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Abstract—Despite the advent of various network enhancement
technologies, it is yet a challenge to provide high-performance
networking for GPU-accelerated applications on commodity
Ethernet. Kernel-bypass I/O, such as DPDK or netmap, which
is normally optimized for host memory-based CPU applications,
has limitations on improving the performance of GPU-accelerated
applications due to the data transfer overhead between host and
GPU. In this paper, we propose GPU-Ether, GPU-native packet
I/O on commodity Ethernet, which enables direct network access
from GPU via dedicated persistent kernel threads. We implement
GPU-Ether prototype on a commodity Ethernet NIC and perform
extensive testing to evaluate it. The results show that GPU-
Ether can provide high throughput and low latency for GPU
applications.

I. INTRODUCTION

Graphics processing unit (GPU) becomes one of the most
popular accelerators in recent years. GPUs with massively
parallel processing capability and large memory bandwidth
are well suited to compute/memory-intensive applications
ranging from accelerated network functions (NFs) [1]–[5] to
distributed deep learning [6], [7] and various scientific com-
puting, including research for COVID-19 [8]. Accordingly,
most computing servers in modern data centers [9], [10] and
high-performance computing (HPC) [11] environments are
equipped with GPUs.

Many researches have been proposed to enhance GPU-
based acceleration performance, and they reveal that, as GPU-
based acceleration becomes intensified, networking overhead
accounts for a more significant portion of the performance.
Various network aspects have been examined to reduce the
networking burden of accelerators (e.g., GPUs), including
the use of proprietary network protocols and specialized
NICs [12], offloading network I/O to SmartNICs [13] or
Programmable NICs [14], optimization of network protocols
such as MPI [15], and providing efficient network I/O on top
of RDMA [16], [17].

Recent studies on network I/O optimization of GPUs often
require specialized hardware such as RDMA HCA, NetFPGA,
or SmartNIC. However, many data centers and cloud areas are
still equipped with commodity Ethernet devices, and it is un-
likely to immediately replace them with specialized hardware
to improve performance. Instead, kernel-bypass I/O [18]–[20]
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can be a promising candidate, but using it for GPU requires
complicated pipe-lining implementation and tuning efforts [1],
[5].

In this paper, we propose GPU-Ether, a GPU-native packet
I/O framework that enables direct network access from the
GPU on top of the commodity Ethernet device. The proposed
framework simplifies the GPU programming model by elimi-
nating complex multi-staged pipe-lining. Moreover, it replaces
heavy memory copy operations with P2P-DMA, thereby dra-
matically reducing network latency and completely excludes
CPU intervention, which allows other host applications to fully
utilize CPU resources. Benefits of GPU-Ether are as follows.

Low latency with direct network access: GPU-Ether
shows significantly lower latency. In GPU-Ether, incoming
network traffic is transferred directly to preallocated packet
buffers in GPU memory through P2P-DMA, so a GPU appli-
cation can immediately access data from the packet buffers
without waiting for memory copy from its host memory. In
an experiment comparing round trip time (RTT) of various
networking methods for the GPU, GPU-Ether proves that it
can achieve a minimum-level of latency achievable on the
commodity Ethernet link (Section II).

No CPU intervention: GPU-Ether eliminates CPU in-
tervention by letting dedicated GPU persistent kernel threads
manage network traffic destined for the GPU itself. Thereby,
CPU cores no longer need to perform boilerplate logic, such
as packet I/O and data transfer between the host and the
GPU. Another benefit of eliminating CPU intervention is
that it minimizes the CPU cache pollution. Using the typical
Linux network stack or kernel-bypass I/O, the cache pollution
is inevitable because all network traffic to the GPU passes
through host memory. In GPU-Ether, network traffic is deliv-
ered to the GPU directly and CPU cache pollution is reduced
significantly (Section V).

A simpler model of GPU network programming: GPU-
Ether’s direct packet I/O scheme allows developers to imple-
ment high-performance GPU-accelerated network applications
easily. Developers no longer have to spend time on tedious tun-
ing and configuring complex pipe-lining to hide data transfer
delays.

To provide the benefits mentioned above, GPU-Ether has
to address the following major challenges in implementing
packet I/O operating on the GPU.



Sequential processing within parallel computing architec-
ture: The packet I/O requires sequential processing, but GPUs
are devices designed for parallel processing. GPU maximizes
its performance by executing a large number of GPU threads in
parallel. GPU threads are scheduled in a 32 threads unit called
warp (for Nvidia GPUs), and sequentiality is not guaranteed
in warp scheduling. Meanwhile, commodity network interface
cards hire descriptor ring structures for managing packet I/O,
and their drivers assume sequential accesses to them. Careful
consideration is needed when designing direct packet I/O
running on the GPU to overcome this disparity.

