
HTML5 Web Worker Transparent Offloading Method for Web Applications

Zhao Wang

National Network New Media Engineering

Research Center, Institute of Acoustics,

Chinese Academy of Sciences

University of Chinese Academy of Sciences

Beijing 100190, China

e-mail: wangzhao@dsp.ac.cn

Haojiang Deng, Linlin Hu, Xiaoyong Zhu

National Network New Media Engineering

Research Center, Institute of Acoustics,

Chinese Academy of Sciences

Beijing 100190, China

e-mail: {denghj, hull, zhuxy}@dsp.ac.cn

Abstract—With the release of HTML5 standards, web

applications have become more powerful, complicated and

resource-hungry, whereas smart devices are in general

resource-constrained. Computation offloading is one of the

approaches used to increase application efficiency and

decrease energy consumption of smart devices. In this paper,

the offloading methods of HTML5 web worker in web

applications are discussed, and a transparent offloading

method of web worker is proposed to reduce execution time of

web application and energy consumption of smart device. By

rewrite of web worker implementation and modification of

HTML5 websocket mechanism of web platform, web worker is

offloaded to server side transparently. Common non-

transparent web worker offloading method with JS framework

has also been implemented. The experiments results show that

the proposed web worker transparent offloading method

achieves better performance improvements comparing to no

offloading and non-transparent offloading respectively.

Keywords-HTML5; web worker; websocket; computation

offloading; transparent

I. INTRODUCTION

Computation Offloading has been considered to be an
effective way to solve the performance problem of
applications running on resource-constrained smart devices
[1] [2] [3] [4]. By offloading some part of computation tasks,
especially computation-intensive ones, applications can
improve its performance and save resources of smart devices.

In HTML5 standards, there is a specification regarding
web worker with which web applications can execute the
parallelized workload like a thread. Previously before the
introduction of web worker, the entire web logic is executed
in a sequential way. If there is a complex computation task
that is time-consuming, the UI thread can’t response until the
computation finishes. With web worker, parts of a web
application can be executed concurrently separately from the
main UI thread. Therefore, more complex/heavy web
workload can be executed in web applications based on web
worker. Fig. 1 shows the working mechanism of web worker.
UI thread is main thread of web application and DOM is the
structure of HTML web page in web application. Created by
UI thread using a JS file, web worker can do some
computation tasks but can’t modify DOM structure of web
application.

However, web workers may consume large amount of
computing resources in some web applications such as Ray
Tracing (http://nerget.com/rayjs-mt/rayjs.html) and Image
Decrypt. Ray Tracing renders a 3D image using selected
number of web workers to conduct matrix computation.
Image Decrypt decrypts AES-encrypted image with web
worker. These kinds of computation are high resource-
consuming. Smart devices have relatively limited resources
and this may degrade web applications’ performance and
user experience. A web worker transparent offloading
method is proposed and implemented to solve this problem
and experiments have also been conducted to verify the
effectiveness of this method.

The rest of the paper is structured as follows. Section II
introduces HTML5 websocket and related work. Section III
describes our proposed web worker offloading method.
Section IV presents the experiments and conclusions. Finally,
summary is given in Section V.

DOM UI Thread

Web Worker

Modify

new

postMessage

postMessageonMessage

onMessage

terminate

Figure 1. Web worker working mechanism.

II. HTML5 WEBSOCKET AND RELATED WORK

Apart from HTML5 web worker, there is another
HTML5 specification concerning communication between
web browser and server named HTML5 websocket, which is
a full duplex communication protocol over a TCP connection.
With websocket, a web application can establish connection
with a server like a BSD socket interface. When connected to
server with websocket, web application can send messages to
server and receive messages from server by send and
onmessage method respectively.

1319

2018 18th IEEE International Conference on Communication Technology

978-1-5386-7635-6/18/$31.00 ©2018 IEEE

Nowadays there are two kinds of web worker offloading
methods. One is transparent to web application and another
is not transparent. Non-transparent web worker offloading is
easy to implement and cross web platforms while need
modification of web applications. On the contrary,
transparent offloading does not change web applications but
needs special implementation of web platform.

The general non-transparent web worker offloading
methods rewrite standard web worker API with javascript
and wrap it into a library. The web application which needs
to offload web workers should be modified to include this
library. The typical communication mechanism is HTML5
websocket. Web workers are created and running on server
side, and the execution results are returned to client side
through HTML5 websocket. This kind of method is
proposed and implemented in [5] [6] [7] [8].

A-WWF is proposed in [9], which makes some
modifications on the basis of WWF in [5]. The authors
change WWF server side to be a manager to provide
offloading service as well as relay the offloading requests of
clients to other devices. The devices which can provide
offloading service should register themselves to manager.
WWF-D is proposed in [10], which uses HTML5 WebRTC
communication mechanism instead of websocket. However,
WebRTC is designed for real-time audio/video
communication, which causes large communication cost and
does not suit for web worker offloading.

