Information and Software Technology 139 (2021) 106672

Contents lists available at ScienceDirect

INFORMATION
AND
SOFTWARE
TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Check for

The organization of software teams in the quest for continuous delivery: A | e
grounded theory approach

Leonardo Leite »"-*, Gustavo Pinto ¢, Fabio Kon?, Paulo Meirelles 92

a University of Sdo Paulo (USP), Brazil

b Federal Service of Data Processing (Serpro), Brazil
¢ Federal University of Pard (UFPA), Brazil

d Federal University of ABC (UFABC), Brazil

ARTICLE INFO ABSTRACT
Keywords: Context: To accelerate time-to-market and improve customer satisfaction, software-producing organizations
DevOps have adopted continuous delivery practices, impacting the relations between development and infrastructure

Continuous delivery
Release process
Software teams

professionals. Yet, no substantial literature has substantially tackled how the software industry structures the
organization of development and infrastructure teams.

Objective: In this study, we investigate how software-producing organizations structure their development
and infrastructure teams, specifically how is the division of labor among these groups and how they interact.
Method: After brainstorming with 7 DevOps experts to better formulate our research and procedures, we
collected and analyzed data from 37 semi-structured interviews with IT professionals, following Grounded
Theory guidelines.

Results: After a careful analysis, we identified four common organizational structures: (1) siloed departments,
(2) classical DevOps, (3) cross-functional teams, and (4) platform teams. We also observed that some companies
are transitioning between these structures.

Conclusion: The main contribution of this study is a theory in the form of a taxonomy that organizes the found
structures along with their properties. This theory could guide researchers and practitioners to think about how
to better structure development and infrastructure professionals in software-producing organizations.

1. Introduction we mean the differentiation (division of labor) and integration (inter-

action) [5] of operations activities (application deployment, infrastruc-

To remain competitive, many software-producing corporations seek
to speed up their release processes [1,2]. Organizations may adopt con-
tinuous delivery practices in their quest to accelerate time-to-market
and improve customer satisfaction [3]. However, continuous delivery
also comes with challenges, including profound impacts on various
aspects of the software engineering practice [4]. With an automated
deployment pipeline, one can, for example, question the role of an en-
gineer responsible solely for new deployments. Since release activities
involve many divisions of a company (e.g., development, operations,
and business), adopting continuous delivery impacts organizational
structure [3].

Given recent transformations, there is a need to better understand
the organizational structures that the software industry adopts for de-
velopment and infrastructure employees.! By organizational structure,

* Corresponding author at: University of Sdo Paulo (USP), Brazil.
E-mail address: leofl@ime.usp.br (L. Leite).

ture setup, and service operation in run-time) among development and
operations groups.

However, there is no substantial literature tackling how organiza-
tions have structured their development and operations groups. The
existing literature presents some classifications for organizational struc-
tures [6-10]. Still, most of these studies are not based on empirical
evidence, which limits the understanding of how the authors conceived
their classifications. An exception is the work of Shahin et al. [10],
whose focus was to understand how organizations arrange development
and operations teams to embrace continuous delivery practices opti-
mally. However, our quest is not centered around such practices, as it is
more general about the structuring of development and infrastructure
professionals. Also, note that social theories are rarely confirmed but

1 In the context of this work, development teams (also called product teams) are responsible for developing business services, while the infrastructure staff

uniformly provides computational resources for diverse applications.

https://doi.org/10.1016/j.infsof.2021.106672

Received 30 August 2020; Received in revised form 29 April 2021; Accepted 16 June 2021

Available online 24 June 2021
0950-5849/© 2021 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:leofl@ime.usp.br
https://doi.org/10.1016/j.infsof.2021.106672
https://doi.org/10.1016/j.infsof.2021.106672
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106672&domain=pdf

L. Leite et al.

are instead corroborated, confronted, or evolved by new studies [11-
13]. Our work is unique in the sense that (1) it analyzes a different
sample and (2) it follows a different research method; moreover, (3) we
discuss the discovered structures in more depth, and (4) we highlight
the similarities and differences between the structures discovered by
us and Shahin et al. thus bringing more robustness to the knowledge in
the area.

