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a b s t r a c t

In this paper we develop a method for learning nonlinear system models with multiple outputs and
inputs. We begin by modeling the errors of a nominal predictor of the system using a latent variable
framework. Then using the maximum likelihood principle we derive a criterion for learning the model.
The resulting optimization problem is tackled using a majorization–minimization approach. Finally, we
develop a convex majorization technique and show that it enables a recursive identification method. The
method learns parsimonious predictivemodels and is tested on both synthetic and real nonlinear systems.
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1. Introduction

In this paper we consider the problem of learning a nonlinear
dynamical system model with multiple outputs y(t) and multiple
inputsu(t) (when they exist). Generally this identification problem
can be tackled using different model structures, with the class of
linear models being arguably the most well studied in engineer-
ing, statistics and econometrics (Barber, 2012; Bishop, 2006; Box,
Jenkins, Reinsel, & Ljung, 2015; Ljung, 1998; Söderström & Stoica,
1988).

Linear models are often used even when the system is known
to be nonlinear (Enqvist, 2005; Schoukens, Vaes, & Pintelon, 2016).
However certain nonlinearities, such as saturations, cannot always
be neglected. In such cases using block-oriented models is a pop-
ular approach to capture static nonlinearities (Giri & Bai, 2010).
Recently, such models have been given semiparametric formula-
tions and identified using machine learning methods, cf. Pillonetto
(2013) and Pillonetto, Dinuzzo, Chen, DeNicolao, and Ljung (2014).
To model nonlinear dynamics a common approach is to use Nar-
maxmodels (Billings, 2013; Sjöberg et al., 1995).

In this paper we are interested in recursive identification
methods (Ljung & Söderström, 1983). In cases where the model
structure is linear in the parameters, recursive least-squares can
be applied. For certain models with nonlinear parameters, the
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extended recursive least-squares has been used (Chen, 2004). An-
other popular approach is the recursive prediction error method
which has been developed, e.g., for Wiener models, Hammerstein
models, and polynomial state-space models (Mattsson & Wigren,
2016; Tayamon, Wigren, & Schoukens, 2012; Wigren, 1993).

Nonparametric models are often based on weighted sums of
the observed data (Roll, Nazin, & Ljung, 2005). The weights vary
for each predicted output and the number of weights increases
with each observed datapoint. The weights are typically obtained
in a batch manner; in Bai and Liu (2007) and Bijl, van Wingerden,
Schön, and Verhaegen (2015) they are computed recursively but
must be recomputed for each new prediction of the output.

For many nonlinear systems, however, linear models work well
as an initial approximation. The strategy in Paduart et al. (2010)
exploits this fact by first finding the best linear approximation
using a frequency domain approach. Then, starting from this ap-
proximation, a nonlinear polynomial state-space model is fitted
by solving a nonconvex problem. This two-step method cannot be
readily implemented recursively and it requires input signals with
appropriate frequency domain properties.

In this paper, we start from a nominal model structure. This
class can be based on insights about the system, e.g. that linear
model structures can approximate a system around an operating
point. Given a record of past outputs, y(t) and inputs u(t), that is,

Dt ≜
{

(y(1),u(1)) , . . . , (y(t),u(t))
}
,

a nominal model yields a predicted output y0(t + 1) which differs
from the output y(t + 1). The resulting prediction error is denoted
ε(t + 1) (Ljung, 1999). By characterizing the nominal prediction
errors in a data-drivenmanner,we aim to develop a refined predic-
tor model of the system. Thus we integrate classic and data-driven
system modeling approaches in a natural way.
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The general model class and problem formulation are intro-
duced in Section 2. Then in Section 3 we apply the principle of
maximum likelihood to derive a statistically motivated learning
criterion. In Section 4 this nonconvex criterion is minimized using
a majorization–minimization approach that gives rise to a convex
user-parameter free method. We derive a computationally effi-
cient recursive algorithm for solving the convex problem, which
can be applied to large data sets as well as online learning sce-
narios. In Section 5, we evaluate the proposed method using both
synthetic and real data examples.

In a nutshell, the contribution of the paper is a modeling ap-
proach and identification method for nonlinear multiple input–
multiple output systems that:

• explicitly separates modeling based on application-specific
insights from general data-driven modeling,

• circumvents the choice of regularization parameters and
initialization points,

• learns parsimonious predictor models,
• admits a computationally efficient implementation.

Notation: Ei,j denotes the ijth standard basis matrix. ⊗ and ⊙ de-
note the Kronecker and Hadamard products, respectively. vec(·) is
the vectorization operation. ∥x∥2, ∥x∥1 and ∥X∥W =

√
tr{X⊤WX},

where W ≻ 0, denote ℓ2-, ℓ1- and weighted norms, respectively.
The Moore–Penrose pseudoinverse of X is denoted X†.

Remark 1. An implementation of the proposedmethod is available
at https://github.com/magni84/lava.

2. Problem formulation

Given Dt−1, the ny-dimensional output of a system can always
be written as

y(t) = y0(t) + ε(t), (1)

where y0(t) is any one-step-ahead predictor based on a nominal
model. Here we consider nominal models on the form

y0(t) = Θϕ(t), (2)

where the p × 1 vector ϕ(t) is a given function of Dt−1 and Θ

denotes the unknown parameters.