HTML5 web worker transparent offloading has been
outlined in [11]. The authors consider a system for
augmenting mobile browser capability with cloud
computation and storage resources. However, the authors do
not provide the detailed design, nor the implementation and
test of their solution. Another transparent web worker
offloading system is proposed and implemented in [12]. By
adding proxy module and offloading decision module in web
platform, the authors offload web worker to a set of servers
in cloud, and communication is implemented using ZeroMQ.

Besides of offloading, the relationship between web
application performance and web worker numbers, CPU
number, CPU architecture is studied in [13], which guides
web application developers to create appropriate numbers of
web worker to acquire best performance of web application.

Most of existing web worker offloading methods are
non-transparent. To our best knowledge, [12] is the only
implemented transparent offloading method. After ample
research of current offloading methods, a new web worker
offloading method is proposed. By rewrite of web worker
implementation and a little modification of existing HTML5
websocket mechanism of web platform, web worker can be
offloaded to server-side transparently. The proposed web
worker offloading method has two advantages comparing to
the offloading method in [12]. First, it can make the most of
the existing communication mechanism of client web
platform, which simplify the communication implementation
between client web platform and server. Second, server side
implementation becomes easier because of HTML5
websocket communication mechanism. It can even use the

same server side as is used in general non-transparent
offloading method.

III. ARCHITECTURE OF WEB WORKER OFFLODING

METHOD

The running environment of web application is supported
by web platform. Web platform provides corresponding
implementation of the standard web API used by web
application. Fig.2 shows the architecture of proposed web
worker offloading method. In client side, web application
uses standard web worker interface to create web worker and
communicate to it. The platform implementation of standard
web worker interfaces are rewritten, in which web worker
creation request and communication messages are sent to
server side based on modified HTML5 websocket. In server
side, server main thread receives websocket messages from
client, creates web worker thread, forwards communication
messages to corresponding web worker, and returns results
of web worker to client. The detailed design and
implementation will be introduced in the following
subsections.

...

Web application

Web platform JS running environment

Web

worker1

Web

workerN
...

Server Websocket

Interface

WebWorker

Interface

WebWorker interface
Server main thread

Client Server

Rewriten

Web Worker

Rewriten Client

Websocket

Server

Websocket

Standard

Web Worker

Web

worker2

Figure 2. Architecture of web worker offloading method.

A. Implementation of Client

HTML5 standards provide JS interfaces for web
application developers to create web application and the
corresponding JS interfaces are implemented in web
platform. To acquire transparency, the proposed method
rewrites the corresponding platform implementation of web
worker interfaces. In the creation process of web worker, it
firstly establishes websocket connection with server side, and
then sends necessary parameters to server side once
websocket connection is established. When web application
posts messages to web worker or terminates a web worker,

corresponding messages are sent to server side based on the
established websocket connection.

In web platform, the message types of web worker and
websocket are totally different. To send web worker
messages using websocket and acquire web worker messages
from websocket, it is necessary to conduct transformation
between web worker message and websocket message. Web
worker message is first deserialized to acquire message
contents and then the message contents is wrapped into a
websocket message before sent to server side. A received
websocket message should be converted to a web worker
message before relaid to web worker message handler. For
different functionalities, three types of web worker messages
are defined, namely web worker creation message,

1320

communication message and web worker termination
message, as is shown in Table I. Special tag is added in
message contents to mark different type of messages.

Apart from web worker, it also needs a little modification

of websocket. When a client websocket receives a message,

it is necessary to determine if this is a web worker message

or just an ordinary websocket message. For this purpose, the

websocket message handler of client side checks the special

tag of websocket message contents added by server side. If it

is a web worker message, websocket handler transforms it

into web worker message and relays it to web worker

message handler.

TABLE I. WEB WORKER MESSAGE TYPE

message.type Functionality

ESTABLISH Client side establish a web worker

COMMUNICATE Communication message between
client and server

TERMINATE Client side terminate a web worker

B. Implementation of Server

In server side, JS running environment plays similar role

with web platform in client, supporting javascript running.

Server main thread provides web worker offloading

functionality. Server websocket listens client connection

requests and receives messages from client when the

connection is established. On receiving a message, server

main thread first checks message type. If it is a web worker

creation message, necessary parameters to create a web

worker are acquired and a web worker is created. If it is a

communication message, server main thread resolves

message contents and relays it to corresponding web worker.