Lack of thread-level locking: GPU-Ether uses a preal-
located memory pool in GPU global memory, from which
packet buffers can be allocated to the GPU threads. In the
process of allocating the packet buffer, lock operations are
usually required because packet buffer allocation may occur
concurrently from multiple threads. However, GPUs only
provide warp-level or thread-block-level locking rather than
thread-level, which is required on our GPU-Ether. Moreover,
according to [21], there is a high likelihood of causing live-
locks by implementing thread-level synchronization to GPUs
using the CPU synchronization mechanism.

Expenses due to frequent communication between CPU
and GPU: The packet I/O operation requires a constant ring
descriptor information update and doorbell register access.
If these tasks are done on the host-side (e.g., NIC driver),
the periodic exchange of information between CPU and GPU
is required, which complicates implementation and increases
overhead and latency.

Our GPU-Ether prototype is implemented on a system with
an Nvidia Quadro P4000 GPU and an Intel 82599 X520-
DA2 10GbE NIC. The GPU-Ether prototype demonstrates low
round trip latency, and high throughput.

The contributions of this paper are as follows: (a) we present
a packet I/O scheme operating on GPU which supports the
direct network access from a GPU on the commodity Ethernet
environment; (b) we develop several optimization techniques
for enabling GPU persistent kernel threads to process network
packets in line-rate; and (c) we prototype GPU-Ether for a
10GbE NIC and evaluate its I/O performance and applicability
with several network applications, including software router,
IPSec gateway, and NIDS.

II. MOTIVATION

An earlier work [22] has investigated the efficacy of P2P-
DMA between an Ethernet NIC and a GPU. However, they
did not make the entire packet I/O using P2P-DMA and any
performance comparison with other networking methods. To
confirm the availability of P2P-DMA in the packet I/O, we
partially implemented GPU-Ether based on P2P-DMA and
then conducted simple ping-pong message experiments as
follows.

Networking methods: In this experiment, we employ
three different networking methods available in the commodity
Ethernet as follows: (a) POSIX UDP socket + data transfer
to/from a GPU; (b) DPDK (kernel-bypass I/O) + data transfer

Fig. 1. Latency comparison of various networking methods for
the GPU.

to/from a GPU; and (c) direct data transfer between a NIC
and a GPU via P2P-DMA.

Client: A simple UDP client repeatedly sends 100 pack-
ets five times to collect the average RTT of each trial.
Sending additional five packets to warm up and excludes their
RTTs from the average. Also, to avoid the effect of interrupt
moderation [23], packets are transmitted back-to-back without
a time gap. We vary the packet size from 64 bytes to 1514
bytes with a random payload.

Servers: Servers for (a) and (b) operate as follows:
receive a packet, conduct two data transfers with the GPU
(H-to-D and D-to-H), and then send the packet back to the
client. For (c), a server is running on a GPU. Two P2P-DMAs
occur between the NIC and the GPU, and the GPU directly
manages ring descriptors and doorbell registers of the NIC to
send and receive packets.

Fig. 1 shows the average RTT of the three different net-
working methods. Among them, UDP socket (blue bar) shows
the longest latency due to system calls and memory copies
included in the network stack processing. DPDK (green bar)
shows lower latency by avoiding the kernel network stack but
includes two data transfers between the host and the GPU
because network traffic must pass through the host memory.
Direct transfer via P2P-DMA (yellow bar) shows the shortest
latency in all packet sizes, which is consistent with the results
in [5] claiming that data transfer between the host memory and
the GPU memory is a major deterioration of GPU networking.

Typically, a pipe-lining technique that reduces the number of
memory copies by batching a large number of packets is used
to hide the GPU’s data transfer delay. However, an optimal
batch size depends on the packet size, the network bandwidth,
and the GPU’s processing power and it is not trivial to find
one. During the experiment, we observe that DPDK uses 100%
of two CPU cores for polling (master and slave lcore each),
while P2P-DMA has no CPU core usage. We measure the
time spent on the link and it is almost the same as the round
trip time of P2P-DMA method (about 24 us). It implies that
only little latency is added to the link delay for the P2P-DMA
method while reflecting packets.



Fig. 2. Overall architecture of GPU-Ether. Rx,Tx: Ring de-
scriptors.

III. DESIGN

In this section, we present an overview of the high-level
design of GPU-Ether and then describe major components in
detail.

