
Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Distributed learning of deep neural network over multiple agents

Otkrist Gupta∗, Ramesh Raskar
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA

A R T I C L E I N F O

Keywords:
Multi party computation
Deep learning
Distributed systems

A B S T R A C T

In domains such as health care and finance, shortage of labeled data and computational resources is a critical
issue while developing machine learning algorithms. To address the issue of labeled data scarcity in training and
deployment of neural network-based systems, we propose a new technique to train deep neural networks over
several data sources. Our method allows for deep neural networks to be trained using data from multiple entities
in a distributed fashion. We evaluate our algorithm on existing datasets and show that it obtains performance
which is similar to a regular neural network trained on a single machine. We further extend it to incorporate
semi-supervised learning when training with few labeled samples, and analyze any security concerns that may
arise. Our algorithm paves the way for distributed training of deep neural networks in data sensitive applications
when raw data may not be shared directly.

1. Introduction

Deep neural networks have become the new state of the art in
classification and prediction of high dimensional data such as images,
videos and bio-sensors. Emerging technologies in domains such as
biomedicine and health stand to benefit from building deep neural
networks for prediction and inference by automating the human in-
volvement and reducing the cost of operation. However, training of
deep neural nets can be extremely data intensive requiring preparation
of large scale datasets collected from multiple entities (Chervenak et al.,
2000; Chuang and Sirbu, 2000). A deep neural network typically con-
tains millions of parameters and requires tremendous computing power
for training, making it difficult for individual data repositories to train
them.

Sufficiently deep neural architectures needing large super-
computing resources and engineering oversight may be required for
optimal accuracy in real world applications. Furthermore, application
of deep learning to such domains can sometimes be challenging because
of privacy and ethical issues associated with sharing of de-anonymized
data. While a lot of such data entities have vested interest in developing
new deep learning algorithms, they might also be obligated to keep
their user data private, making it even more challenging to use this data
while building machine learning pipelines. In this paper, we attempt to
solve these problems by proposing methods that enable training of
neural networks using multiple data sources and a single super-
computing resource.

2. Related work

Deep neural networks have proven to be an effective tool to classify
and segment high dimensional data such as images (Krizhevsky et al.,
2012), audio and videos (Karpathy and Fei-Fei, 2015). Deep models can
be several hundreds of layers deep (He et al., 2016), and can have
millions of parameters requiring large amounts of computational re-
sources, creating the need for research in distributed training meth-
odologies (Dean et al., 2012). Interesting techniques include distributed
gradient optimization (Mcdonald et al., 2009; Zinkevich et al., 2010),
online learning with delayed updates (Langford et al., 2009) and
hashing and simplification of kernels (Shi et al., 2009). Such techniques
can be utilized to train very large scale deep neural networks spanning
several machines (Agarwal and Duchi, 2011) or to efficiently utilize
several GPUs on a single machine (Agarwal et al., 2014). In this paper
we propose a technique for distributed computing combining data from
several different sources.

Secure computation continues to be a challenging problem in
computer science (Sood, 2012). One category of solutions to this pro-
blem involve adopting oblivious transfer protocols to perform secure
dot product over multiple entities in polynomial time (Avidan and
Butman, 2006). While this method is secure, it is somewhat impractical
when considering large scale datasets because of resource require-
ments. A more practical approach proposed in Avidan and Butman
(2006) involves sharing only SIFT and HOG features instead of the
actual raw data. However, as shown in (Dosovitskiy and Brox), such
feature vectors can be inverted very accurately using prior knowledge

https://doi.org/10.1016/j.jnca.2018.05.003
Received 11 October 2017; Received in revised form 30 April 2018; Accepted 6 May 2018

∗ Corresponding author.
E-mail address: otkrist@mit.edu (O. Gupta).

Journal of Network and Computer Applications 116 (2018) 1–8

1084-8045/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/10848045
https://www.elsevier.com/locate/jnca
https://doi.org/10.1016/j.jnca.2018.05.003
https://doi.org/10.1016/j.jnca.2018.05.003
mailto:otkrist@mit.edu
https://doi.org/10.1016/j.jnca.2018.05.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2018.05.003&domain=pdf

of the methods used to create them. Neural networks have been shown
to be extremely robust to addition of noise and their denoising and
reconstruction properties make it difficult to compute them securely
(Vincent et al., 2010). Neural networks have also been shown to be able
to recover an entire image from only a partial input (Pathak et al.),
rendering simple obfuscation methods inert.

Widespread application of neural networks in sensitive areas such as
finance and health, has created a need to develop methods for both
distributed and secure training (Secretan et al., 2007; Chonka et al.,
2011; Wu et al., 2007) and classification in neural networks. Under
distributed and secure processing paradigms, the owner of the neural
network doesn't have access to the actual raw data used to train the
neural network (Barni et al., 2006). This also includes secure paradigms
in cloud computing (Karam et al., 2012; Subashini and Kavitha, 2011),
virtualization (Mackay et al., 2012) and service oriented architectures
(Baker et al., 2015). The secure paradigms may also extend to the
neural activations and (hyper)parameters. Such algorithms form a
subset inside the broader realm of multi-party protocol problems in-
volving secure computation over several parties (Goldreich et al., 1987;
Yao, 1986). Some interesting solutions include using Ada-boost to
jointly train classifier ensembles (Zhang and Zhong, 2013), using
random rotation perturbations for homomorphic pseudo-encryption
(Chen and Liu) and applying homomorphic cryptosystem to perform
secure computation (Orlandi et al., 2007).