In this way, this paper addresses the following research questions:

RQ1: What organizational structures do software-producing
organizations adopt to structure operations activities (applica-
tion deployment, infrastructure setup, and service operation in
run-time) among development and infrastructure groups?
RQ1.1: What are the properties of each of these organizational
structures?

RQ1.2: Are some organizational structures more conducive to
continuous delivery than others?

To answer these questions, we applied Grounded Theory [14], a
methodology well-suited for generating theories. The primary outcome
of this research approach is a taxonomy, which is our emerging theory.
A taxonomy is a classification system that groups similar instances
to increase users’ cognitive efficiency, enabling them to reason about
classes instead of individual instances [15].

We collected preliminary data in brainstorming conversations with
seven specialists, who helped us better understand the relevance of the
problem and to shape the questions to be asked in follow-up interviews.
We then conducted semi-structured interviews with 37 IT professionals.
Based on analysis of the interviews, we discovered four organizational
structures:

(i) Traditional siloed departments, hindering cooperation
among development and operations.

(ii) Classical DevOps, focusing on communication and
collaboration among development and operations.

(iii) Cross-functional teams, taking responsibility for both
software development and infrastructure management.

(iv) Platform teams, providing highly-automated infrastruc-
ture services to assist developers.

For each of these organizational structures, we identified core and
supplementary properties. An organization classified as adopting a given
structure will present most of the core properties associated with that
structure. Supplementary properties, by contrast, support the explana-
tion of more detailed structural patterns, and an organization may (or
may not) exhibit them.

This paper contributes to the area by presenting a systematically-
derived taxonomy of organizational structures, based on recent field ob-
servations and employing a well-accepted methodology. In particular,
our taxonomy brings the following key benefits: (i) it helps practition-
ers to differentiate classical DevOps from cross-functional teams, which
were traditionally blended under the term DevOps [2,16], and (ii) it
highlights the platform team as a promising alternative for organiza-
tions. Moreover, our taxonomy can support practitioners to discuss the
current situation of their corporations, supporting decisions on struc-
tural changes. It also supports understanding the state of an unknown
organization, which can help, for example, engineers in job interviews
to evaluate the suitability of working for a given company.

Some of the findings we discuss in this paper relate to delivery perfor-
mance, a construct composed of quantitative metrics, which we explain
in Section 2. We explain our research approach in Section 3, and we
present our taxonomy in detail in Section 4. After this, in Section 5 we
discuss the feedback from interviewees and our evaluation. Section 6
discusses related work, whereas Section 7 presents the limitations of
this work. Finally, we draw our conclusions and plans for future work
in Section 8.

Information and Software Technology 139 (2021) 106672
2. Background

Delivery performance combines three metrics: frequency of de-
ployment, time from commit to production, and mean time to recov-
ery [17]. It correlates to the organizational capability of achieving both
commercial goals (profitability, productivity, and market share) and
noncommercial goals (effectiveness, efficiency, and customer satisfac-
tion) [18]. We used this construct as an indication of how successful
an organization has been in adopting continuous delivery. We asked
each participant in our study about each of these metrics to define the
delivery performance in the interviewee’s context.

Based on a survey with 27,000 responses, Forsgren et al. [18]
applied cluster analysis to these metrics and discovered three groups:
High performers were characterized as those with multiple deployments
per day, commits that take less than 1 h to reach production, and
incidents repaired in less than 1 h. Medium performers deploying once
per week to once per month, had a time from commit to production
between one week and one month, and took less than one day to
repair incidents. Low performers presented the same characteristics of
medium performers for deployment frequency and time from commit to
production, but take between one day and one week to repair incidents.