A. Overall system design

Fig. 2 shows the overall architecture of GPU-Ether. Two
persistent kernel threads in GPU are responsible for Rx and
Tx, respectively. Received packets are transferred to packet
buffers in the GPU memory via P2P-DMA and Rx-kernel
updates the information of associated descriptors. By default,
GPU applications can directly access the packet data in a
zero-copy manner.1 When a packet is ready to transmit, Tx-
kernel updates the descriptor information related to packet
transmission, sends out the packet with a doorbell register
access and returns the packet buffer to the memory pool.

B. Main components

Memory pool and packet buffer: The memory pool in
GPU-Ether is a set of available packet buffers. It is preallo-
cated by GPU-Ether to hold ingress/egress packets within the
GPU global memory. The DMA-able address of the memory
pool is exposed to the NIC driver when initializing GPU-Ether
and replaces the original DMA addresses with proper offsets.
Then, it becomes possible for the NIC to forward network
traffic to the GPU memory directly. The DMA-able buffer
address for each descriptor must be newly specified on every
packet departure or arrival, and the persistent kernel threads

1Data can be copied into the application buffer depending on purposes.

Fig. 3. Sequential Packet I/O processing in persistent kernel
threads.

perform this task. A packet buffer structure is a fixed-size
object containing metadata and a fixed-sized area for packet
data.

Ring descriptors and doorbell registers: To perform
packet I/O directly within a GPU, GPU-Ether maps Rx/Tx
descriptors and doorbell registers of the NIC driver into the
GPU memory using different mapping techniques for two
different components. General mmap + CUDA mapping is
used for doorbells and P2P-DMA is for descriptors. The reason
for different mappings is explained in the next section. GPU
threads in the persistent kernel are mapped one-to-one with
descriptors, and they update the information of each dedicated
descriptor. To minimize the overhead, only the last thread
of each warp accesses the doorbell register. The doorbell is
accessed after the warp number of packets are processed for
batching while notifying the NIC.

Persistent kernel threads: Two persistent kernel threads
are the key enablers of packet I/O operating on GPU. Their
main tasks are to allocate and free packet buffers2, update
descriptor information and control the NIC through door-
bell registers. The doorbell registers need to be sequentially
accessed for NIC’s operation procedure but a GPU warp
scheduler schedules threads in an indeterminate order. It may
cause abnormal behavior in packet retrieval and transmission.

To resolve this issue, we make only a warp unit of threads
process packets at a time. The warp responsible for packet
processing is rotated from the first warp to the last within the
kernel to realize the sequential packet I/O process (Fig. 3).

C. Enhancing parallelism

Since the GPU architecture is optimized for parallel pro-
cessing, sequential processing with just a warp-unit may
cause performance degradation. To avoid this degradation, we
introduce the concept of warp batch which is the number
of threads concurrently performing packet I/O (Fig. 4) and
increase it to make multiple warp units run together. It gives

2Allocating a packet buffer means extracting it from the memory pool, and
freeing means the opposite.



Fig. 4. Enhancement of parallelism in packet processing.

GPU-Ether a certain level of parallelism while maintaining
sequentiality. Based on extensive testing with various batch
sizes, we set 128 as the default batching (four consecutive
warps) considering trade-offs between thread scheduling and
performance. With this optimization, we obtain significant
performance gain in packet forwarding (Section V).

D. Mini-mempool

The GPU-Ether prototype has a memory pool that can hold
a total of 2,048 packet buffers, and this value can be changed at
the initialization phase. The packet I/O operating on the host-
side usually manages the ring descriptors and packet buffers
sequentially in a loop with a single thread. However, in GPU-
Ether where multiple GPU threads operate in parallel, packet
buffer allocation requests may co-occur and lock operation
is required. Unfortunately, the current CUDA architecture
supports only warp-level or thread-block-level locking rather
than individual thread-level [24]. Also, lock operation in the
CUDA architecture can significantly degrade GPU threads’
performance and there is also a risk of live-locks. To resolve
the issue, we divide the memory pool into separate mini-
mempools for each thread and eliminate the need for lock
operation during the memory pool access from GPU threads
(refer to Fig. 5).

IV. IMPLEMENTATION

To implement GPU-Ether, GPUdirectRDMA API is re-
quired for P2P-DMA configuration. Instruction-level compute
preemption is also needed to allow GPU-Ether to run persistent
kernels with other active GPU applications. There are several
candidate GPUs available in the market, and we choose Nvidia
Quadro P4000 GPUs for our prototype. For networking, we
use Intel X520-DA2 NICs (Dual-port 10GbE).