3. Theory

In this paper we propose new techniques that can be used to train
deep neural networks over multiple data sources while mitigating the
need to share raw labeled data directly. Specifically we address the
problem of training a deep neural network over several data entities
(Alice(s)) and one supercomputing resource (Bob). We aim at solving
this problem while satisfying the following requirements:

1. A single data entity (Alice) doesn't need to share the data with Bob
or other data resources.

2. The supercomputing resource (Bob) wants control over the archi-
tecture of the Neural Network(s)

3. Bob also keeps a part of network parameters required for inference.

In upcoming sections we will show how to train neural networks
between multiple data entities (Alice(s)) and a supercomputing re-
source (Bob). Techniques will include methods which encode data into
a different space and transmit it to train a deep neural network. We will
further explore how a third-party can use this neural network to classify
and perform inference. Our algorithm can be run using one or multiple
data entities, and can be run in peer-to-peer or centralized mode. Please
see Fig. 1 for the schematic depiction of algorithm modalities.

3.1. Distributed training over single entity

We will start by describing the algorithm in its simplest form which
considers training a neural network using data from a single entity and
supercomputing resource. Let us define a deep neural network as a
function F, topologically describable using a sequence of layers {L0, L1,
…LN}. For a given input (data), the output of this function is given by F
(data) which is computed by sequential application of layers F(data)←
LN(LN−1…(L0(data))).

Let Gloss(output, label) denote the customized loss function used for
computing gradients for the final layer. Gradients can be back-
propagated over each layer to generate gradients of previous layers and
to update the current layer. We will use L gradient()i

T to denote the
process of backpropagation over one layer and FT(gradient) to denote
backpropagation over the entire Neural Network. Similar to forward
propagation, backpropagation on the entire neural network is com-
prised of sequential backward passes FT

← …gradient L L L gradient() ((()))T T
N
T

1 2 . Please note that the backward
passes will require activations after the forward pass on individual
perceptrons.

Finally, Send(X, Y) represents the process of sending data X over the
network to entity Y· In the beginning, Alice and Bob initialize their
parameters randomly. Alice then iterates over its dataset and transmits
encoded representations to Bob. Bob then computes losses and gra-
dients and sends the gradients back to Alice. Algorithm 1 describes how
to train a deep neural classifier using a single data source.

3.1.1. Correctness
Here we analyze if training using our distributed algorithm pro-

duces the same results as a normal training procedure. Under a normal
training procedure we would first compute forward pass output← F
(data) followed by computation of loss gradients gradients←G(output,
label). These gradients will be backpropagated to refresh weights F′←
FT(gradients).

Algorithm 1
Distributed Neural Network training over 2 agents.

1: Initialize:
←ϕ Random Initializer (Xavier/Gaussian)

←F L L L{ , , ... }a n0 1

← + +F L L L{ , , ... }b n n N1 2

2: Alice randomly initializes the weights Fa using ϕ
3: Bob randomly initializes the weights of Fb using ϕ
4: whileAlice has new data to train on do
5: Alice uses standard forward propagation on data

▷ ←X F data()a

6: Alice sends nth layer output X and label to Bob
▷ Send X label Bob((,),).

7: Bob propagates incoming features on its network
▷ ←output F X()b

8: Bob generates gradients for its final layer
▷ ← ′gradient G output label(,)

9: Bob backpropagates the error in Fb until +Ln 1

▷ ′ ′ ←F gradient F gradient, ()b b
T

10: Bob sends gradient of Ln to Alice
▷ ′Send gradient Alice(,)

11: Alice backpropagates gradients received
▷ ′ ← ′F F gradient, _ ()a a

T

12: end while

Since forward propagation involves sequential application of in-
dividual layers we concur that F(data) is same as Fb(Fa(data)). Therefore
the process of sequential computation and transmission followed by
computation of remaining layers is functionally identical to application
of all layers at once. Similarly because of the chain rule in differ-
entiation, backpropagating FT(gradients) is functionally identical to se-
quential application of F F gradients(())a

T
b
T . Therefore, we can conclude

that our algorithm will produce identical results to a normal training
procedure.

Algorithm 2
Distributed Neural Network over N + 1 agents.

1: Initialize:
←ϕ Random Initializer (Xavier/Gaussian)

←F L L L, , ...a n,1 0 1

← + +F L L L, , ...b n n N1 2

2: Alice1 randomly initializes the weights of Fa,1 using ϕ
3: Bob randomly initializes the weights of Fb using ϕ
4: Bob sets Alice1 as last trained

(continued on next page)

O. Gupta, R. Raskar Journal of Network and Computer Applications 116 (2018) 1–8

2

Algorithm 2 (continued)

5: while Bob waits for next Alicej to send data do
6: Alicej requests Bob for last Aliceo that trained
7: Alicej updates its weights

▷ ←F Fa j a o, ,

8: Alicej uses standard forward propagation on data
▷ ←X F data()a j,

9: Alicej sends nth layer output and label to Bob
▷ Send X label Bob((,),).