In our research, we are interested in distinguishing between high
and non-high performers, not in identifying medium or lower perform-
ers. However, the above clusters present a problem, because there is a
gap in the values used to identify the high and the medium performers
clusters. We circumvented this problem by considering an organization
as a high performer if (i) it is within the boundaries limiting the cluster
of high performers defined above, or (ii) it violates no more than one
high-performance threshold by no more than one point in the scale
adopted for the metric. The scales for each metric are:

« Frequency of deployment: multiple deploys per day; between once

per day and once per week; between once per week and once per

month; between once per month and once every six months; fewer

than once every six months.

Time from commit to production: less than one hour; less than one

day; between one day and one week; between one week and

one month; between one month and six months; more than six

months.

» Mean time to recovery: less than one hour; less than one day; be-
tween one day and one week; between one week and one month;
between one month and six months; more than six months.

3. Study design

This section presents our research approach, including the process
we used to collect and analyze data.

3.1. Grounded theory

Our research aims at generating a theory in the form of a taxonomy
for organizational structures in the context of continuous delivery.
Broadly speaking, a theory is a system of ideas for explaining a phe-
nomenon [15]. Taxonomies, on the other hand, are classifications,
i.e., collections of classes, wherein each class is an abstraction that
describes a set of properties shared by the instances of the class [15].
If the taxonomy provides explanation, it can be considered a theory for
understanding: a system of ideas for making sense of what exists or is
happening in a domain [15]. While applying “taxonomy” to denote a
theoretical formulation, we employ “classification” in a broader sense,
including classification proposals without theoretical formulation.

Grounded Theory (GT) is a well-suited methodology for generating
taxonomies [15] and a widely used research approach in software
engineering [19-22,16,23]. A grounded theory must fit the data, pre-
dict, explain, have relevance to the field, and be modifiable [14]. Its
primary advantage is to encourage deep immersion in the data, which

L. Leite et al.

may protect researchers from missing instances or oversimplifying and
over-rationalizing processes [15]. GT is also adequate for our purposes
since, according to Stol et al. [19], it is well-suited for questions like
“what’s going on here?”. In our case, we want to know what is going
on in software-producing organizations that are taking advantage of
continuous delivery. Since multiple GT variants exist, it is important
to state which variant we adopt. In this paper, we base our approach
on the seminal book The Discovery of Grounded Theory from Glaser and
Strauss [14], which describes what is known as the “classical Grounded
Theory” [19]. While a theory itself must emerge from data, Glaser and
Strauss do not disallow pre-established research questions.?

The constant comparative method is the core method for producing a
grounded theory. It relies on rigorous analysis of qualitative data, and
it is accomplished with coding, a process of condensing original data
into a few words with conceptual relevance, which give emergence
to theoretical concepts. Glaser and Strauss do not prescribe a precise
coding format [14], sufficing that the researcher annotates concepts
and adheres to the following rules: (i) when noting a concept, compare
this occurrence with the previous occurrences of the same or similar
concepts and (ii) while coding, if conflicts and reflections over theoreti-
cal notions arise, write a memo on the ideas. A memo is an unstructured
note reflecting the researcher’s thoughts at a specific point in time. We
describe in more detail in Section 3.5 how we applied coding.

Besides the rigorous analysis of qualitative data, GT also relies
on the researcher’s theoretical sensitivity; i.e., their capacity to have
theoretical insight into a substantive area. Our theoretical sensitivity
comes from direct experience in the IT industry and our previous works
on DevOps and software engineering [24,25,23], especially a survey
on the DevOps literature [26]. This acquired theoretical sensitivity
explains our capacity to pose the research questions of this paper.

This article also builds on our recent work, an extended abstract that
briefly presents the four organizational structures of our taxonomy [27]
and a short paper presenting the platform team structure only [28]. In
contrast, the current paper describes in detail all four organizational
structures and their properties.