A. GPU-Ether operations inside of GPU

According to our tests, one GPU thread per packet is enough
to achieve the line-rate and more threads allocation causes
inefficiencies due to synchronization overhead between them.
In our GPU-Ether prototype, both kernels (Rx and Tx) have
512 threads, respectively, and each thread is mapped to a

Fig. 5. Mini-mempool per GPU thread for lock-free memory
pool access.

descriptor one-to-one to process a packet. The number is equal
to the default number of descriptors for the Intel ixgbe driver.
As both kernels are launched in separate CUDA streams, they
can operate concurrently.

Determining the owner of packet buffers: In GPU-Ether,
each thread has an independent mini-mempool, so packet
buffers are not shared between threads within a kernel. How-
ever, to hand over packets from one kernel to another, we have
to copy the packets or make kernels to share the buffer. Here
we choose the latter to ensure low latency via zero-copy data
transfer. To determine the current owner of a packet buffer
shared by multiple kernels, we add a status register field in
packet buffer to specify the owner’s ID.3

Each kernel has a unique ID and only the kernel that
matches the owner’s ID written in the status register of
a packet buffer can access the buffer. Note that the Rx-
kernel does not require an ID because it always allocates
new buffers from the memory pool. When a packet buffer
is initially allocated from the memory pool, the value of the
status register is zero. After the buffer is filled with a newly
arrived packet, it is changed into a value indicating a specific
kernel, and then packet processing is performed by threads
in the corresponding kernel.4 In the end, the packet buffer is
returned to the memory pool, and the status register value is
set back to zero.

Here, we describe an example scenario. Let us assume that
three persistent kernels with the same number of threads are
running: an Rx-kernel, a router kernel (1), and a Tx-kernel (2).
The value within parentheses is an ID for each kernel and Rx-
kernel has no ID as explained above. When the fourth thread
with an empty packet buffer in the Rx-kernel receives a packet,
the value of the status register is changed into one, the ID for
the router kernel. Then, the fourth thread in the router kernel
becomes the owner of the buffer and processes the packet.
After packet processing is completed, the thread changes the
value of the status register into two, the ID for the Tx-kernel,

3The owner of a packet buffer can be a thread within a Tx-kernel or an
application kernel and is limited to one thread at a time.

4There can be multiple threads for one packet.



Fig. 6. The NIC initializing process for using the memory pool
and descriptors created in the GPU memory.

and finally, the fourth thread in the Tx-kernel prepares the
descriptor for the packet and sends it to the network. We
could quickly implement network applications that operate
in the form of a persistent kernel, and compatibility with
existing GPU applications will be supported through minor
API modifications.

Rx-kernel: Each thread in the Rx-kernel polls the
Descriptor-Done field in its own Rx descriptor to confirm
the completion of a packet transfer into the packet buffer in
GPU memory. This field in descriptor is set by NIC hardware
after completing DMA for a packet to the corresponding
descriptor’s buffer. When the Rx-kernel starts, each thread
gets a packet buffer from its mini-mempool, attaches it to
the descriptor and waits for a packet. At the notification of
packet reception via the marked Descriptor-Done field, the
corresponding thread makes the buffer available to other GPU
applications (e.g., Tx-kernel or NF applications in our case) by
changing the status register value of the buffer. After that, a
new buffer is assigned to the thread for an another packet. Note
that threads also reset descriptors for reusing after passing
buffers.

These tasks are executed in parallel by the threads in the
current warp batch, and then tasks are completed, the last
thread in this warp batch updates information to the NIC by
accessing the doorbell register. At the same time, the last
thread passes the work permission to threads in the next
warp batch. For sequential processing, a branch is created
to ensure that only threads in current warp batch perform
tasks, and then the syncthreads command is needed for post-
branch synchronization. Since frequent thread synchronization
seriously degrades persistent kernels’ performance, we try to
devise a mechanism that minimizes intra-kernel synchroniza-
tion. In Rx-kernel, synchronization is used in only two places,
the starting point of the persistent loop, and right before the
last thread in current warp batch accesses the doorbell after
updating descriptor information.

Tx-kernel: Tx-process operates similarly as Rx-process,
but it is more complicated because the interface between
packet I/O and the NIC is asynchronous. In the Rx-process,
when a new packet is received, the NIC marks the Descriptor-
Done in the Rx descriptor so that the descriptor can be cleaned
up immediately. However, in the Tx-process, there is a time

Fig. 7. The process of mapping the doorbell register in the
NIC driver to the GPU memory.

gap between requesting the NIC to send a packet and when
the NIC actually sends the packet. Hence, it is inevitable to
compose the Tx-kernel with two parts: getting available Tx
descriptors via Descriptor-Done field set by the NIC and then
placing new packets on the descriptors.