10: Bob propagates incoming features on its network
▷ ←output F X()b

11: Bob generates gradients for its final layer
▷ ← ′gradient G output label(,)

12: Bob backpropagates the error in Fb until +Ln 1

▷ ′ ′ ←F gradient F gradient, ()b b
T

13: Bob sends gradient of Ln to Alicej

▷ ′Send gradient Alice(,)j
14: Alicej backpropagates the gradients it received

▷ ′ ← ′F F gradient, _ ()a j a j
T

, ,

15: Bob sets Alicej as last trained
16: end while

3.2. Distributed training over multiple entities

Here we demonstrate how to extend the algorithm described in 3.1
to train using multiple data entities. We will use the same mathematical
notations as used in 3.1 when defining neural network forward and
backward propagation. In Algorithm 2 we demonstrate how to extend
our algorithm when there are N data entities, each of them is denoted
by Alicei.

In Algorithm 2 at the first initialization step, Bob sends Alice1 to-
pological description of first N layers. Alice and Bob use standard
system level libraries for random initialization of their parameters. Bob
then sets Alice1 as the last agent used for training and begins training
using data from Alice1. We modify 1 and add a step which uses data
from multiple entities in a round robin fashion, allowing for a dis-
tributed learning framework. However, for consistency, Alicej may be
required to update weights before they begin their training. We solve
this by providing two separate methodologies involving peer-to-peer

and centralized configurations. In the centralized mode, Alice uploads
an encrypted weights file to either Bob or a third-party server. When a
new Alice wishes to train, it downloads and decrypts these weights. In
peer-to-peer mode, Bob sends the last trained Alice's address to the
current training party and Alice uses this to connect and download the
encrypted weights. The implementation details for both methods can be
seen in Supplementary Material. Once the weights are updated, Alicej
continues its training. Since the same weights are initialized in both
centralized and peer-to-peer mode, the final result of training is iden-
tical in both modalities.

3.2.1. Correctness
We analyze if training using our algorithm produces results which

are identical when training with all the data combined on a single
machine (under the assumption that the data arriving at multiple en-
tities preserves the order and random weights use same initialization).
The algorithm correctness stems from the fact that Bob and at least one
of Aliceo have identical neural network parameters to regular training
at iterationk. We use inductive techniques to prove that this is indeed
the case.

Lemma 1. The neural network being trained at iterationk is identical to the
neural network if it was trained by just one entity.

Base Case: One of Alice1…N has the correct weights at beginning of
first iteration.

Proof. Alice1 randomly initialized weights and Bob used these weights
during first iteration. We assume that this initialization is consistent
when training with single entity. In case another Alicej attempts to
train, it will refresh the weights to correct value.

Recursive Case: Assertion: If Alicej has correct weights at begin-
ning of iterationi it will have correct weights at beginning of iteration
i + 1.

Proof. Alicej performs backpropagation as the final step in iteration i.
Since this backpropagation is functionally equivalent to
backpropagation applied over the entire neural network at once,
Alicej continues to have correct parameters at the end of one training
iteration. (FT(gradient) is functionally identical to sequential application
of F F data(())a j

T
b
T

, , as discussed in 3.1.1).

Fig. 1. Two modalities of our algorithm: centralized mode (1a) and peer-to-peer mode (1b).

O. Gupta, R. Raskar Journal of Network and Computer Applications 116 (2018) 1–8

3

3.3. Semi-supervised application

In this section we describe how to modify the distributed neural
network algorithm to incorporate semi-supervised learning and gen-
erative losses when training with fewer data points. In situations with
fewer labeled data-samples, a reasonable approach includes learning
hierarchical representations using unsupervised learning (Shin et al.,
2013). Compressed representations generated using unsupervised
learning and autoencoders can be used directly for classification (Coates
et al., 2012). Additionally, we can combine the losses of generative and
predictive segments to perform semi supervised learning, adding a
regularization component while training on fewer samples (Weston
et al., 2012).

Over here we demonstrate how we can train autoencoders and semi-
supervised learners using a modified version of Algorithm 1. Such un-
supervised learning methods can be extremely helpful when training
with small amounts of labeled data. We assume that out of n layers for
Alice, the first m layers are encoder and the remaining n−m layers
belong to its decoder. Fe,i denotes the forward propagation over encoder
(computed by sequential application Lm(Lm−1…(L0(data)))). Fd,i de-
notes application of decoder layers. During forward propagation Alice
propagates data through all n layers and sends output from mth layer to
Bob. Bob propagates the output tensor from Alice through Ln…N and
computes the classifier loss (logistic regression).

Let loss define the logistic regression loss in the predictive segment
of the neural network (last N− n layers owned by Bob), and let lossenc
define the contrastive loss in autoencoder (completely owned by Alice
(s)). Bob can compute loss using its softmax layer and can back-pro-
pagate gradients computed using this loss to layer Ln+1 giving gradients
from classifier network [′ ←gradient F gradient()b

T]. Alicei can compute
the autoencoder gradients and can backpropagate it through its decoder
network [F gradient()d i

T
enc,]. We can facilitate semi-supervised learning

by combining a weighted sum of two losses. The weight α is an added
hyperparameter which can be tuned during training.