Server main thread terminates corresponding web worker if

it is a web worker termination message. It is worth noting

that JS running environment supports standard HTML5 web

worker. Web worker creation, communication and

termination in server side all use standard web worker

interfaces. When a web worker finishes its execution, it

returns results to server main thread through web worker

message. On receiving web worker message, server main

thread resolves message contents and adds special tag to

indicate that this is a web worker message and sends the

messages to client side through websocket channel.

It is easy to learn from the web worker creation process

that each client web worker creation request corresponds to a

websocket connection, which corresponds to a web worker

instance in server side. Therefore, when the server websocket

receives a message from client, it is easy to relay the

message to corresponding web worker. Because of the one-

to-one correspondence of web worker and websocket

connection, when a websocket is closed normally or because

of an error, the corresponding web worker should be

terminated to save resources even if client web application

does not send termination message.

C. Workflow

Fig.3 shows the web worker offloading workflow
between client and server.

1. When a new Worker is created by web application,
the corresponding implementation in web platform
first establishes a websocket connection with server
and then sends url of the JS file that is used to create
web worker.

2. When server websocket receives web worker
creation message from client, it first checks message
type, and then downloads the JS file, creates a web
worker.

3. When web application posts message to web worker,
the corresponding implementation in web platform
transforms web worker message into a websocket
message and sends it to server.

4. Server websocket receives client message, checks
message type, extracts message contents and relays
it to corresponding web worker.

5. Web worker receives message and returns results to
server main thread through standard web worker
message interface when it finishes execution.

6. Server main thread receives web worker message
and relays it to client through websocket channel.
Client websocket receives this message, checks that
it is a web worker message and relays it to
corresponding web worker message handler.

Client
Web Platform

Server
Main Thread

Establish websocket
connection

Send url of JS file

Web worker

Create web worker

Send message to server

Send message
to client

Web
worker
running

Relay message

Return results

Web
application

var worker=new

worker(�worker.js)

worker.postMessage(...)

Relay message to
handler

worker.onmessage

worker.terminate()
Send message to

server
Terminate

web worker

Figure 3. Web worker offloading workflow.

IV. EXPERIMENTS AND CONCLUSION

For comparison, the proposed web worker offloading
method and the common non-transparent web worker
offloading method both have been implemented. The
hardware of client is raspberry Pi 3 with 1G memory, 64 bit
Quad Core 1.2GHz processor. The web platform is
Chromium browser [14]. Hardware of server is single Dell
PowerEdge R730 server in Local Area Network. The JS
running environment is Node.js which bases on V8 engine. It
is worthwhile to note that the two kinds of methods share the
same server side including server main thread code.

For experiments, Ray Tracing and Image Decrypt are
used to verify the effectiveness and efficiency of proposed
web worker offloading method. Ray Tracing renders two
images of 400px*400px and 200px*200px respectively with
different number of web workers under the conditions of no
offloading, non-transparent offloading and proposed

1321

transparent offloading. Image Decrypt decrypts different
number of images with web worker. One web worker is
responsible for decrypting one image of 6K and 3K
respectively under different conditions. From the start button
clicked, the time cost by applications to finish the final
display is calculated in the experiments. A noteworthy
difference between the above two applications is that in Ray
Tracing all web workers collaborate to finish a fixed big job,
whereas in Image Decrypt one web worker is responsible for

a fixed little job. As the increase of web worker number, the

whole workload in Ray Tracing is changeless, but in Image

Decrypt the whole workload is proportional to the number of

workers. The experiments results are shown in Fig. 4 to Fig.

7, the data in which are average value of multiple

experiments.

Fig. 4 and Fig. 5 show that comparing to no offloading,
offloading web worker to powerful single server can improve
web application performance by a large margin. But our
proposed transparent offloading method shows better
performance improvements, which reduces execution time
by 65% and 36% comparing to no offloading and non-
transparent offloading respectively. Fig. 6 and Fig. 7 also
show better performance comparing to the other two

situations. Comparing to Ray Tracing, Image Decrypt shows

less performance improvements when offloading web

worker to server side. This is because Image Decrypt has to

exchange larger data with server side, which increases the

communication cost. Similar to conclusion concluded in [15],
the web worker which has large amount computation but

little data exchange with web application is most suitable for

offloading.

There is an interesting phenomenon that web application
Ray tracing achieves best performance when the number of
web workers are 4 under the condition of no offloading. This
phenomenon is consistent with the conclusion in [13]. This is
because raspberry Pi 3 is Quad Core. Web application can
achieve best performance when the number of web worker
are the same with CPU cores. When the number of web
worker is bigger than 4, there are resource competitions
between multiple web workers, which degrade the
performance of web application.

V. SUMMARY

This paper proposed and implemented a transparent web
worker offloading method based on HTML5 websocket. It
was demonstrated that the method achieved better
performance comparing to no offloading and common non-
transparent offloading method. However, web worker
offloading is not always beneficial. Sometimes, it’s better to
execute web worker locally. In the future, the offloading cost
model and offloading decision strategies will be studied to
measure offloading cost dynamically and determine whether
it is advantageous to offload web worker to server side under
different conditions.