Remark 2. A typical example of ϕ(t) is

ϕ(t) = [y⊤(t − 1) · · · y⊤(t − na) u⊤(t − 1) · · ·

u⊤(t − nb) 1]⊤, (3)

in which case the nominal predictor is linear in the data and
therefore captures the linear system dynamics. Nonlinearities can
be incorporated if such are known about the system, in which case
ϕ(t) will be nonlinear in the data.

The popular Arx model structure, for instance, can be cast into
the framework (1) and (2) by assuming that the nominal prediction
error ε(t) is a white noise process (Ljung, 1998; Söderström &
Stoica, 1988). For certain systems, (2) may accurately describe the
dynamics of the system around its operation point and conse-
quently the white noise assumption on ε(t) may be a reasonable
approximation. However, this ceases to be the case even for sys-
tems with weak nonlinearities, cf. Enqvist (2005).

Next, we develop a data-driven model of the prediction errors
ε(t) in (1), conditioned on the past data Dt−1. Specifically, we
assume the conditional model

ε(t) | Dt−1 ∼ N (Zγ(t),Σ), (4)

where Z is an ny × q matrix of unknown latent variables, Σ is an
unknown covariance matrix, and the q× 1 vector γ(t) is any given
function of Dt−1. This is a fairly general model structure that can
capture correlated data-dependent nominal prediction errors.

Note that when Z ≡ 0, the prediction errors are temporally
white and the nominal model (2) captures all relevant system dy-
namics. The latent variable is modeled as random here. Before data
collection, we assume Z to have mean 0 as we have no reason to
depart from the nominal model assumptions until after observing
data. Using a Gaussian distribution, we thus get

vec(Z) ∼ N (0,D), (5)

where D is an unknown covariance matrix.
Our goal here is to identify a refined predictor of the form

ŷ(t) = Θ̂ϕ(t)  
ŷ0(t)

+ Ẑγ(t)  
ε̂(t)

, (6)

from a data set Dt−1, by maximizing the likelihood function. The
first term is an estimate of the nominal predictor model while the
second term tries to capture structure in the data that is not taken
into account by the nominal model. Note that when Ẑ is sparse we
obtain a parsimonious predictor model.

Remark 3. Themodel (1)–(4) implies that we canwrite the output
in the equivalent form

y(t) = Θϕ(t) + Zγ(t) + v(t),

where v(t) is a white process with covariance Σ. In order to for-
mulate a flexible data-driven error model (4), we overparametrize
it using a high-dimensional γ(t). In this case, regularization of Z
is desirable, which is achieved by (5). Note that D and Σ are both
unknown. Estimating these covariance matrices corresponds to
using a data-adaptive regularization, as we show in subsequent
sections.

Remark 4. The nonlinear function γ(t) of Dt−1 can be seen as a
basis expansion which is chosen to yield a flexible model structure
of the errors. In the examples belowwewill use the Laplace opera-
tor basis functions (Solin & Särkkä, 2014). Other possible choices
include the polynomial basis functions, Fourier basis functions,
wavelets, etc. Ljung (1998), Sjöberg et al. (1995) and Van den Hof
and Ninness (2005).

Remark 5. In (6), ŷ(t) is a one-step-ahead predictor. However,
the framework can be readily applied to k-step-ahead prediction
where ϕ(t) and γ(t) depend on y(1), . . . , y(t − k).

3. Latent variable framework

Given a record of N data samples, DN , our goal is to estimate
Θ and Z to form the refined predictor (6). In Section 3.1, we
employ themaximum likelihood approach based on the likelihood
function p(Y|Θ,D,Σ), which requires the estimation of nuisance
parameters D and Σ. For notational simplicity, we write the pa-
rameters as Ω = {Θ,D,Σ} and in Section 3.2 we show how an
estimator of Z is obtained as a function of Ω and DN .

3.1. Parameter estimation

We write the output samples in matrix form as

Y =
[
y(1) · · · y(N)

]
∈ Rny×N .

https://github.com/magni84/lava
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In order to obtain maximum likelihood estimates of Ω, we first
derive the likelihood function bymarginalizing out the latent vari-
ables from the data distribution:

p(Y|Ω) =

∫
p(Y|Ω, Z)p(Z)dZ, (7)

where the data distribution p(Y|Ω, Z) and p(Z) are given by (4) and
(5), respectively.

To obtain a closed-form expression of (7), we begin by con-
structing the regression matrices

Φ =
[
ϕ(1) · · · ϕ(N)

]
∈ Rp×N ,

Γ =
[
γ(1) · · · γ(N)

]
∈ Rq×N .

It is shown in Appendix A that (7) can be written as

p(Y|Ω) =
1

(2π )Nny |R|
exp

(
−

1
2
∥y − Fθ∥2

R−1

)
, (8)

where

y = vec(Y), θ = vec(Θ), z = vec(Z), (9)

are vectorized variables, and

F = Φ⊤
⊗ Iny , G = Γ⊤

⊗ Iny , (10)

R ≜ GDG⊤
+ IN ⊗ Σ. (11)

Note that (8) is not a Gaussian distribution in general, since Rmay
be a function of Y. It follows that maximizing (8) is equivalent to
solving

min
Ω

V (Ω), (12)

where

V (Ω) ≜ ∥y − Fθ∥2
R−1 + ln|R| (13)

and y − Fθ = vec(Y − ΘΦ) = vec([ε(1) · · · ε(N)]) is nothing but
the vector of nominal prediction errors.