← + ∗η F gradient α F gradient() ()b
T

d i
T

enc, (1)

Algorithm 3
Distributed Neural Network with an Autoencoder over N + 1 agents.

1: Initialize:
←ϕ Random Initializer (Xavier/Gaussian)

←F L L L, , ...e m,1 0 1

← +F L L L, , ...d m m n,1 1

← + +F L L, , ...b n n1 2

2: Alice1 randomly initializes the weights of Fa,1 using ϕ
3: Bob randomly initializes the weights of Fb using ϕ
4: Alice1 transmits weights of Fa,1 to Alice N2...

5: while Bob waits for next feature vector from Alicej do
6: Alicej requests Bob for last Aliceo that trained
7: Alicej updates its weights

▷ ←F Fa j a o, ,

8: Alicej uses standard forward propagation on data
▷ ←X F data()m e j,

▷ ←X F X()d j m,

9: Alicej sends mth layer output and label to Bob
▷ Send X label Bob((,),)m .

10: Bob propagates incoming features on its network Fb

▷ ←output F X()b m .
11: Bob generates gradient for its final layer

▷ ← ′gradient G output label(,)
12:

Algorithm 3 (continued)

Bob backpropagates the error in Fb until +Ln 1

▷ ′ ′ ←F gradient F gradient, ()b b
T

13: Bob sends gradient for Ln to Alicej

▷ ′Send gradient Alice(,)j
14: Alicej generates autoencoder gradient for its decoder

▷ ′ ′ =F gradient F X, ()d j enc d j
T

, ,

15: Alicej backpropagates combined gradients

▷ ← ′ ′F F η gradient gradient, _ ((,))a a
T

enc

16: Bob sets Alicej as last trained
17: end while

After the initialization steps, Alice propagates its data through its
network and sends output from the encoder part to Bob. Bob does a
complete forward and backward to send gradients to Alice. Alice then
combines losses from its decoder network with gradients received from
Bob and uses them to perform backpropagation (please see Algorithm 3
for detailed description).

3.4. Online learning

An additional advantage of using our algorithm is that the training
can be performed in an online fashion by providing Bob output of
forward propagation whenever there is new annotated data. In the
beginning instead of transmitting the entire neural net, Alicei can in-
itialize the weights randomly using a seed and just send the seed to
Alice1…N preventing further network overhead. When Alice is requested
for weights in peer-to-peer mode, it can simply share the weight updates,
which it adds to its parameters during the course of training. The
combined value of weight updates can be computed by subtracting
weights at beginning of training from current weights. For security,
Alice can also upload the encrypted weight updates to a centralized
weight server, making it harder to reverse engineer actual weights
when using man-in-middle attack. Weights can be refreshed by Alice by
combining its initial weights with subsequent weight updates down-
loaded from the centralized weight server (or Alice(s) depending on
mode). To facilitate centralized modality, we can modify step 6 of
Algorithm 2, replacing it with a request to download encrypted weights
from weight server. Once training is over Alicej can upload the new
encrypted weights to the weight server (please refer to step 15 in
Algorithm 2).

3.5. Analyzing security concerns

While a rigorous information theoretical analysis of security is be-
yond the scope of this paper, over here we sketch out a simple ex-
planation of why reconstructing the data sent by Alice is extremely
challenging. The algorithm security lies in whether Bob can invert
parameters (Fa) used by Alice during the forward propagation. Bob can
indeed build a decoder for compressed representations transmitted by
Alice, but it requires Alice revealing the current parameters of its sec-
tion of neural network (Dosovitskiy and Brox).

In this section we make an argument that Bob cannot discover the
parameters used by Alice as long as its layers (denoted by Fa) contain at
least one fully connected layer. We will use the word “configuration” to
denote an isomorphic change in network topology which leads to
functionally identical neural network.

Lemma 2. Let layer M be a fully connected layer containing N outputs then
layer M has at least N! functionally equivalent “configurations”.

Proof. We construct a layer M and transpose N output neurons. The
output of neurons is reordered without changing weights or affecting
learning in any way. Since there are N! possible orderings of these

O. Gupta, R. Raskar Journal of Network and Computer Applications 116 (2018) 1–8

4

neurons at least N! unique configurations are possible depending on how
the weights were initialized.

Bob will have to go through at least N! possible configurations to
invert the transformation applied by Alice. Since N! > (N∕2)N > eN

this will require an exponential amount of time in a layer of size N. For
example if the fully connected layer has 4096 neurons and each con-
figuration could be tested in a second, it would take Bob more than the
current age of the universe to figure out parameters used by Alice.

3.6. Training without label propagation

While the algorithm we just described doesn't require sharing raw
data, it still does involve sharing labels. We can mitigate this problem
by presenting a simple adjustment to the training framework. In this
topological modification, we wrap the network around at its end layers
and send those back to Alice (see Fig. 2). While Bob still retains ma-
jority of its layers, it lets Alice generate the gradients from the end
layers and uses them for backpropagation over its own network. We can
use a similar argument as one used in Lemma 1 to prove that this
method will still work after the layers have been wrapped around.
Please see Fig. 2 for a schematic description of our training metho-
dology without label sharing.