0 2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

Number of workers (N)

W
e
b

 a
p

p
li

c
a
ti

o
n

 f
in

is
h

 t
im

e
 (

s)

No Offloading

Offloading to Single Server

Transparent Offloading to Single Server

Figure 4. Experiment results of Ray Tracing (400px*400px).

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

Number of workers (N)

W
e
b

 a
p

p
li

c
a
ti

o
n

 f
in

is
h

 t
im

e
 (

s)

No Offloading

Offloading to Single Server

Transparent Offloading to Single Server

Figure 5. Experiment results of Ray Tracing (200px*200px).

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

Number of workers (N)

W
e
b

 a
p

p
li

c
a
ti

o
n

 f
in

is
h

 t
im

e
 (

s)

No Offloading

Offloading to Single Server

Transparent Offloading to Single Server

Figure 6. Experiment results of Image Decrypt (6K).

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

Number of workers (N)

W
e
b

 a
p

p
li

c
a
ti

o
n

 f
in

is
h

 t
im

e
 (

s)

No Offloading

Offloading to Single Server

Transparent Offloading to Single Server

Figure 7. Experiment results of Image Decrypt (3K).

ACKNOWLEDGMENT

This work is partially supported by the Pioneering Action
Initiative of Chinese Academy of Sciences (shuaixian
xingdong jihua) (Project No. Y654101601). The authors
would like to thank the anonymous referees for their
comments and suggestions. Furthermore, the authors also
gratefully acknowledge the helpful comments and
suggestions of the reviewers, which have improved the
presentation.

1322

REFERENCES

[1] Xu, Chaoran, et al. "MOJA - Mobile offloading for JavaScript
applications." Irish Signals & Systems Conference 2014 and 2014
China-Ireland International Conference on Information and
Communications Technologies IET, 2014:59-63.

[2] Tseng, Tai Lun, C. H. Tu, and C. H. Tu. "Migratom.js: a JavaScript
migration framework for distributed web computing and mobile
devices." ACM Symposium on Applied Computing ACM, 2015:798-
801.

[3] Fernando N, Loke S W, Rahayu W. Mobile cloud computing: A
survey[J]. Future Generation Computer Systems, 2013, 29(1):84-106.

[4] Yu M, Huang G, Wang X, et al. JavaScript Offloading for Web
Applications in Mobile-Cloud Computing[C]// IEEE International
Conference on Mobile Services. IEEE, 2015:269-276.

[5] Hwang, Inchul, and J. Ham. "WWF: Web Application Workload
Balancing Framework." International Conference on Advanced
Information NETWORKING and Applications Workshops IEEE
Computer Society, 2014:150-153.

[6] Hwang, Inchul, and J. Ham. "Cloud Offloading Method for Web
Applications." IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering IEEE, 2014:246-247.

[7] Gong, Xiaoli, et al. "WWOF: An Energy Efficient Offloading
Framework for Mobile Webpage." International Conference on
Mobile and Ubiquitous Systems: Computing, NETWORKING and
Services ACM, 2016:160-169.

[8] Kurumatani, S, M. Toyama, and E. Y. Chen. "Executing Client-Side
Web Workers in the Cloud." IEEE, 2012:1-6.

[9] Hwang I. Adaptive Computational Workload Offloading Method for
Web Applications[C]// International Conference on Computational
Science and Its Applications. Springer, Cham, 2015:459-471.

[10] Hwang, Inchul. "Design and implementation of cloud offloading
framework among devices for web applications." Consumer
Communications and NETWORKING Conference IEEE, 2015.

[11] Zhang, Xinwen, et al. Elastic HTML5: Workload Offloading Using
Cloud-Based Web Workers and Storages for Mobile Devices. Mobile
Computing, Applications, and Services. Springer Berlin Heidelberg,
2012.

[12] Zbierski, Maciej, and P. Makosiej. "Bring the Cloud to Your Mobile:
Transparent Offloading of HTML5 Web Workers." IEEE,
International Conference on Cloud Computing Technology and
Science IEEE, 2015:198-203.

[13] Verdu J, Pajuelo A. Performance Scalability Analysis of JavaScript
Applications with Web Workers[M]. IEEE Computer Society, 2016.

[14] Wang S, Sun P, Guo Z, et al. Design and Implementation of
Embedded Web APP Engine[J]. Journal of Network New Media,
2016.

[15] Kumar K, Liu J, Lu Y H, et al. A Survey of Computation Offloading
for Mobile Systems[J]. Mobile Networks & Applications, 2013,
18(1):129-140.

1323

