can be computed as follows: 

( ) / ( ),
( )

( ) / ( ),

i ui LO i

i ui HI i

C LO a S L LO
C Si

C LO a S L HI

⋅ =
= 

⋅ =
             (6) 

From (5) and (6), we have 

                   

1, 1,

( ) ( )1
( )

i i i i

n n
i i

Si

i TS L LO i TS L HIui i LO i HI

C LO C LO
U

a T S T Sτ τ= ∈ ∧ = = ∈ ∧ =

= +
⋅ ⋅∑ ∑          (7) 

The task set TS  includes all tasks which do not release jobs at 

their minimum inter-arrival separation before the beginning of 

the interval Siβ .Therefore, uia  can be computed in (8).  

 

1,

1,

1,

( )( )

 

(           )

( ) ( ) ( )
( )( )

  

 (      '  

i i

i i

i i

n
iin

i TS L HI i HIi LO

i TS L LO

iui

i i in
i

i HI i

i TS L HIi LO

i

C LOC LO

T ST S

if a HI task has finished its first joba

C LO C HI C LO
C LO

T S T
T S

if a HI task doesn t fin

τ
τ

τ

τ

τ

= ∈ ∧ =
= ∈ ∧ =

= ∈ ∧ =

+
⋅⋅

=

−
+

⋅+
⋅

∑∑

∑
1,

   )

i i

n

i TS L LO

ish its first job

τ= ∈ ∧ =
















∑

            

(8) 

The execution time will decrease when the frequency 

becomes larger. The value of 
uia  is larger when a HI task 

iτ  

does not finish its first job from (8). The algorithm is feasible if 

we apply smaller 
uia  to calculate the frequency. Therefore, the 

algorithm must be feasible if we use larger 
uia  to calculate the 

frequency. Thus, we will use following uia . 

              
1, 1,

( ) ( )
 

i i i i

n n
i i

ui

i TS L LO i TS L HIi LO i HI

C LO C LO
a

T S T Sτ τ= ∈ ∧ = = ∈ ∧ =

= +
⋅ ⋅∑ ∑     (9) 

Applying (9) to (7), we have  

                                       
1

Si
U =                                               (10) 

The total utilization of time intervals Sβ  can be computed as a 

sum of the ratio of products of the utilizations over subintervals 

times and the interval to the sum of all intervals. It can be 

calculated as following: 

                                
1

1

S

m
Si Si

m
j

Sk

k

U
Uβ

β

β=

=

⋅
= ∑

∑
                                   (11) 

Due to 
1

m

Sk

k

β
=

∑ is a constant, we have  

                           

1

1

1
S i

k

m

S Sim
j

S

k

U Uβ β
β =

=

= ⋅∑
∑

                            (12) 

Due to 1
Si

U = ,  we have 1
S

Uβ = . Therefore, Theorem 2 is 

proved.  

3) Discussion of the overhead of changing frequency 

In this section, we will discuss the overhead of changing 

frequency. It will generate the time and power overhead when 

the processor frequency changes. According to [31], the time 

overhead of changing frequency is equal to i jK S S⋅ − , where 

K  is a constant, iS  and jS  is currently frequency and changed 

frequency, respectively. 
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 Let iO  be the time overhead of changing frequency for iτ . 

iO  is variable and it is determined by the frequency of 
iτ . 

Different jobs of iτ  may have different frequencies during their 

execution. Therefore, iO  may different for the jobs of iτ .  

The frequency only changes in scheduling point. The 

so-called scheduling point is the time that the task completes its 

execution, released jobs, and the job does not be released after 

the minimum inter-arrival separation. Specially, the frequency 

is determined by Updating Utilization. 

We build a queue called α  queue to exactly compute 
iO .α  

queue not only records the frequency for the jobs of iτ  in the 

scheduling point at run-time, but also includes the minimum 

inter-arrival separation, a relative deadline, WCET in a LO 

mode and in a HI mode. 

When we take the overhead of changing frequency into 

account, the utilization of task will increase and the slack time 

will decrease. Therefore, the WECT of iτ  in a LO and a HI 

mode is equal to ( )i iC LO O+  and ( )i iC HI O+ , respectively. 

When the job of iτ  completes its execution, we then apply

( )i iC LO O+  and ( )i iC HI O+  to instead of WCET in a LO 

mode and a HI mode for the next job of iτ , respectively. 