4. Datasets and implementation

We use standard json communication libraries for asynchronous
RPC for implementation. On top of those, we implement a custom
protocol for training once a secure connection is established using SSL.
Our protocol defines several network primitives (implemented as re-
mote functions) which we broadly divide in 3 parts (1) Training re-
quest, (2) Tensor transmission and (3) Weight update. Please refer to
appendix for a complete list of network primitives. We describe these
three network primitives categories in our Supplementary Material.

4.1. Mixed NIST

Mixed NIST (MNIST) database (LeCun et al., 1989) contains hand-
written digits sampled from postal codes and is a subset of a much
larger dataset available from the National Institute Science and Tech-
nology. MNIST comprises of a total of 70,000 samples divided into
60,000 training samples and 10,000 testing samples. Original binary
images were reformatted and spatially normalized to fit in a 20×20
bounding box. Anti-aliasing techniques were used to convert black and
white (bilevel) images to grey scale images. Finally the digits were
placed in a 28× 28 grid, by computing the center of mass of the pixels
and shifting and superimposing images in the center of a 28×28
image.

4.2. Canadian Institute For Advanced Research

The Canadian Institute For Advanced Research (CIFAR-10) dataset
is a labeled subset of tiny images dataset (containing 80 million

images). It is composed of 60,000, 32×32 color images distributed
over 10 different class labels. The dataset consists of 50,000 training
samples and 10,000 testing images. Images are uniformly distributed
over 10 classes with training batches containing exactly 6000 images
for each class. The classes are mutually exclusive and there are no se-
mantic overlaps between the images coming from different labels. We
normalized the images using GCA whitening and applied global mean
subtraction before training. The same dataset also includes a 100 class
variation referred to as CIFAR-100.

4.3. ILSVRC (ImageNet) 2012

This dataset includes approximately 1.2 million images labeled with
the presence or absence of 1000 object categories. It also includes
150,000 images for validation and testing purposes. The 1000 object
categories are a subset of a larger dataset (ImageNet), which includes
10 million images spanning 10,000 object categories. The object cate-
gories may be internal or leaf nodes but do not overlap. The dataset
comprises images with varying sizes which are resized to 256×256
and mean subtracted before training.

5. Experiments and applications

We implement our algorithm and protocol using python bindings
for caffe (Jia et al.). We test our implementation on datasets of various
sizes (50 K–1M) and classes (10, 100 or 1000 classes). We demonstrate
that our method works across a range of different topologies and ex-
perimentally verify identical results when training over multiple agents.
All datasets were trained for an equal number of epochs for fair eva-
luation.

In 3.2.1 we show why our algorithm should give results identical to
a normal training procedure. We experimentally verify our method's
correctness by implementing it and training it on a wide array of da-
tasets and topologies including MNIST, ILSVRC 12 and CIFAR 10.
Table 1 lists datasets and topologies combined with their test ac-
curacies. Test accuracies are computed by comparing the number of
correctly labeled samples to the total number of test data points. As
shown in Table 1, the network converges to similar accuracies when
training over several agents in a distributed fashion.

Fig. 2. Figure (2a) shows the normal training procedure while figure (2b) demonstrates how to train without transmitting labels, by wrapping the network around at
its last layers.

Table 1
Accuracies when training using multi-agent algorithm vs when training on a
single machine.

Dataset Topology Accuracy
(Single Agent)

Accuracy using
our method

Epochs

MNIST LeNet (LeCun et al.,
1989)

99.18% 99.20% 50

CIFAR 10 VGG (Simonyan and
Zisserman)

92.45% 92.43% 200

CIFAR 100 VGG (Simonyan and
Zisserman)

66.47% 66.59% 200

ILSVRC 12 AlexNet (Krizhevsky
et al., 2012)

57.1% 57.1% 100

O. Gupta, R. Raskar Journal of Network and Computer Applications 116 (2018) 1–8

5

5.1. Comparison with existing methods

We compare our method against the modern state-of-the-art
methods including large-batch global SGD (Chen et al.) and federated
averaging approaches (McMahan et al.). We perform several different
comparisons using the best hyperparameter selections for federated
averaging and federated SGD. We compare client side computational
costs when using deep models and demonstrate significantly lower
computational burden on clients when training using our algorithm (see
Fig. 3). We also analyze the transmission cost of state-of-the-art deep
networks including ResNet and VGG on CIFAR-10 and CIFAR-100. We
demonstrate higher validation accuracy and faster convergence when
considering a large number of clients.

We demonstrate significant reductions in computation and com-
munication bandwidth when comparing against federated SGD and
federated averaging (McMahan et al.). Reduced computational re-
quirements can be explained by the fact that while federated averaging
requires forward pass and gradient computation for the entire neural
network on the client, our method requires these computations for only
the first few layers, significantly reducing the computational require-
ments (as shown in Fig. 3). Even though federated averaging requires a
lot fewer iterations than large-scale SGD, it is still outperformed by our
method requiring only a fraction of computations on the client.