When a Tx-kernel starts, threads in the kernel check
whether there are descriptors marked with Descriptor-Done
fields to obtain available descriptors. They firstly clean up
the descriptors by returning buffers to the memory pool,
because marked Descriptor-Done fields convince completions
of packet transmissions. Then, each thread within the current
warp batch checks whether any of the packet buffers in its
mini-mempool have status register marked with Tx-kernel’s
unique ID. If found, it gets the buffer, makes the buffer used by
the descriptor and sets relevant information. When all threads
in the current warp batch have completed setting descriptors
for packets to be sent, the last thread accesses the doorbell
register to instruct the NIC to send packets.

As an alternative design, we may consider implementing
both Rx/Tx kernels as functions to maintain only one persistent
kernel for handling both processes. In this design, all processes
are sequentially executed and the thread receiving a packet is
also in charge of transmitting the packet. It eliminates concerns
about changing the packet buffer ownership but performance
degradation occurs because transmission and reception cannot
be performed simultaneously.

B. Initializing GPU-Ether

Before executing persistent kernels that perform packet I/O
in the GPU, an initializing process for interaction of a GPU
and a NIC is required. This is done only once during initial-
ization and the GPU kernel handles all subsequent executions.

Setting memory pool and descriptors via P2P-DMA:
Firstly, memory pool and descriptors are created in the GPU
memory using cudaMalloc and the addresses and sizes are
informed to the NIC driver by the ioctl system call in
the host-side code of GPU-Ether. The NIC driver obtains
DMA-able addresses of them using GPUdirectRDMA API,
nvidia p2p get pages. The DMA-able address of the memory
pool is then passed to the Rx/Tx kernel during initializa-
tion so that packet buffers can be accessed with appropriate
offsets from GPU kernels. It enables GPU kernels of GPU-



Fig. 8. Rx and Tx throughput of GPU-Ether with various
packet sizes.

Ether to update DMA addresses of packet buffers for a NIC
with DMA-able GPU memory addresses. For the descriptors,
the DMA-able addresses of them are configured using the
IXGBE WRITE REG macro. After that, the NIC can be
controlled through descriptors created in the GPU memory
(Fig. 6). We exploit only one TX/RX descriptor ring for
simplicity in our implementation. It is sufficient to achieve
10GbE network performance. Note that load balancing through
hardware-level hashing called RSS (Receive-Side Scaling) is
usually done automatically on 10GbE NIC or higher, so we
force only one ring pair to be active with ethtool command.

Setting doorbell registers through two-step mapping: The
doorbell registers reside on the NIC hardware and the NIC
driver uses them after mapping them to the virtual address
space with ioremap system call. Since they cannot be mapped
directly from the NIC to the GPU memory, a two-step mapping
is required to map the virtual address extracted by the NIC
driver to the user level and then remaps them to the GPU
memory. To map the doorbell registers to the user level, one
must implement mmap system call in the NIC driver. When
mmap is called, the NIC driver maps the virtual addresses
of the doorbell registers to the user level address space by
calling io remap pfn range system call. Then this address
is mapped again to the GPU memory via cudaHostRegister
and cudaHostGetDevicePointer, making them accessible to the
GPU kernels (Fig. 7).

V. EVALUATION

A. Experiment Setup

We run our experiments on two nodes directly connected by
a 10 Gbps Ethernet link (Intel X520-DA2 10GbE NIC). Both
nodes have the same hardware and software configuration.
They are equipped with Intel i7-6800K CPU 3.4 GHz, which
has six cores and supports hyper-threading. The installed
memory capacity is 16GB and operates at 2,133 MHz. An
Nvidia Quadro P4000 Pascal GPU is deployed. It has 14
streaming multiprocessors, a total of 1,792 cores, and 8 GB
of memory. The operating system is 64-bit Ubuntu 18.04.2
LTS with Linux kernel 4.18.15. CUDA 10.1 and Nvidia-driver

Fig. 9. Forwarding throughput comparison between GPU-
Ether and DPDK with various packet sizes.

418.67 are used for GPU driver. DPDK-pktgen is used to
generate network traffic at line-rate [25].

In Fig. 10, we describe the experimental setup with two
different packet I/Os (DPDK and GPU-Ether) to access the
GPU. In Fig. 10(a), each packet received by DPDK is stored
within rte mbuf structure. To ensure that packets are allocated
in contiguous space in the memory pool, we rearrange the
received packets in contiguous space before copying them to
the GPU memory. Here, we use the master-worker thread
model similar to [1], [5] in which a worker thread is
responsible for packet I/O through DPDK and a master thread
is responsible for data transfer with the GPU.