3.2. Latent variable estimation

Next, we turn to the latent variable Zwhich is used tomodel the
nominal prediction error ε(t) in (4). As we show in Appendix A, the
conditional distribution of Z is Gaussian and can be written as

p(Z|Ω,Y) =
1

√
(2π )nyq|Σz |

exp
(

−
1
2
∥z − ζ∥2

Σ−1
z

)
, (14)

with conditional mean

ζ = DG⊤R−1(y − Fθ), (15)

and covariance matrix

Σz =
(
D−1

+ G⊤(IN ⊗ Σ−1)G
)−1

. (16)

An estimate Ẑ is then given by evaluating the conditional (vector-
ized) mean (15) at the optimal estimate Ω̂ obtained via (12).

4. Majorization–minimization approach

The quantities in the refined predictor (6) are readily obtained
from the solution of (12). In general, V (Ω) may have local minima
and (12) must be tackled using computationally efficient iterative
methods to find the optimum. The obtained estimates will then
depend on the choice of initial point Ω0. Such methods include
the majorization–minimization approach (Hunter & Lange, 2004;
Wu & Lange, 2010), which in turn include Expectation Maximiza-
tion (Dempster, Laird, & Rubin, 1977) as a special case.

The majorization–minimization approach is based on finding a
majorizing function V ′(Ω|Ω̃) with the following properties:

V (Ω) ≤ V ′(Ω|Ω̃), ∀Ω (17)

with equality when Ω = Ω̃. The key is to find a majorizing
function that is simpler to minimize than V (Ω). Let Ωk+1 denote
the minimizer of V ′(Ω|Ωk). Then

V (Ωk+1) ≤ V ′(Ωk+1|Ωk) ≤ V ′(Ωk|Ωk) = V (Ωk). (18)

This property leads directly to an iterative scheme that decreases
V (Ω) monotonically, starting from an initial estimate Ω0.

Given the overparameterized error model (4), it is natural to
initialize at points in the parameter space which correspond to the
nominal predictor model structure (2). That is,

Ω0 = {Θ0, 0,Σ0}, where Σ0 ≻ 0, (19)

at which Ẑ ≡ 0.

4.1. Convex majorization

For a parsimonious parameterization and computationally ad-
vantageous formulation, we consider a diagonal structure of the
covariance matrices in (4), i.e., we let

Σ = diag(σ1, σ2, . . . , σny ), (20)

and we let Di = diag(di,1, . . . , di,q) denote the covariance matrix
corresponding to the ith row of Z, so that

D =

ny∑
i=1

Di ⊗ Ei,i. (21)

We begin by majorizing (13) via linearization of the concave term
ln|R|:

ln|R| ≤ ln|̃R| − tr{̃R−1(IN ⊗ Σ̃)} − tr{G⊤R̃−1GD̃}

+ tr{̃R−1(IN ⊗ Σ)} + tr{G⊤R̃−1GD},
(22)

where D̃ and Σ̃ are arbitrary diagonal covariance matrices and R̃ is
obtained by inserting D̃ and Σ̃ into (11). The right-hand side of the
inequality above is a majorizing tangent plane to ln|R|. The use of
(22) yields a convex majorizing function of V (Ω) in (12):

V ′(Ω|Ω̃) = ∥y − Fθ∥2
R−1 + tr{̃R−1(IN ⊗ Σ)}

+ tr{G⊤R̃−1GD} + K̃ ,
(23)

where K̃ = ln|̃R|−tr{̃R−1(IN ⊗Σ̃)}−tr{G⊤R̃−1GD̃} is a constant. To
derive a computationally efficient algorithm for minimizing (23),
the following theorem is useful:

Theorem 6. The majorizing function (23) can also be written as

V ′(Ω|Ω̃) = min
Z

V ′(Ω|Z, Ω̃) (24)

where
V ′(Ω|Z, Ω̃) = ∥Y − ΘΦ − ZΓ∥

2
Σ−1 + ∥ vec(Z)∥2

D−1

+ tr{̃R−1(IN ⊗ Σ)} + tr{G⊤R̃−1GD} + K̃ .
(25)

The minimizing Z is given by the conditional mean (15).

Proof. The problem in (24) has aminimizing Zwhich, after vector-
ization, equals ζ in (15). Inserting the minimizing Z into (25) and
using (A.3) yields (23).

Remark 7. The augmented form in (24), enables us to solve for the
nuisance parameters D and Σ in closed-form and also yields the
conditional mean Ẑ as a by-product.
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To prepare for the minimization of the function (25) we write
the matrix quantities using variables that denote the ith rows of
the following matrices:

Y =

⎡⎢⎢⎣
...

y⊤

i
...

⎤⎥⎥⎦ , Θ =

⎡⎢⎢⎣
...

θ⊤

i
...

⎤⎥⎥⎦ , Z =

⎡⎢⎢⎣
...

z⊤

i
...

⎤⎥⎥⎦ , Γ =

⎡⎢⎢⎣
...

γ⊤

i
...

⎤⎥⎥⎦ .