Reduction in communication bandwidth can be attributed to the
fact that federated averaging involves transmitting the gradient updates
for the entire neural network from all clients to a central server, ac-
companied by transmission of updated weights to every single client
(please refer to Fig. 4). While the federated averaging algorithm is able
to converge in fewer transmission cycles, each transmission cycle re-
quires huge amounts of data download and upload to the client and
server. The split neural network algorithm reduces data transmitted by
restricting the size of the client neural network to only the first few
layers, thereby greatly reducing the total amount of data transmitted
during training. Additionally, federated averaging fails to achieve op-
timal accuracy for higher numbers of clients since general non-convex
optimization averaging models in parameter space could produce an
arbitrarily bad model (phenomenon described in (Goodfellow et al.)).

5.2. Impact of amount of data on final accuracy

An important benefit of our method lies in its ability to combine
multiple data-sources. When using deep neural networks, larger data-
sets have been shown to perform significantly better than smaller

datasets. We experimentally demonstrate the benefits of pooling several
agents by uniformly dividing dataset over 10 agents and training
topologies using 1, 5 or 10 agents. We observe that adding more agents
causes accuracy to improve significantly. Please see Table 2 for analysis
on how accuracy will improve as we add more data sources in real
world scenarios.

6. Conclusions and future work

In this paper we present new methods to train deep neural networks
over several data repositories. We also present algorithms on how to
train neural networks without revealing actual raw data while reducing
computational requirements on individual data sources. We describe
how to modify this algorithm to work in semi-supervised modalities,
greatly reducing number of labeled samples required for training. We
provide mathematical guarantees for correctness of our algorithm.

We devise a new protocol for easy implementation of our dis-
tributed training algorithm. We use popular computer vision datasets
such as CIFAR-10 and ILSVRC12 for performance validation and show
that our algorithm produces identical results to standard training pro-
cedures. We also show how this algorithm can be beneficial in low data
scenarios by combining data from several resources. Such a method can
be beneficial in training using proprietary data sources when data
sharing is not possible. It can also be of value in areas such as biome-
dical imaging, when training deep neural network without revealing
personal details of patients and minimizing the computation resources
required on devices.

In this paper we describe a method to train a single network to-
pology over several data repositories and a computational resource. A
reasonable extension to this approach can be to train an ensemble of
classifiers by transmitting forward and backward tensors for all classi-
fiers every iteration. A deep neural network classifier ensemble can
comprise several individual deep neural network topologies which
perform classification. The network topologies are trained individually
by computing forward and backward functions for each neural network,
and during the testing phase the results are combined using majority
vote to produce classification. We can train such an ensemble by gen-
erating separate forward and backward propagation tensors for each
neural network and transmitting them during each training iteration.
This is equivalent to training individual networks one by one, but it
saves time by combining iterations of various networks together.
Ensemble classifiers have also been shown to be more secure against
network copy attacks and have also been shown to perform better in

Fig. 3. Comparison of client side computational cost of our method against existing state of the art methods.

O. Gupta, R. Raskar Journal of Network and Computer Applications 116 (2018) 1–8

6

real world applications (Granitto et al., 2005).
In future work, a learned neural network could be shared using

student-teacher methods for transferring information learned by neural
network (Papernot et al.). After the training phases are over, Alice and
Bob can use any publicly available dataset to train secondary (student)
neural network using outputs from the primary (teacher) neural net-
work. Alice can propagate the same training sample from the public
dataset through the layers from the previously trained network and Bob
can propagate them through its network. Bob can use the output of its
layers to train the student network by doing forward-backward for the
same data sample. This way, knowledge from the distributed trained
network can be transferred to another network which can be shared for
public use. Such algorithms can help in introducing deep learning in
several areas such as health, products and finance where user data is an
expensive commodity and needs to remain anonymized.

Tor like layer-by-layer computation could allow for training this
network over multiple nodes with each node carrying only a few layers.
Such a method could help protect not just the data but the identity of
the person sharing the data and performing classification. In Tor like
setup, additional entities Eve0…M are added which do not have access to
data or complete network topology. Each Eve is provided with a few
network layers ← …+F L L L,k

eve
q q r1 . During forward propagation Alice

computes Fa and passes it to Eve0, which then passes it to Eve1 and so
on until it reaches EveM. EveM is analogous to the exit node in Tor
network and it passes the tensor to Bob. Similarly, when back-
propagating, Bob computes loss and sends it to EveM, which sends it to
EveM−1 and so on until it reaches Eve0 and then Alice. The onion like
organization of network layers can be used to keep the identity of Alice
confidential.

We can also apply our algorithm on not just classification tasks but
also on regression and segmentation tasks. We can also use this over
LSTMs and Recurrent Neural Networks. Such neural networks can be

easily tackled by using a different loss function (euclidean) on Bob's
side when generating gradients.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.
doi.org/10.1016/j.jnca.2018.05.003.

References

Agarwal, A., Duchi, J.C., 2011. Distributed delayed stochastic optimization. In: Advances
in Neural Information Processing Systems, pp. 873–881.

Agarwal, A., Chapelle, O., Dudík, M., Langford, J., 2014. A reliable effective terascale
linear learning system. J. Mach. Learn. Res. 15 (1), 1111–1133.

Avidan, S., Butman, M., 2006. Blind vision. In: European Conference on Computer Vision,
pp. 1–13.

Baker, T., Mackay, M., Shaheed, A., Aldawsari, B., 2015. Security-oriented cloud platform
for soa-based scada. In: Cluster, Cloud and Grid Computing (CCGrid), 2015 15th
IEEE/ACM International Symposium on. IEEE, pp. 961–970.