When a worker thread receives packets, it copies them to the
master thread’s queue. The master thread copies them again
to the GPU memory and the transmission goes vice versa.
Besides, we include 64-byte of headroom and tailroom when
transferring each packet to the GPU as they are required for
storing additional headers and authentication data generated
when processing one of our test application, IPsec gateway.
The GPU’s packet buffer is set to four times the master queue
size to avoid processing gaps on the GPU due to data copy
delays.

In GPU-Ether (Fig. 10(b)), packets are directly transferred

(a)

(b)

Fig. 10. Packet delivery process in two different packet I/Os
used for evaluation. (a) DPDK with GPU. (b) GPU-Ether.



Fig. 11. Effect of changing the number of warps performing
packet I/O at a time. All packets are 64 bytes.

into the packet buffers in the GPU memory without any
copy operation, and each thread processes packets in its
mini-mempool. GPU-Ether also includes headroom space in
the packet buffer structure and metadata and the rest are
aligned with 32 bytes and 128 bytes, respectively, taking into
account the cache-line size of CUDA architecture [26]. In
Rx and Tx kernels, each GPU thread counts the numbers of
receiving and sending packets by calling atomicAdd function
with variables shared among threads. This accumulated packet
count is copied into the monitoring loop running on the host
via cudaMemcpy every second, and throughput is calculated
with it. The configurations explained above are applied to all
experiments described below.

B. Performance of GPU-Ether Packet I/O

In Fig. 8, we present preliminary experimental results to see
Rx and Tx throughput of GPU-Ether with various packet sizes.
Each throughput is independently measured. It is observed
that GPU-Ether can achieve line-rate for all packet sizes
except for transmitting 64-byte packets (94%). According to
studies in [27], [28], the effective bandwidth of a PCIe link is
drastically reduced when the link is full of small packets. In
GPU-Ether, small control packets for accessing doorbells and
descriptors flow in the same direction with transmitted packets
(from GPU to NIC). With warp batch of 128, 108K doorbell
register and 13.9M descriptor accesses occur every second,
which could be the source of throughput loss. Also, unlike
host-side packet I/O where PCIe is used only between the
NIC and DRAM, communication among NIC, DRAM, and
GPU via PCIe is required in GPU-Ether. It complicates the
delivery process of PCIe traffic. However, it is noted that 64
byte packets are unusually small, and GPU-Ether can achieve
the line-rate with the reasonable size of packets.

C. Packet forwarding

In Fig. 9, we compare the forwarding throughput of DPDK
and GPU-Ether. In this experiment, the received packets are
transferred to the GPU via DPDK or GPU-Ether. MAC and
IP addresses are modified for forwarding by CPU for DPDK
and by GPU for GPU-Ether, and packets are forwarded back
to the sending host. When we use DPDK to access the GPU,
multiple copies are inevitable and the performance of DPDK

TABLE I. Execution time comparison with co-located host
application.

Configuration Elapsed time (ms) Slowdown
Idle 8023.4 100%
w/ DPDK 23969.2 298.74%
w/ GPU-Ether 8078.4 100.69%

is lower than that of GPU-Ether. In DPDK, as the packet size
increases from 64 bytes (49.12%) to 1,514 bytes (80.58%),
the number of incoming packets per second (PPS) decreases
and the number of memory copies also decreases. On the
other hand, GPU-Ether, which generates only two P2P-DMAs
without memory copy, shows 100% forwarding performance at
all packet sizes except 64 bytes (88.5%). The size of I/O burst
(number of packets received or sent in one function call) in
DPDK is 32 and the batch size used for data transfer between
host and GPU is 512.

D. Varying parallel execution degree

In Fig. 11, we present the performance of GPU-Ether with
various sizes of warp batch. The size of warp batch indicates
the degree of parallelism, as explained in Section III. In this
experiment, the packet size is fixed as 64 bytes to observe
the worst performance. Unlike Rx and Tx, it is observed that
the forwarding throughput is maximized when warp batch is
128 and decreases after that. In the forwarding scenario, a Tx-
kernel can proceed on packets after an Rx-kernel processed,
and the Rx-kernel performance is limited by the buffer-freeing
rate of the Tx-kernel due to buffer sharing. In addition to
this mutual bound, a packet forwarding process consists of
buffer allocation/free, buffer owner verification and source and
destination MAC/IP header modifications. Low parallelism (a
small warp batch) under this condition leads to significant per-
formance degradation. On the other hand, the work-permission
can move to the next warp batch only after all threads in
the current warp batch completed their tasks. Since Rx/Tx
kernels reside in different SMs, thread scheduling for the same
processing range of threads for independent kernels becomes
inefficient as the warp batch size increases. If warp batch size
exceeds 128, it is confirmed that forwarding performance is
rather reduced.