We apply the same example in Fig.4 to explain DFU while 

taking the overhead of changing frequency into account. In 

addition, we assume that 0.1K = [31]. Before scheduling,

1 2 3O O O= = . At time 0, 
11τ  executes with the frequency of 

0.86 and ends at time 2.33. We compute 1 0.014O = . At the 

same time, the job 
21τ  executes with the frequency of 0.90 and 

ends at time 4.55. We compute 
2 0.004O = . Therefore, we add 

this overhead to re-compute frequency. 31τ  begins to execute 

with the frequency of 0.83. At time 6, it executes with the 

frequency of 0.49.  In addition, it executes with the frequency 

of 0.30 and 0.58 at time 8 and 10, respectively. Moreover, it 

executes with the frequency of 0.83 at time 12 and ends at time 

12.06. We compute 
3 0.113O = . 

12τ
 
executes with the 

frequency of 0.83 and ends 14.47. Then, we compute
 1 0O = . 

22τ  executes with the frequency of 0.86 at time 14.47. It 

executes with the frequency of 0.34 at time 16 and ends at time 

18. We compute
2 0.055O = . At time 20, 

13τ  executes with the 

frequency of 0.58 and ends at time 23.45. We compute 

1 0.024O = . At the same time, 23τ  executes with the frequency 

of 0.61. It executes with the frequency of 0.88 at time 24 and 

ends at time 25.89. We compute 2 0.03O = . 32τ  executes with 

the frequency of 0.84 at time 25.89. In addition, it executes with 

the frequency of 0.50 and 0.30 at time 26 and 28, respectively. 

At time 32, 
14τ  executes with the frequency of 0.59. In addition, 

it executes with the frequency of 0.84 and ends at time 34.98. 

We compute 
1 0.054O = . 

32τ
 
executes with the frequency of 

0.84 at time 34.98 and ends at time 37.02. We compute 

3 0.058O = . 
24τ  executes with the frequency of 0.88 and 0.53 

at time 37.02 and 38, respectively. At time 40, it executes with 

the frequency of 0.30 and ends at time 40.27. We compute 

2 0.062O = . 15τ
 
executes with the frequency of 0.58 at time 42 

and ends at time 45.45. We compute 
1 0.028O = . 

25τ
 
executes 

with the frequency of 0.61 at time 45.45 and ends at time 48.73. 

We compute
 2 0.003O = . 

The energy overhead of changing frequency is 0.05. The 

energy consumption of DFU while considering the overhead of 

changing frequency is 24.65. Therefore, the total energy 

consumption of DFU is 24.70. DFU can save energy up to 

23.15% and 18.91% compared with Algorithm A and 

Algorithm B, respectively.  

4) A real-world application  

In this section, we discuss the application of DFU in a 

real-world. Flight Management System (FMS) is an MC system 

in a real-world. FMS includes the localization and flight plan 

tasks (DO-178B level B and level C, where B corresponds to 

the HI criticality and C corresponds to the LO criticality) [32]. 

In fact, FMS includes seven HI tasks and four LO tasks. In 

addition, the tasks of FMS are also sporadic tasks with 

implicit-deadlines, which is consistent with the task model in 

this paper. Moreover, the processor for FMS only provides 

discrete frequencies. However, DFU assumes that the processor 

can provide continuous frequencies. If the processor for FMS 

does not provide frequency given by DFU, we can apply the 

next higher frequency or two adjacent frequencies to solve this 

problem. Therefore, DFU can easily apply to FMS.  

VI. SIMULATION EXPERIMENT 

We apply extensive simulation experiment to evaluate the 

effectiveness of our proposed approach. The simulation 

experiments are performed on a MC sporadic task scheduling 

simulator written by C language and based on the EDF policy. 

Three algorithms are implemented in the simulator. 

Algorithm A [8]. A static optimal solution algorithm. 

Algorithm B [9]. A dynamic solution algorithm. 

DFU. It can dynamically compute 
LOS  and 

HIS . In addition, 

it can exploit the time reservation for HI tasks in the LO mode.  