Barni, M., Orlandi, C., Piva, A., 2006. A privacy-preserving protocol for neural-network-
based computation. In: Proceedings of the 8th Workshop on Multimedia and Security,
pp. 146–151.

Chen, K., Liu, L., A Random Rotation Perturbation Approach to Privacy Preserving Data
Classification.

Chen, J., Monga, R., Bengio, S., Jozefowicz, R., Revisiting Distributed Synchronous Sgd,
arXiv preprint arXiv:1604.00981.

Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S., 2000. The data grid:
towards an architecture for the distributed management and analysis of large sci-
entific datasets. J. Netw. Comput. Appl. 23 (3), 187–200.

Chonka, A., Xiang, Y., Zhou, W., Bonti, A., 2011. Cloud security defence to protect cloud
computing against http-dos and xml-dos attacks. J. Netw. Comput. Appl. 34 (4),
1097–1107.

Chuang, J.C.-I., Sirbu, M.A., 2000. Distributed network storage service with quality-of-
service guarantees. J. Netw. Comput. Appl. 23 (3), 163–185.

Coates, A., Karpathy, A., Ng, A.Y., 2012. Emergence of object-selective features in un-
supervised feature learning. In: Advances in Neural Information Processing Systems,
pp. 2681–2689.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker, P.,
Yang, K., Le, Q.V., et al., 2012. Large scale distributed deep networks. In: Advances in
Neural Information Processing Systems, pp. 1223–1231.

Dosovitskiy, A., Brox, T., Inverting Visual Representations with Convolutional Networks,
arXiv preprint arXiv:1506.02753.

Goldreich, O., Micali, S., Wigderson, A., 1987. How to play any mental game. In:
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp.
218–229.

Goodfellow, I.J., Vinyals, O., Saxe, A.M., Qualitatively Characterizing Neural Network
Optimization Problems, arXiv preprint arXiv:1412.6544.

Granitto, P.M., Verdes, P.F., Ceccatto, H.A., 2005. Neural network ensembles: evaluation
of aggregation algorithms. Artif. Intell. 163 (2), 139–162.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770–778.

Fig. 4. Comparison of data transmission cost of our method against existing state of the art methods.

Table 2
Comparison on how accuracy improves as more data is added when training.

Dataset Accuracy using 1
agent (10%)

Accuracy using 5
agents (50% of data)

Accuracy using all
agents

MNIST 97.54 98.93 99.20
CIFAR 10 72.53 89.05 92.45
CIFAR 100 36.03 59.51 66.59
ILSVRC 12 27.1 56.3* 57.1

O. Gupta, R. Raskar Journal of Network and Computer Applications 116 (2018) 1–8

7

http://dx.doi.org/10.1016/j.jnca.2018.05.003
http://dx.doi.org/10.1016/j.jnca.2018.05.003
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref1
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref1
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref2
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref2
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref3
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref3
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref4
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref4
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref4
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref5
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref5
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref5
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref8
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref8
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref8
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref9
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref9
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref9
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref10
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref10
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref11
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref11
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref11
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref12
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref12
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref12
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref14
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref14
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref14
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref16
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref16
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref17
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref17
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref17

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,
Darrell, T., Caffe: Convolutional Architecture for Fast Feature Embedding, arXiv
preprint arXiv:1408.5093.

Karam, Y., Baker, T., Taleb-Bendiab, A., 2012. Security support for intention driven
elastic cloud computing. In: Computer Modeling and Simulation (EMS), 2012 Sixth
UKSim/AMSS European Symposium on. IEEE, pp. 67–73.

Karpathy, A., Fei-Fei, L., 2015. Deep visual-semantic alignments for generating image
descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3128–3137.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems,
pp. 1097–1105.

Langford, J., Smola, A.J., Zinkevich, M., 2009. Slow learners are fast. Adv. Neural Inf.
Process. Syst. 22, 2331–2339.

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel,
L.D., 1989. Backpropagation applied to handwritten zip code recognition. Neural
Comput. 1 (4), 541–551.

Mackay, M., Baker, T., Al-Yasiri, A., 2012. Security-oriented cloud computing platform
for critical infrastructures. Comput. Law Secur. Rep. 28 (6), 679–686.

Mcdonald, R., Mohri, M., Silberman, N., Walker, D., Mann, G.S., 2009. Efficient large-
scale distributed training of conditional maximum entropy models. In: Advances in
Neural Information Processing Systems, pp. 1231–1239.

McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al., Communication-efficient
Learning of Deep Networks from Decentralized Data, arXiv preprint arXiv:1602.
05629.

Orlandi, C., Piva, A., Barni, M., 2007. Oblivious neural network computing via homo-
morphic encryption. EURASIP J. Inf. Secur. 2007, 18.

Papernot, N., Abadi, M., Erlingsson, Ú., Goodfellow, I., Talwar, K., Semi-supervised
Knowledge Transfer for Deep Learning from Private Training Data, arXiv preprint
arXiv:1610.05755.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A., Context Encoders:
Feature Learning by Inpainting, arXiv preprint arXiv:1604.07379.