Rx and Tx-processes show a slight performance improve-
ment as warp batch size increases, but there is no significant
difference since they have no overhead for buffer alloca-
tion/free.

E. Interference with co-located host applications

While DPDK uses multiple CPU cores to handle packet
I/O for GPU, GPU-Ether does not use any CPU core since
every task is done on GPU after initialization. Checking the
CPU usage with top command shows that all CPU cores
are idle during GPU-Ether is running. To examine the actual
effect of GPU-Ether on host applications, we conduct a noisy-
neighbor experiment as in [13]. We model a host application
that multiplies two integer matrices of size 1,140 x 1,140 to



(a) IPv4 forwarding. (b) IPsec Gateway. (c) Network intrusion detection system.

Fig. 12. Performance of various network applications.

fully occupy our machine’s Last Level Cache, 15MB. Then,
the host application’s elapsed time is compared when DPDK
or GPU-Ether is executed concurrently with this application.
TABLE I shows the execution time. DPDK goes through host
memory for every packet I/O performed and makes the CPU
cache dirty, which causes three times higher execution time of
the host application. On the other hand, GPU-Ether does not
show much difference from the idle state. A slight difference
is due to the access to the mapped doorbell registers.

F. Applications
To demonstrate the performance and practicality of GPU-

Ether, we implement three network applications: IPv4 forward-
ing, IPsec gateway, and NIDS. They are also implemented
as persistent kernels and follow the zero-copy principle in
passing packet buffers between kernels for the low latency.
Since they are launched once and keep running until the
end of the program, kernel launching overhead is excluded
in the evaluation. For IPv4 forwarding, allocating one thread
per packet is sufficient, but the rest of the applications need
multiple threads per packet to alleviate each thread’s burden.
The specific configuration for each application is described
later in this section.

To determine the impact of the packet I/O on the application,
DPDK and GPU-Ether are connected to the same application
to measure performance.

IPv4 forwarding: We use DIR-24-8-BASIC [29] as the
table lookup algorithm as in previous studies [1], [5]. For
realistic measurements, we create the routing table from a
snapshot of BGP tables collected on August 1, 2018, by Route-
Views [30]. The number of unique prefixes in the snapshot is
474,319, and only 2% of the prefixes are longer than 24 bits.
Note that all packets used in the test contain a randomized
destination IP address.

IPsec gateway: We use AES-128 (CTR mode) and
HMAC-SHA1 algorithms to implement the application that
operates in the IPsec Gateway ESP tunnel mode. For AES,
we maximize parallelism by allowing each thread to process in
units of AES blocks (16 bytes). However, in SHA1 processing,
since authentication data is generated by accumulating pro-
cessed results for each SHA1 block (64 bytes), we could only
parallelize SHA1 at the packet level. Meanwhile, since the
persistent kernel can contain 1,024 threads and occupies one
SM per thread block persistently, it runs out of threads when

processing AES for packets larger than 512 bytes on a Quadro
P4000 GPU. For larger than 512 byte packets, each thread
handles multiple AES blocks. In this mode, the IPsec gateway
increases packet size by adding extra headers, padding, and
authentication data, so we use 1,460 bytes packet as the largest
one to prevent fragmentation due to exceeding the MTU size.
All packets used in this test contain randomized source and
destination IP addresses and payload.

Network intrusion detection system: Our NIDS appli-
cation is implemented based on the codes from Snort [31],
one of the most popular open-source projects in this category.
Snort reads the ruleset file to store it in a TRIE format and
then performs pattern matching with the Aho-Corasick (AC)
algorithm. Snort project is not only massive in code but also
has too many linked-list to apply on GPU; we implement
a simplified version of it. We change the linked-list style
TRIE generated by Snort into a two-dimensional array and
put it into GPU memory. After each thread in application
checks the destination port of a packet, if there exists a TRIE
for the corresponding port, it executes pattern matching for
the payload of a packet. To maximize parallelism, we chop
payload into multiple pieces and map each piece to a thread,
except 64-byte packet processing. For 64 byte packets, we
allocate one thread per packet because the payload is 18 bytes,
excluding headers and Ethernet CRC (46 bytes). In testing, we
use innocent synthetic traffic with a randomized payload and
destination port.