In GT, data collection and analysis co-mingle and build on each
other, so the emerging theory guides which data to sample next, con-
sidering gaps and questions suggested in prior analysis. This process—
called theoretical sampling—avoids the usual statistical notions of ver-
ificational methods, such as significant sample. Instead, researchers
must establish the theoretical purpose of the sample, defining multiple
comparison groups, maximizing variation among groups to identify
similarities, and minimizing variation to determine differences. We
approached theoretical sampling primarily by: (i) valuing the diversity
of people and organizations in our sample, strengthening the trans-
ferability of our theory; and (ii) interviewing people in contexts in
which we could explore hypotheses weakly supported by the chain of
evidence built so far. We elaborate more on the choices of participants
in Section 3.3.

Ideally, the researcher continues the analysis until theoretical satu-
ration is achieved, which means that new data no longer meaningly
impacts the theory. In this work, reaching saturation advances our
previous publications [28,27]. Our criteria for saturation is described in
Section 3.6. As an ever-evolving entity, rather than a finished product,
new data can always be analyzed to alter or expand a grounded theory.
Accordingly, practitioners could (and potentially will) adjust the theory
when applying it to their concrete scenarios [14]. Therefore, in this
work, we present an emerging theory, rather than a fully-validated one,
which we explain more in Section 5.2.

We applied the GT techniques to data from interviews with IT pro-
fessionals. In the next sections, we present how we chose our subjects
and the design and analysis of these interviews.

2 Examples of questions guiding sociological inquiries in the GT con-
text: “Does the incest taboo exist in all societies?”, “Are almost all nurses
woman?” [14].

Information and Software Technology 139 (2021) 106672

3.2. Brainstorming sessions

After drafting our research questions, we conducted “brainstorming
sessions” with seven specialists experienced with DevOps. Some of
them have witnessed DevOps transformations in large organizations,
while others have actively shaped such transformations in large and
small companies.

The base script for these sessions aimed to elicit feedback on our
research questions and spark discussion of concerns raised by our
survey on the DevOps literature [26]. The conversations were essential
for us to fine-tune our research questions and research approach. These
sessions also helped us to better target the script for the following
semi-structured interviews toward concerns learned from these ex-
perts. Therefore, the concrete outputs of this phase were: the research
questions present in this text and the interview script (explained in
Section 3.4).

We did not apply the analysis procedures detailed in Section 3.5 for
these preliminary conversations, considering they were not intended to
provide answers to our research questions. Nevertheless, we did not dis-
miss the theoretical insights provided by them. For example, the notion
of a platform team began to take shape in the brainstorming sessions
and, thus, influenced subsequent analysis. After these brainstorming
sessions, we started the semi-structured interviews.

3.3. Selecting participants

We sent about 90 interview invitations using a convenience ap-
proach: the first invitations were close contacts in our research group’s
network. We also contacted participants suggested by our interviewees
and colleagues. The only requirement was that the participant should
work in an industrial context that has adopted continuous delivery
or is implementing efforts toward it. Some invited participants did
not reply, and some demonstrated interest in participating, but could
not make time for it. Ultimately, we interviewed 37 IT professionals
(~ 41%). Following ethical procedures [29], all the interviewees and
their organizations are anonymized in this paper. We recorded the
interviews for later analysis, keeping the audio records under restricted
access. We conducted the interviews from April 2019 to May 2020.
Nine interviews were conducted in person, five of which took place
at the interviewee’s company, and 28 were held online. The sessions
took 50 min on average (minimum of 24 and a maximum of 107 min).

We employed several strategies to foster diversity and enhance
comparison possibilities in our sample, as recommended by GT guide-
lines [19]. We aimed to include a broad range of organization and
interviewee profiles. For instance, we selected organizations of different
sizes®: small (30%), medium (32%), and large (38%); of different types:
private (90%), governmental (5%), and others (5%); and from different
sectors and countries. We included male (73%) and female (27%)
professionals, and also chose interviewees with different roles.