Theorem 8. After concentrating out the nuisance parameters, the
minimizing arguments Θ and Z of the function (25) are obtained by
solving the following convex problem:

min
Θ,Z

ny∑
i=1

(
∥yi − Φ⊤θi − Γ⊤zi∥2 + ∥wi ⊙ zi∥1

)
(26)

where

wi =
[
wi,1 · · · wi,q

]⊤
, wi,j =

√γ⊤

j R̃
−1
i γ j

tr{̃R−1
i }

(27)

R̃i = ΓD̃iΓ
⊤

+ σ̃iIN . (28)

The closed-form expression for the minimizing nuisance parameters
(20) and (21) are given by

σ̂i =
∥yi − Φ⊤θi − Γ⊤zi∥2√

tr{̃R−1
i }

, d̂i,j =
|zi,j|√

γ⊤

j R̃
−1
i γ j

. (29)

Proof. See Appendix B.

Remark 9. Problem (26) contains a data-adaptive regularizing
term which typically leads to parsimonious estimates of Z, cf. Sto-
ica, Zachariah, and Li (2014).

Remark 10. Majorizing at a nominal predictor model, i.e. Ω̃ =

{Θ̃, 0, Σ̃} as discussed above, yields R̃i = σ̃iIN and the weights are
given by

wi,j =
∥γ j∥2
√
N

. (30)

Then problem (26) and consequently the minimization of (24)
becomes invariant with respect to Σ̃.

The iterative scheme (18) is executed by initializing at Ω̃ := Ω0
and solving (26). The procedure is then repeated by updating the
majorization point using the new estimate Ω̃ := Ω̂. It follows that
the estimateswill converge to a localminima of (13). The following
theorem establishes that the local minima found, and thus the
resulting predictor (6), is invariant to Ω0 in the form (19).

Theorem 11. All initial points Ω0 in the form (19) result in the same
sequence of minimizers (Θ̂k, Ẑk) of (26), for all k > 0. Moreover, the
sequence (̂Dk, Σ̂k) converges to a unique point when k → ∞.

Proof. See Appendix C.

Remark 12. As a result we may initialize the scheme (18) at
Ω0 = {0, 0, Iny}. This obviates the need for carefully selecting an
initialization point, which would be needed in e.g. the Expectation
Maximization algorithm.

4.2. Recursive computation

We now show that the convex problem (26) can be solved
recursively, for each new sample y(t) and u(t).

4.2.1. Computing Θ̂

If we fix Z and only solve for Θ, the solution is given by

Θ̂ = Θ − ZH⊤ (31)

where

Θ = YΦ† and H⊤
= ΓΦ†.

Note that both Θ and H are independent of Z, and that they can
be computed for each sample t using a standard recursive least-
squares (LS) algorithm:

Θ(t) = Θ(t − 1) + (y(t) − Θ(t − 1)ϕ(t))ϕ⊤(t)P(t) (32)

H(t) = H(t − 1) + P(t)ϕ(t)(γ⊤(t) − ϕ⊤(t)H(t − 1)) (33)

P(t) = P(t − 1) −
P(t − 1)ϕ(t)ϕ⊤(t)P(t − 1)
1 + ϕ⊤(t)P(t − 1)ϕ(t)

. (34)

Remark 13. Natural initial values areΘ(0) = 0 and H(0) = 0. The
matrixΦ† equalsΦ⊤(ΦΦ⊤)−1 when t ≥ p samples yield a full-rank
matrixΦ. ThematrixP(t) converges to (ΦΦ⊤)−1. A common choice
for the initial value of P(t) is P(0) = cI, where a larger constant
c > 0 leads to a faster convergence of (34), cf. Söderström and
Stoica (1988) and Stoica and Åhgren (2002).

4.2.2. Computing Ẑ
Using (31), we concentrate out Θ from (26) to obtain

V ′(Z) =

ny∑
i=1

(
∥ξi −

(
Γ⊤

− Φ⊤H
)
zi∥2 + ∥wi ⊙ zi∥1

)
where

ξi = yi − Φ⊤θi.

In Appendix D it is shown how the minimum of V ′(Z) can be found
via cyclic minimization with respect to the elements of Z, similar
to what has been done in Zachariah and Stoica (2015) in a simpler
case. This iterative procedure is implemented using recursively
computed quantities and produces an estimate Ẑ(t) at sample t .

4.2.3. Summary of the algorithm
The algorithm computes Θ̂(t) and Ẑ(t) recursively by means of

the following steps at each sample t:

(i) Compute Θ(t) and H(t), using (32)–(34).
(ii) Compute Ẑ(t) via the cyclic minimization of V ′(Z). Cycle

through all elements L times.
(iii) Compute Θ̂(t) = Θ(t) − Ẑ(t)H⊤(t)

The estimates are initialized as Θ̂(0) = 0 and Ẑ(0) = 0. In practice,
small L works well since we cycle L times through all elements of
Z for each new data sample. The computational details are given
in Algorithm 1 in Appendix D, which can be readily implemented
e.g. in Matlab.

5. Numerical experiments

In this section we evaluate the proposed method and compare
it with two alternative identification methods.