Based on the well-known MC task generation scheme in [3, 8, 

14]. The uniform distribution method is applied to generate a 

synthetic random task set. The synthetic random task set 

includes two LO tasks and two HI tasks [8]. The minimum 

inter-arrival separation of the jobs of 
iτ  (i.e.

iT ) can be 

randomly chosen within the range of [10,100] . ( )iC LO  is 

randomly chosen within the range of [1, ]iT . ( )iC HI  is equal to 

( )iC LO  for all LO tasks. ( )iC HI  is randomly chosen within 

the range of [ ( ), ]i iC LO T  for all HI tasks. The value of ( )LO

LOU Γ , 

( )
LO

HIU Γ , and ( )
HI

HIU Γ  does not exceed the given value by 

modifying ( )iC LO  and ( )iC HI . In addition, we generate 100 

synthetic random task sets and measure average energy 

consumption. Moreover, we set the simulation time to 
610  time 

units because different task sets have different hyper-periods. 

We assume that 0.1indP = .
max

dynamicP  is normalized to 1 and the θ  

is set to 0.2 in (2) [4]. In addition, we will analyze different 

static power situations affect our algorithm by modifying the 

value of θ . Note that we focus on the energy consumption of 

the algorithm in the LO mode. Moreover, the energy 
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consumption of Algorithm A is applied as baseline i.e. the 

energy consumption of other algorithm is normalized with 

Algorithm A.  

A. Effect of ( )
LO

LOU Γ  

( )
HI

HIU Γ  is fixed to 0.5 and the ratio of ( )
HI

HIU Γ  and ( )
LO

HIU Γ  

is set to 1.3. We vary ( )LO

LOU Γ  from 0.05 to 0.45, stepped by 0.5 

and investigate ( )
LO

LOU Γ  affecting on the energy consumption 

of the algorithm. The experimental result is shown in Fig.5. 

 

Fig.5. The effect of ( )LO

LOU Γ  

 

The normalized energy consumption of Algorithm B is not 

sensitive to ( )LO

LOU Γ  and the normalized
 
energy consumption 

of DFU is highly dependent on ( )
LO

LOU Γ  in Fig.5. 

The energy consumption of all algorithms is positively related 

to ( )
LO

LOU Γ . As ( )
LO

LOU Γ  increases, the energy consumption of 

Algorithm A and Algorithm B grows with similar magnitude, 

whereas DFU grows much slower. In addition, we normalize 

energy consumption with respect to the energy consumption of 

Algorithm A. Furthermore, the normalized energy 

consumption of DFU and Algorithm B is less than that of 

Algorithm A. DFU consumes 46.20% less energy than that of 

Algorithm B. 

B. Effect of ( )HI

HIU Γ  

( )LO

LOU Γ  is fixed to 0.3 and the ratio of ( )HI

HIU Γ  and ( )LO

HIU Γ  

is set to 1.3. We vary ( )
HI

HIU Γ  from 0.05 to 0.6, stepped by 0.5 

and investigate ( )HI

HIU Γ  affecting on the energy consumption 

of the algorithm. The experimental result is shown in Fig. 6. 

The normalized energy consumption of Algorithm B and 

DFU is sensitive to ( )
HI

HIU Γ  in Fig.6. As ( )
HI

HIU Γ increases, the 

energy consumption of Algorithm B and DFU decreases. This 

is because the ratio of ( )
HI

HIU Γ  and ( )
LO

HIU Γ  is fixed and the 

slack time will increase when ( )HI

HIU Γ  increases. Algorithm B 

and DFU can exploit this slack time to reduce processor 

frequency. In addition, the normalize energy consumption of 

DFU is lower than that of Algorithm B and Algorithm A. The 

reason is that DFU can dynamically update the utilization of Γ  

to dynamically reduce processor frequency. DFU consumes 

34.29% less energy than that of Algorithm B. 

 

Fig.6. The effect of ( )HI

HIU Γ  

C. Effect of the ratio of ( )
HI

HIU Γ  and ( )
LO

HIU Γ  

( )LO

LOU Γ  and ( )HI

HIU Γ  are fixed to 0.4 and 0.5, respectively. 

We vary the ratio of ( )
HI

HIU Γ  and ( )
LO

HIU Γ  from 1.1 to 1.9, 

stepped by 0.1 and investigate the ratio of ( )
HI

HIU Γ  and 

( )LO

HIU Γ  affecting on the energy consumption of the algorithm. 