Table 1 describes the participants, presenting only an aggregated
profile of participants to cope with anonymization [29,22]. Location
refers to that of the interviewee’s team; we had four participants
working remotely for globally distributed teams. When describing roles,
enabler team indicates a specialized technical team that supports de-
velopers, but without owning any services. For interviews with con-
sultants, the number of employees refers to the size of the companies
that contracted the consultants (and not the consultant’s employers).
The interviewees worked in the following business domains: IoT, fi-
nances, defense, public administration, justice, real estate, maps, educa-
tion, Internet, big data, research, insurance, cloud, games, e-commerce,
telecommunication, fashion, international relations, mobility, office

3 We employed 200 and 1000 as size thresholds because they are used in
information publicly available on LinkedIn.

L. Leite et al.

Table 1

Number and description of participants and organizations.

Role

17: Developer

7: Development manager
: External consultant

: Infrastructure manager
: Infrastructure engineer
: Executive manager

: Enabler team member
: Designer

Gender

27: Male

10: Female

Time since graduation
15: More than 10 years
13: From 5 to 10 years
9: Less than 5 years

o = N WUl

Team location

21: Brazil

USA

: Globally distributed
: Germany

: Portugal

: France

: Canada

: Italy

Number of employees
in the organization
14: More than 1000
12: From 200 to 1000
11: Less than 200
Organization type
33: Private for profit

PErNNbdAG

Degree 2: Governmental

22: Undergraduate 1: Private nonprofit

13: Masters 1: International organization
2: Ph.D.

automation, software consulting, inventory management, vehicular au-
tomation, team management, and support to software development.
Five of the interviewed companies are currently considered unicorn
startups, and two of them are tech giants.

We also selected participants with theoretical purposes in mind,
thus applying theoretical sampling. We interviewed participants who
work in scenarios where it is particularly challenging to achieve con-
tinuous delivery (e.g., IoT, games, or defense systems), aiming to
understand the limits and eventual corner cases. After the twentieth
interview, we more actively sought people: in a cross-functional team,
in (or interacting with) a platform team, with no (or few) automated
tests, with monolithic systems, and labeled as “full-stack engineers”.
We adopted these criteria due to hypotheses not well-supported by our
chain of evidence at that time.

To support our findings, we included excerpts from these conver-
sations in our chain of evidence (in the accompanying supplementary
material) and in this article. The excerpts are formatted in italics and
within quotes. Excerpts and other accounts refer to interviews using
tokens in the format “#IN”. Thus, “#I2” refers to the second interview,
interviewee, or interviewee’s organization. Brainstorming sessions are
indicated as “#BN”. Such excerpts and citations are intended to make
readers “feel they were also in the field”, a GT recommendation [14].

3.4. Conducting the interviews

Since our goal is to discover existing organizational structures, and
not to verify a preconceived set of structures in the field, it would
be unsuitable to use only closed questions; instead, we conducted
semi-structured interviews. Semi-structured interviews mix closed and
open-ended questions, often accompanied by “why” and “how” ques-
tions; the interview can deviate from the planned questions, allowing
for discussion of unforeseen issues [30], which fits the purpose of
theory generation. With semi-structured interviews, we could also focus
on different topics in different conversations, according to the relevance
of each theme for each context.

Before starting the interviews, we built an interview protocol®
to guide the process based on our previous experience with inter-
views [25], on other relevant works [21,30], and on the guidelines
offered by a website for journalists, called ijnet.®

The interview protocol contains the questions that drove the inter-
views, which mainly were derived from the brainstorming sessions and

4 http://ccsl.ime.usp.br/devops/2020-06-14/interview-protocol.html
5 http://ijnet.org/en

Information and Software Technology 139 (2021) 106672

our survey of the DevOps literature [26], and hence also grounded
in data.® The themes addressed by the interview questions include:
(1) interviewee company and role; (2) responsibility for deployment,
building new environments, non-functional requirements, configuring
and tracking monitoring, and incident handling, especially after-hours;
(3) delivery performance (using the metrics and scales defined in Sec-
tion 2); (4) future improvements in the organization; (5) effectiveness
of inter-team communication; (6) inter-team alignment for the success
of the projects; (7) description of DevOps team or DevOps role, if
existing; and (8) the policy for sharing specialized people (e.g., security
and database experts) among different teams.