G. Application throughput

Fig. 12 shows the performance of three applications. The
IPv4 forwarding and the NIDS show the same throughput as
in forwarding scenario in both DPDK and GPU-Ether cases
(Fig. 9), which implies packet I/O is the main bottleneck
of these applications (Fig. 12(a) and Fig. 12(c)). The IPv4
forwarding performs table lookup for destination IP, and the
NIDS performs pattern matching for payload that is properly
partitioned into multiple threads. The simplicity of both op-
erations is the reason for the intact throughput. The IPsec
gateway is the only application that includes packet modifi-
cation among the three test cases. Despite allocating multiple
threads for each packet, performance degradation is inevitable
because many read/write and memory copy operations are
included (Fig. 12(b)). Considering that the IPsec gateway is a



compute/memory-intensive application to handle traffic at line-
rate, GPU-Ether is considered to be very useful for typical
GPU applications where the majority of communication is
composed of MTU sized packets (1,514 bytes).

VI. RELATED WORKS

Packet processing acceleration on GPUs: Studies such as
PacketShader [1], SSLShader [3], Kargus [2], and GASPP [4]
leveraged the high processing power of a GPU to maximize
network processing. GASPP improves the performance of ap-
plications by relocating workload so that similar-sized packets
are processed in the same warp, and we expect that GPU-
Ether will show performance improvement by implementing
this technique in it. In these studies, a CPU is responsible
for network I/O, so data transfer between a CPU and a
GPU becomes a performance bottleneck. To address this,
APUnet [5] eliminated data transfers by using Accelerated
Processing Units (APUs), where a CPU and a GPU use single
unified memory space. However, since an integrated GPU in
an APU has a lower memory bandwidth than a dedicated
GPU and shares the memory space with a CPU, heavyweight
synchronization operations are required.

GPU-native network I/O frameworks: There are several
approaches to provide native network I/O for a GPU to avoid
data transfer from a CPU. GPUnet provides GPU native socket
abstraction that runs over a reliable RDMA connection in [16].
GPUrdma [17] eliminates information exchange between a
CPU and a GPU by addressing the issue of direct doorbell
register access within the GPU. NVSHMEM [32] provides
abstraction for the partitioned global address space on top
of RDMA, and dCUDA [15] partially implements Message
Passing Interface (MPI) between GPUs. All of these works
allow GPUs to perform networking directly, resulting in low
latency and improved performance compared to traditional
CPU-based solutions but they need specialized hardware,
Infiniband RDMA HCA. GPU-Ether is the first native packet
I/O for GPUs running on commodity Ethernet.

Peer-to-peer DMA: In Morpheus [33], object deserializa-
tion is offloaded to a storage device and P2P-DMA is utilized
for communication between NVMe SSD and GPU. SPIN [28]
also improves communication performance between an SSD
and a GPU by integrating P2P-DMA into the standard OS file
I/O stack. However, SPIN shows that P2P-DMA may slower
than CPU-mediated I/O for very short reads as P2P-DMA does
not support read-ahead mechanism. Neugebauer et al. [27]
build a model based on the PCIe specification to show the
effective bandwidth achievable on a PCIe link depending on a
TLP size. According to their model, when the transfer size is
small (small TLPs), the effective bandwidth of the PCIe link
drops sharply. We believe this is because PCIe links have been
used primarily to move large data to connected devices. Many
recent studies including GPU-Ether encounter a performance
issue with P2P-DMA and it is expected to be solved in the
new generation of PCIe standard.

Offloading network I/O to other hardware: FlexNIC [14]
proposes a new architecture for offloading network I/O to pro-

grammable NICs. It provides flexibility using Reconfigurable
Match-action Tables (RMT), which enables packet routing to
the appropriate target core or device. Lynx [13] facilitates
SmartNICs to make accelerated network services run on vari-
ous accelerators upon RDMA. These studies have in common
that they delegate network I/O processing to separate hardware
instead of using GPU’s resource. Their biggest advantage is
that extra hardware can handle network I/O for multiple GPUs,
and traffic from multiple GPUs is aggregated into one NIC.
It is not suitable for GPU applications such as distributed
machine learning that require large bandwidth [6]. The native
packet I/O such as GPU-Ether, which utilizes the minimal level
of GPU’s resource, maybe a more realistic alternative.

VII. CONCLUSION

In this paper, we presented GPU-Ether, a novel GPU native
packet I/O framework that works on commodity Ethernet
devices. We confirmed that GPU direct networking could
provide the minimum level of latency of the Ethernet link
via latency analysis of GPU traffic delivery. In addition, as a
GPU performs packet I/O directly without CPU intervention,
implementation design is simplified and interference with
other CPU applications is minimized. GPU-Ether effectively
managed the inconsistency between GPU parallel processing
hardware architecture and sequential packet I/O processing
with careful design choices. We demonstrated the effectiveness
of our approach with IPv4 forwarding, IPSec gateway and a
network intrusion detection system. In the recent trend of near
data processing and disaggregation, we believe GPU-Ether
provides native networking without the need for expensive
hardware or CPU, which can be a useful platform.
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