5.1. Identification methods and experimental setup

The numerical experiments were conducted as follows. Three
methods have been used: LS identification of affine Arx, Narx
using wavelet networks (Wave for short), and the latent variable
method (Lava) presented in this paper. From our numerical exper-
iments we found that performing even only one iteration of the
majorization–minimization algorithm produces good results, and
doing so leads to a computationally efficient recursive implemen-
tation (which we denote Lava-R for r ecursive).
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For each method the function ϕ(t) is taken as the linear regres-
sor in (3). Then the dimension of ϕ(t) equals p = nyna + nunb + 1.
For affine ARX, the model is given by

ŷARX (t) = Θϕ(t),

where Θ is estimated using recursive least squares (Söderström &
Stoica, 1988). Note that in Lava-R, Θ is computed as a byproduct
(32).

For the wavelet network, nlarx in the System Identification
Toolbox for Matlab was used, with the number of nonlinear units
automatically detected (Ljung, 2007).

For Lava-R, the model is given by (6) and Θ̂, Ẑ are found by
the minimization of (26) using Ω̃0 = {0, 0, Iny}. The minimization
is performed using the recursive algorithm in Section 4.2.3 with
L = 5. The nonlinear function γ(t) of the data Dt−1 can be chosen
to be a set of basis functions evaluated at ϕ(t). Then Zγ(t) can be
seen as a truncated basis expansion of some nonlinear function. In
the numerical examples, γ(t) uses the Laplace basis expansion due
to its good approximation properties (Solin & Särkkä, 2014). Each
element in the expansion is given by

γk1,...,kp−1 (t) =

p−1∏
i=1

1
√

ℓi
sin

(
πki(ϕi(t) + ℓi)

2ℓi

)
, (35)

where ℓi are the boundaries of the inputs and outputs for each
channel and ki = 1, . . . ,M are the indices for each element of γ(t).
Then the dimension of

γ(t) = [γ1,...,1(t) · · · γp−1,...,p−1(t)]⊤

equals q = Mp−1, where M is a user parameter which determines
the resolution of the basis.

Finally, an important part of the identification setup is the
choice of input signal. For a nonlinear system it is important to
excite the system both in frequency and in amplitude. For linear
models a commonly used input signal is a pseudorandom binary
sequence (PRBS), which is a signal that shifts between two levels
in a certain fashion. One reason for using PRBS is that it has good
correlation properties (Söderström & Stoica, 1988). Hence, PRBS
excites the system well in frequency, but poorly in amplitude. A
remedy to the poor amplitude excitation is to multiply each inter-
val of constant signal level with a random factor that is uniformly
distributed on some interval [0, A], cf. Wigren (2006). Hence, if the
PRBS takes the values −1 and 1, then the resulting sequence will
contain constant intervals with random amplitudes between −A
and A. We denote such a random amplitude sequence RS(A) where
A is the maximum amplitude.

5.2. Performance metric

For the examples consideredhere the systemdoes not necessar-
ily belong to the model class, and thus there is no true parameter
vector to compare with the estimated parameters. Hence, the
different methods will instead be evaluated with respect to the
simulated model output ŷs(t). For Lava-R

ϕ̂(t) = [ŷ⊤

s (t − 1) · · · ŷ⊤

s (t − na) u⊤(t − 1) · · · u⊤(t − nb) 1]⊤.

ŷs(t) = Θ̂ϕ̂(t) + Ẑ̂γ(t)

and γ̂(t) is computed as (35) with ϕ(t) replaced by ϕ̂(t).
The performance can then be evaluated using the root mean

squared error (RMSE) for each output channel i,

RMSEi =

√ 1
T

T∑
t=1

E
[
∥yi(t) − ŷs,i(t)∥2

2

]
.

The expectations are computed using 100Monte Carlo simulations
on validation data.

Fig. 1. A block diagram of the system used in Example 5.3.

For the data set collected from a real system, it is not possible
to evaluate the expectation in the RMSE formula. For such sets we
use the fit of the data, i.e.,

FITi = 100
(
1 −

∥yi − ŷs,i∥2

∥yi − ȳi1∥2

)
,

where ŷs,i contains the simulated outputs for channel i, ȳi is the
empirical mean of yi and 1 is a vector of ones. Hence, FIT compares
the simulated output errors with those obtained using the empiri-
cal mean as the model output.

5.3. System with saturation

Consider the following state-space model,

x1(t + 1) = sat2[0.9x1(t) + 0.1u1(t)] (36)
x2(t + 1) = 0.08x1(t) + 0.9x2(t) + 0.6u2(t) (37)

y(t) = x(t) + e(t) (38)

where x(t) =
[
x1(t) x2(t)

]⊤ and

sata(x) =

{
x if |x| < a
sign(x)a if |x| ≥ a .

A block-diagram for the above system is shown in Fig. 1. The
measurement noise e(t) was chosen as a white Gaussian process
with covariance matrix σ Iwhere σ = 2.5 · 10−3.

Data was collected from the system using an RS(A) input signal
for several different amplitudes A. The identification was per-
formed using na = 1, nb = 1, M = 4, and N = 1000 data samples.
This means that p = 5 and q = 256, and therefore there are 10
parameters in Θ and 512 in Z.

Note that, for sufficiently low amplitudes A, x1(t) will be smaller
than the saturation level a = 2 for all t , and thus the system
will behave as a linear system. However, when A increases, the
saturation will affect the system output more andmore. The RMSE
was computed for eight different amplitudes A, and the result is
shown in Fig. 2. It can be seen that for small amplitudes, when
the system is effectively linear, the Arx model gives a marginally
better result than Lava-R and Wave. However, as the amplitude is
increased, the nonlinear effects becomemore important, and Lava-
R outperforms bothWave and Arxmodels.