The interview protocol is not a static document. As we conducted
interviews, we changed how we asked some questions, focused more on
some questions and less on others, and created new questions to explore
rising hypotheses. We provide some indications about the evolution of
the questions in the interview protocol itself.

3.5. Analyzing the interviews

We followed the core Grounded Theory principles of constant com-

parative method and coding, which are intended to discipline the creative
generation of theory. During this process, we created two artifacts for
each interview: the transcripts and the codes. We also created two
global artifacts: the comparison sheet and the conceptual frame-
work. Finally, by analyzing, comparing, and using all these artifacts,
we elaborated our taxonomy, which is the theory itself.
Transcripts. We listened to each audio record and transcribed it. We
did not transcribe the full interview. Instead, we summarized relevant
parts, excluding minor details and meaningless noise [31]. For instance,
we transcribed the following part of a conversation:

“If you break the SLA, there are consequences. You have to improve

things; you can’t go back to feature development until SLA has recovered.
Any problem in final service: developer is paged. If it’s infrastructure-related,
developers call the infrastructure team. And we solve together. We try to help
anyway, because at the end of the day if users can’t use the system, we all
suffer.”
Codes. After transcribing an interview, we then derived the coding
by condensing the interviewers’ transcripts into a few words (the
essence of the interview in relation to our research questions). Each
interview has its list of coding, representing the particular reality of
that interviewee. The above fragment of transcription, for example, led
to the following coding:

Developers — own the availability of their services
Broken SLA — blocks feature development

Broken SLA — page developers

Broken SLA — if needed, call infra

The supplementary material “chain of evidence” presents more
examples of the coding we performed.
The comparison sheet. To support the constant comparison of different
interviews and codings, we summarized the main characteristics of
each interview in a spreadsheet. We filled the cells with concise state-
ments, with rows representing interviews and columns including the
following characteristics: interview number, organizational structure,
supplementary properties, delivery performance, observation, continu-
ous delivery, microservices, cloud, other teams, non-functional require-
ments (NFRs), monitoring/on-call, alignment, communication, bottle-
neck, responsibility conflicts, database, security, specialists sharing, and
DevOps team/role.
Conceptual framework. From the constant comparison of codes of
different interviews emerged theoretical concepts. These theoretical

6 GT also considers the library as a source of data.

http://ccsl.ime.usp.br/devops/2020-06-14/interview-protocol.html
http://ijnet.org/en

L. Leite et al.

self-serviced for /
provides autonomy for

demand new features for

= ™

Product teams

Infrastructure services

use

decoupled from /
not bottleneck for /
can help and

collaborate with offers

Platform team

!

On call for infrastructure services.
Product teams on call for
final services.

Fig. 1. A fragment of our conceptual framework.

concepts and their relations form the unified conceptual framework,
which constitutes the shared understanding among the authors about
the analyzed data [32]. Our conceptual framework is not a repre-
sentation of our theory, but rather an intermediary artifact used to
consolidate, in a single place, the concepts yielded by the coding
process, working as the source of concepts to the shaping of our theory.

We maintained a visual representation of our conceptual framework
as the research evolved. We provide all of its versions in the supplemen-
tary materials. Fig. 1 provides as example a fragment of our conceptual
framework. In that figure, rectangles represent concepts abstracted from
data, while rounded boxes represent properties of these concepts (i.e., an
attribute or a characteristic of a concept).