The experimental result is shown in Fig. 7. 

 

Fig.7. The effect of the ratio of ( )HI

HIU Γ  and ( )LO

HIU Γ  

 

The normalized energy consumption of Algorithm B and 

DFU is sensitive to the ratio of ( )
HI

HIU Γ  and ( )
LO

HIU Γ  in Fig.7. 

As the ratio of ( )
HI

HIU Γ  and ( )
LO

HIU Γ increases, the normalized 

energy consumption of Algorithm B decreases. This is because 

( )
HI

HIU Γ  is fixed and ( )
LO

HIU Γ  decreases when the ratio of 

( )HI

HIU Γ  and ( )LO

HIU Γ  increases. Therefore, the execution time 

of tasks will decrease in the LO mode and Algorithm B can 

exploit slack time generated from HI tasks to dynamically 

reduce processor frequency. In addition, the normalized energy 

of Algorithm B increases when the ratio of ( )HI

HIU Γ  and 

( )
LO

HIU Γ  increases. The energy consumption of DFU decreases 

much slower than that of Algorithm A. In addition, we 
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normalize energy consumption with respect to the energy 

consumption of Algorithm A. Moreover, the dynamically 

utilization of Γ changes slowly, which leads to slowly 

changing of processor frequency. In short, DFU consumes 

61.51% less energy than that of Algorithm B. 

D. Effect of static power 

( )
LO

LOU Γ  and ( )
HI

HIU Γ  are fixed to 0.3 and 0.6, respectively. 

In addition, the ratio of ( )HI

HIU Γ  and ( )LO

HIU Γ  is fixed to 1.3. 

We vary the ratio of static power and dynamic power from 0.2 

to 0.55, stepped by 0.05 and investigate the ratio of static power 

and dynamic power affecting on the energy consumption of the 

algorithm. Moreover, the energy consumption is normalized 

with respect to Algorithm A when the ratio of static power and 

dynamic power is equal to 0.55. The experimental result is 

shown in Fig.8. 

 

Fig. 8. The effect of static power 

 
As shown in Fig.8, the normalized energy consumption of 

algorithms increases when the ratio of static power and 

dynamic power increases. The reason is that the execution time 

of tasks and processor frequency do not change. The energy 

consumption is determined by the execution time of tasks, 

processor frequency, and power. The power will increase when 

the ratio of static power and dynamic power increases. 

Therefore, the energy consumption will increase. In this case, 

DFU consumes 60.87% less energy than that of Algorithm B. 

E. Consider the overhead of changing frequency 

( )
HI

HIU Γ  is fixed to 0.5 and the ratio of ( )
HI

HIU Γ  and ( )
LO

HIU Γ  

is set to 1.3. We vary ( )
LO

LOU Γ  from 0.05 to 0.45, stepped by 0.5. 

In addition, the energy consumption of DFU is used as baseline. 

The energy consumption of DFU while considering the 

overhead of changing frequency is represented as DFUO in 

Fig.9. The experimental result is shown in Fig. 9. 

As shown in Fig.9, the normalized energy consumption of 

DFUO is higher than that of DFU. This is because DFUO 

considers the overhead of changing frequency. In addition, the 

DFUO has little added energy consumption compared with 

DFU. It means that the overhead of changing frequency has a 

small impact on the performance of DFU. In addition, the 

overhead of changing frequency is determined by the frequency 

of DFU. The frequency of DFU is determined by the utilization 

of tasks. When ( )
LO

LOU Γ  varies, the overhead of changing 

frequency also changes. All in all, DFUO has good energy 

saving performance compared with previous studies. 

 

Fig.9. Consider the overhead of changing frequency 

VII. CONCLUSION 

We focus on scheduling energy aware MC sporadic tasks. 

Firstly, we propose DFU. It based on EDF scheme can exploit 

the slack time generated from the HI task in the LO mode to 

reduce processor frequency. In addition, it also can 

dynamically update the utilization of Γ  to further reduce 

processor frequency. Secondly, we analyze the scheduling 

feasibility of DFU. Finally, the simulation experiments are 

conducted to evaluate the performance of DFU. The 

experimental results show that DFU has better energy saving 

effects than other algorithms. 

DFU assumes that the MC sporadic tasks are independent. 

We will focus on the dependent MC sporadic tasks in the future 

work. 
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