5.4. Water tank

In this example a real cascade tank process is studied. It consists
of two tanks mounted on top of each other, with free outlets. The
top tank is fedwithwater by a pump. The input signal is the voltage
applied to the pump, and the output consists of the water level
in the two tanks. The setup is described in more detail in Wigren
(2006). The data set consists of 2500 samples collected every five
seconds. The first 1250 samples were used for identification, and
the last 1250 samples for validation.
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Fig. 2. The RMSE for Example (5.3) computed for different input amplitudes, using
Lava-R (solid), affine Arx (dashed) and Wave (dash-dotted).

Fig. 3. The output in Example 5.4 (blue), plotted together with the output of the
model identified by Lava-R (red). The system was identified using the first 1250
data samples. The validation set consisted of the remaining 1250 samples. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
FIT for Example 5.4.

Lava-R Wave Arx

Upper tank 91.6% 79.2% 84.9%
Lower tank 90.8% 76.9% 78.6%

The identification was performed using na = 2, nb = 2 and
M = 3. With two outputs, this results in 14 parameters in Θ

and 1458 parameters in Z. Lava-R found a model with only 37
nonzero parameters in Z, and the simulated output together with
themeasured output are shown in Fig. 3. The FIT values, computed
on the validation data are shown in Table 1. It can be seen that an
affine ARXmodel gives a good fit, but also that using Lava-R the FIT
measure can be improved significantly. In this example, Wave did
not perform very well.

5.5. Pick-and-place machine

In the final example, a real pick-and-place machine is studied.
This machine is used to place electronic components on a circuit
board, and is described in detail in Juloski, Heemels, and Ferrari-
Trecate (2004). This system exhibits saturation, different modes,

Fig. 4. The output in Example 5.5 (blue), plotted together with the output of the
model identified by Lava-R (red). The system was identified using the first part of
the data, while the validation set consisted of the remaining samples indicated after
the dashed line. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 2
FIT for Example 5.5.

Lava-R Wave Arx

FIT 83.2% 78.2% 73.1%

and other nonlinearities. The data used here are from a real physi-
cal process, and were also used in e.g. Bemporad, Garulli, Paoletti,
and Vicino (2005), Juloski, Paoletti, and Roll (2006) and Ohlsson
and Ljung (2013). The data set consists of a 15 s recording of the
single input u(t) and the vertical position of the mounting head
y(t). The data was sampled at 50 Hz, and the first 8 s (N = 400)
were used for identification and the last 7 s for validation.

The identification was performed using na = 2, nb = 2 and
M = 6. For the SISO system considered here, this results in 5
parameters in Θ and 1296 parameters in Z. Lava-R found a model
with 33 of the parameters in Z being nonzero, the output of which
is shown in Fig. 4.

The FIT values, computed on the validation data, for Lava-R,
Wave and affine Arx are shown in Table 2. Lava-R outperforms
Narx using wavelet networks, and both are better than Arx.

6. Conclusion

We have developed a method for learning nonlinear systems
withmultiple outputs and inputs.Webeganbymodeling the errors
of a nominal predictor using a latent variable formulation. The
nominal predictor could for instance be a linear approximation of
the system but could also include known nonlinearities. A learning
criterion was derived based on the principle of maximum likeli-
hood, which obviates the tuning of regularization parameters. The
criterion is then minimized using a majorization–minimization
approach. Specifically, we derived a convex user-parameter free
formulation, which led to a computationally efficient recursive
algorithm that can be applied to large data sets as well as online
learning problems.

The method introduced in this paper learns parsimonious pre-
dictor models and captures nonlinear system dynamics. This was
illustrated via synthetic as well as real data examples. As shown
in these examples a recursive implementation of the proposed
method was capable of outperforming a batch method using a
Narx model with a wavelet network.

Appendix A. Derivation of the distributions (8) and (14)

We start by computing p(Y|Ω) given in (7). The function p(Y|Ω,
Z) can be found from (1)–(4) and the chain rule:

p(Y|Ω, Z) =

N∏
t=1

pε(y(t) − Θϕ(t)|Dt−1, Z), (A.1)
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where we have neglected initial conditions (Söderström & Stoica,
1988). Since

pε(y(t) − Θϕ(t)|Dt−1, Z) ∝

exp
(

−
1
2
∥y(t) − Θϕ(t) − Zγ(t)∥2

Σ−1

)
,

it follows that
p(Y|Ω, Z) =

1√
(2π )nyN |Σ|

N
exp

(
−

1
2
∥Y − ΘΦ − ZΓ∥

2
Σ−1

)
.

(A.2)

Using the vectorized variable in (9)–(10) we can see that

vec(ΘΦ) = Fθ and vec(ZΓ) = Gz

and thus,

∥Y − ΘΦ − ZΓ∥
2
Σ−1 = ∥y − Fθ − Gz∥2

IN⊗Σ−1 .

Next, we note that the following useful equality holds:

∥y − Fθ − Gz∥2
IN⊗Σ−1 + ∥z∥2

D−1 =

∥y − Fθ∥2
R−1 + ∥z − ζ∥2

Σ−1
z

(A.3)

where R is given by (11), ζ by (15), and Σz by (16). To see that the
equality holds, expand the norms on both sides of (A.3) and apply
the matrix inversion lemma.