Secretan, J., Georgiopoulos, M., Castro, J., 2007. A privacy preserving probabilistic
neural network for horizontally partitioned databases. In: 2007 International Joint
Conference on Neural Networks, pp. 1554–1559.

Shi, Q., Petterson, J., Dror, G., Langford, J., Strehl, A.L., Smola, A.J., Vishwanathan, S.,
2009. Hash kernels. In: International Conference on Artificial Intelligence and
Statistics, pp. 496–503.

Shin, H.-C., Orton, M.R., Collins, D.J., Doran, S.J., Leach, M.O., 2013. Stacked auto-
encoders for unsupervised feature learning and multiple organ detection in a pilot
study using 4d patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35 (8),
1930–1943.

Simonyan, K., Zisserman, A., Very Deep Convolutional Networks for Large-scale Image
Recognition, arXiv preprint arXiv:1409.1556.

Sood, S.K., 2012. A combined approach to ensure data security in cloud computing. J.
Netw. Comput. Appl. 35 (6), 1831–1838.

Subashini, S., Kavitha, V., 2011. A survey on security issues in service delivery models of
cloud computing. J. Netw. Comput. Appl. 34 (1), 1–11.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., 2010. Stacked denoising

autoencoders: learning useful representations in a deep network with a local de-
noising criterion. J. Mach. Learn. Res. 11, 3371–3408 (Dec).

Weston, J., Ratle, F., Mobahi, H., Collobert, R., 2012. Deep learning via semi-supervised
embedding. In: Neural Networks: Tricks of the Trade. Springer, pp. 639–655.

Wu, B., Wu, J., Fernandez, E.B., Ilyas, M., Magliveras, S., 2007. Secure and efficient key
management in mobile ad hoc networks. J. Netw. Comput. Appl. 30 (3), 937–954.

Yao, A.C.-C., 1986. How to generate and exchange secrets. In: Foundations of Computer
Science, 1986., 27th Annual Symposium on, pp. 162–167.

Zhang, Y., Zhong, S., 2013. A privacy-preserving algorithm for distributed training of
neural network ensembles. Neural Comput. Appl. 22 (1), 269–282.

Zinkevich, M., Weimer, M., Li, L., Smola, A.J., 2010. Parallelized stochastic gradient
descent. In: Advances in Neural Information Processing Systems, pp. 2595–2603.

Otkrist Gupta is a Ph.D. candidate at MIT Media Lab. He
works at camera culture, his research is focused on in-
venting new algorithms for deep learning for health
screening and diagnosis, hidden geometry detection, ex-
ploiting techniques from optimization, linear algebra and
compressive sensing. He also works on designing algo-
rithms for futuristic 3D projective displays. Before joining
MIT Media Lab Otkrist worked in Google Now team where
he built voice actions such as take a picture and what's on
my Chromecast and worked on voice response quality from
Google Now. He also worked in LinkedIn where he devel-
oped services such as Smart ToDo, Ultra fast auto-complete,
Notifications and CheckIn platform. He completed his ba-
chelors from Indian Institute of Technology Delhi (IITD) in

Computer Science with emphasis on algorithms and linear algebra. After graduating from
IITD, he worked for one year in field of High Frequency Trading at Tower Research
Capital.

Ramesh Raskar joined the Media Lab from Mitsubishi
Electric Research Laboratories in 2008 as head of the Labs
Camera Culture research group. His research interests span
the fields of computational photography, inverse problems
in imaging and humancomputer interaction. Recent pro-
jects and inventions include transient imaging to look
around a corner, a next generation CAT-Scan machine,
imperceptible markers for motion capture (Prakash), long
distance barcodes (Bokode), touch+hover 3D interaction
displays (BiDi screen), low-cost eye care devices
(Netra,Catra), new theoretical models to augment light
fields (ALF) to represent wave phenomena and algebraic
rank constraints for 3D displays(HR3D).

O. Gupta, R. Raskar Journal of Network and Computer Applications 116 (2018) 1–8

8

http://refhub.elsevier.com/S1084-8045(18)30159-0/sref19
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref19
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref19
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref20
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref20
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref20
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref21
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref21
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref21
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref22
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref22
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref23
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref23
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref23
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref24
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref24
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref25
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref25
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref25
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref27
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref27
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref30
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref30
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref30
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref31
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref31
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref31
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref32
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref32
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref32
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref32
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref34
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref34
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref35
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref35
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref36
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref36
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref36
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref37
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref37
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref38
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref38
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref39
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref39
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref40
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref40
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref41
http://refhub.elsevier.com/S1084-8045(18)30159-0/sref41

	Distributed learning of deep neural network over multiple agents
	Introduction
	Related work
	Theory
	Distributed training over single entity
	Correctness

	Distributed training over multiple entities
	Correctness

	Semi-supervised application
	Online learning
	Analyzing security concerns
	Training without label propagation

	Datasets and implementation
	Mixed NIST
	Canadian Institute For Advanced Research
	ILSVRC (ImageNet) 2012

	Experiments and applications
	Comparison with existing methods
	Impact of amount of data on final accuracy

	Conclusions and future work
	Supplementary data
	References