The sought-after distribution p(Y|Ω) is given by (7). By using
(A.3) it follows that

p(Y|Ω, Z)p(Z) ∝

exp(−
1
2
∥y − Fθ∥2

R−1 ) exp(−
1
2
∥z − ζ∥2

Σ−1
z
) (A.4)

with the normalization constant ((2π )ny(N+q)
|Σ|

N
|D|)−1/2. Noting

that∫
exp

(
−

1
2
∥z − ζ∥2

Σ−1
z

)
dZ =

√
(2π )nyq|Σz |

it can be seen that

p(Y|Ω) =
1√

(2π )Nny |R|

exp
(

−
1
2
∥y − Fθ∥2

R−1

)
, (A.5)

which proves (8). To obtain an expression for p(Z|Ω,Y) simply
insert (A.4) and (A.5) into Bayes’ rule to get (14).

Appendix B. Proof of Theorem 8

It follows from (21) that

R =

ny∑
i=1

(Ri ⊗ Ei,i)

where Ri = Γ⊤DiΓ + σiIN . Hence,

R−1
=

ny∑
i=1

(
R−1
i ⊗ Ei,i

)
.

Thus, we can rewrite (25) as (to within an additive constant):

V ′(Ω|Z, Ω̃) =

ny∑
i=1

( 1
σi

∥ȳi∥2
2 + ∥zi∥2

D−1
i

+

σi tr(̃R−1
i ) + tr(ΓR̃−1

i Γ⊤Di)
)

(B.1)

where ȳi = yi − Φ⊤θi − Γ⊤zi.

We next derive analytical expressions for the Σ and D that
minimize V ′(Ω|Z, Ω̃). Note that
∂

∂σi
V ′(Ω|Z, Ω̃) = −

1
σ 2
i

∥ȳi∥2
2 + tr(̃R−1

i ),

and setting the derivative to zero yields the estimate (29). In the
sameway it can be seen that theminimumof di,j is attained at (29).

Inserting σ̂i and d̂i,j into (B.1), we see that we can find the
minimizing Θ and Z by minimizing

2
ny∑
i=1

(√
tr(̃R−1

i )∥yi − Φ⊤θi − Γ⊤zi∥2+

q∑
j=1

|zi,j|
√

γ⊤

j R̃
−1
i γ j

)
.

Since term i in the above sum is invariant with respect to θk and
zk for k ̸= i, we can divide term i by 2

√
tr(̃R−1

i ), and see that
minimizing the criterion above is equivalent to (26).

Appendix C. Proof of Theorem 11

Initializing (18) at Ω0 = {0, 0, Iny} and Ω0 = {Θ0, 0,Σ0}

whereΣ0 = diag(σ (0)
1 , . . . , σ

(0)
ny ), produces two sequences denoted

Ωk = {Θk,Dk,Σk} and Ωk = {Θk,Dk,Σk} for k > 0, respectively.
This results also in sequences Zk and Zk. The theorem states that:

Θk = Θk and Zk = Zk (C.1)

Dk − Dk → 0 and Σk − Σk → 0. (C.2)

We now show the stronger result that the covariance matrices
converge as

D(k)
i = c(k)i D

(k)
i , σ

(k)
i = c(k)i σ

(k)
i , ∀k > 0, (C.3)

where c(k)i = (σ (0)
i )

1
2k . Note that c(k)i → 1 as k → ∞. Hence (C.3)

implies (C.2). We prove (C.3) and (C.1) by induction. That (C.3) and
(C.1) hold for k = 1 follow directly from Theorem 8. Now assume
that (C.3) holds for some k ≥ 1. Let

Ri = ΓD
(k)
i Γ⊤

+ σ
(k)
i IN ,

R̃i = ΓD(k)
i Γ⊤

+ σ
(k)
i IN = c(k)i Ri,

where the last equality follows by the assumption in (C.3). There-
fore the weights used to estimate Θk+1 and Zk+1 are the same as
those used to estimate Θk+1, Zk+1:

wi,j =

√γ⊤

j R̃
−1
i γ j

tr(̃R−1
i )

=

√γ⊤

j R
−1
i γ j

tr(R
−1
i )

,

so we can conclude that Θk+1 = Θk+1 and Zk+1 = Zk+1. The
estimate Dk+1 is given by

d(k+1)
i,j =

|zi,j|√
γ⊤

j R̃
−1
i γ j

=

√
c(k)i |zi,j|√
γ⊤R

−1
γ

= c(k+1)
i d

(k+1)
i,j

so D(k+1)
i = c(k+1)

i D
(k+1)
i , and in the same way it can be seen that

σ
(k+1)
i = c(k+1)

i σ
(k+1)
i . Hence by induction (C.3) and (C.1) are true

for all k > 0 and Theorem 11 follows.

Appendix D. Derivation of the proposed recursive algorithm

In order tominimize V ′(Z) we use a cyclic algorithm. That is, we
minimize with respect to one component at a time. We follow an
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approach similar to that in Zachariah and Stoica (2015), with the
main difference being that here we consider arbitrary nonnegative
weightswi.

Note thatminimization of V ′(Z) with respect to zi,j is equivalent
to minimizing

V ′(zi,j) = ∥ξ̃i,j − cjzi,j∥2 + wi,j|zi,j|

where

ξ̃i,j = ξi −
∑
k̸=j

ckzi,k, cj = [Γ⊤
− Φ⊤H]j.

As in Zachariah and Stoica (2015) it can be shown that the sign of
the optimal ẑi,j is given by sign(ẑi,j) = sign(c⊤

j ξ̃i,j). Hence we only
have to find the absolute value ri,j = |zi,j|. Let

αi,j = ∥ξ̃i,j∥
2
2, βj = ∥cj∥2

2, gi,j = c⊤

j ξ̃i,j.

It is then straightforward to verify that the minimization of V ′(zi,j)
is equivalent to minimizing

V ′(ri,j) = (αi,j + βjr2i,j − 2gi,jri,j)1/2 + wi,jri,j,

over all ri,j ≥ 0, and then setting ẑi,j = sign(gi,j)r̂i,j. From the
Cauchy–Schwarz inequality it follows that

αi,jβi,j ≥ g2
i,j.

Using this inequality it was shown in Zachariah and Stoica (2015)
that V ′(ri,j) is a convex function. The derivative of V ′(ri,j) is given
by (dropping the subindices for now),

dV ′

dr
=

βr − |g|

(βr2 − 2|g|r + α)1/2
+ w. (D.1)

Since V ′(r) is convex it follows that it is minimized by r = 0 if and
only if dV ′(0)/dr ≥ 0, i.e., if and only if

αw2
≥ g2. (D.2)

Next we study the case when g2 > αw2. It then follows from (D.1)
that the stationary points of V ′(r) satisfy

(βr − |g|) = −w(βr2 − 2|g|r + α)1/2. (D.3)

Solving this equation for r we get the stationary point

r̂ =
|g|

β
−

w

β
√

β − w2

√
αβ − g2.

Hence we can conclude that the minimizer of V ′(zi,j) is given by

ẑi,j =

{
sign(gi,j)r̂i,j if αi,jw

2
i,j < g2

i,j
0 otherwise

.

Next we show how to obtain this estimate using only recursively
computed quantities. Let

T = (Γ⊤
− Φ⊤H)⊤(Γ⊤

− Φ⊤H) (D.4)

κi = ∥ξi∥
2
2 (D.5)

ρi = (Γ⊤
− Φ⊤H)⊤ξi (D.6)

ηi = ∥ξi − (Γ⊤
− Φ⊤H)zi∥2

2 (D.7)

ζi = (Γ⊤
− Φ⊤H)(ξi − (Γ⊤

− Φ⊤H)zi). (D.8)

Then it is straightforward to show that

αi,j = ηi + βjz2i,j + 2ζi,jzi,j
βj = Tj,j

gi,j = ζi,j + βjzi,j.

Also define Ψa,b(t) recursively, for any two vector-valued signals
a(t), b(t), as

Ψa,b(0) = 0 (D.9)

Ψa,b(t + 1) = Ψa,b(t) + a(t)b⊤(t). (D.10)

Note thatΨa,b(t) = (Ψb,a(t))⊤. It can be verified that all quantities
(D.4)–(D.8), and thus ẑi,j, can be computed from Ψ·,·(N).

The full algorithm for updating the needed quantities, including
the update ofΘ andH, is summarized in Algorithm 1. Note that the
iterations of the outer for-loop can be executed in parallel.

Algorithm 1 : Recursive solution to (26)

1: Input: y(t), ϕ(t), γ(t), Θ̌ and Ž
2: Update P(t), Θ(t) and H(t) according to (32)-(34).
3: Update Ψϕ,ϕ(t), Ψγ,γ (t), Ψy,y(t), Ψϕ,γ (t), Ψϕ,y(t) and Ψγ,y(t)

according to (D.10).
4: T = Ψγ,γ

− Ψγ,ϕH − H⊤Ψϕ,γ
+ H⊤Ψϕ,ϕH.

5: for i = 1, . . . , ny do
6: κ = Ψ

y,y
i,i + θ̃

⊤

i Ψ
ϕ,ϕθ̃i − 2θ̃

⊤

i [Ψϕ,y
]i.

7: ρ = [Ψγ,y
]i − Ψγ,ϕθ̃i − H⊤

[Ψϕ,γ
]i + H⊤Ψϕ,ϕθ̃i.

8: η = κ − 2ρ⊤ži + ž⊤

i Tži.
9: ζ = ρ − Tži

10: repeat
11: for j = 1, . . . , q do
12: α = η + Tj,jž2i,j + 2ζjži,j.
13: g = ζj + Tj,jži,j.
14: β = Tj,j.
15: r̂ =

|g|

β
−

wi,j

β

√
β−w2

i,j

√
αβ − g2.

16: ẑi,j =

{
sign(g)r̂ if αw2

i,j < g2

0 otherwise
17: η := η + Tj,j(ži,j − ẑi,j) + 2(ži,j − ẑi,j)ζj.
18: ζ := ζ + [T]j(ži,j − ẑi,j).
19: ži,j := ẑi,j.
20: end for
21: until number of iterations equals L.
22: end for
23: Ẑ = Ž.
24: Θ̂ = Θ − ẐH.
25: Output: Θ̂, Ẑ.
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