As we evolved the conceptual framework and filled our compar-
ison sheet, we developed our theory by classifying each interview
by its organizational structure and its supplementary properties. The
classification process was based on the concepts provided by the frame-
work and on the analysis of similarities and differences between the
interviews, summarized in the comparison sheet. As we evolved our
understanding with new interviews, we revisited the classification of
previous interviews to refine our theory. For example, after the emer-
gence of a supplementary property, we checked whether we could
classify previous interviews with the new property.

After some interviews, one author developed the first version of
the coding lists, the comparison sheet, the conceptual framework,
and the taxonomy. Based on the transcriptions, other two authors
thoroughly reviewed these artifacts, triggering discussions that affected
their evolution. When making a decision that could impact our taxon-
omy, we involved a fourth author. One example of how we evolved
and enhanced our taxonomy is how we developed the supplementary
properties after twenty interviews. Additional rounds of analysis, dis-
cussions, and theory elaboration were undertaken until the submission
of this article. We went through this internal review process to reduce
the bias of a single researcher performing analysis with preconceived
ideas.

3.6. Theoretical saturation

We consider the size of our conceptual framework as a proxy for
how much we have learned so far about our research topic. We define

Information and Software Technology 139 (2021) 106672

the size of the conceptual framework as the number of elements in the
diagram representing it, which counts the number of concepts, con-
ceptual properties, and links. Consider Fig. 2-(a): the x axis represents
the number of interviews, while the y axis represents the number of
elements in our conceptual framework. In this figure, we see that the
last 15 interviews (40% of them) increased the size of our conceptual
framework by only 9%. Moreover, the last three interviews did not
increase the size of the conceptual framework to any degree. This
suggests more interviews would provide only a negligible gain for our
framework.

In addition to measuring the size of the conceptual framework, an
intermediary artifact, we also measured the growth of the taxonomy
itself, our final product. Fig. 2-(b) shows that in the first five interviews
we discovered our four organizational structures. It also shows that by
interview 22, we already had all but one of the supplementary proper-
ties. The last discovered supplementary property is an exceptional case,
and it was applied only for one interview. Therefore, the decreasing
growth of the taxonomy suggests that the last interviews contributed
much less to shaping our theory.

By conjoining these two observations of Fig. 2, we claim to have
reached enough of saturation for the purposes of our theory.

3.7. Feedback

GT aims to formulate a theory that has relevance for practition-
ers, so it is crucial to also investigate whether findings make sense
to them [15]. Moreover, practitioners can help to identify taxonomy
errors, such as inclusion and exclusion errors [15]. Therefore, we
collected feedback on our taxonomy from the study participants, using
an online survey.” The received feedback is presented in Section 5.1.

4. The taxonomy of organizational structures

In this section, we answer our research questions by presenting
our taxonomy of the organization of development and infrastructure
teams, including the organizational structures we identified, alongside
their core and supplementary properties. Core properties are expected
to be found in corporations with a given structure. When applicable,
we use core properties to discuss delivery performance. Supplementary
properties refine the explanation of a structure, but their association
with organizations is noncompulsory.

For each interview, we classified the organizational structure ob-
served. As the differentiation and integration patterns among devel-
opment and infrastructure may vary for each deployable unit [33],
it is not possible to assign a single structure to an organization. So
the classification is applied according to the interviewee’s context.
Moreover, we observed in some cases a process of gradually adopting
new structural patterns while abdicating from old ones; we classified
this as transitions from one organizational structure to another.

Fig. 3 presents the discovered organizational structures, the primary
elements of our taxonomy, alongside the supplementary properties,
which qualify the elements pointed out by the arrows. The circles
group supplementary properties that can be equally applied for a given
element. Table 2 shows the classification (organizational structure and
supplementary properties) applied for each interview, alongside the
achieved delivery performance, and the number of employees in the
corresponding organization.

Our comprehensive chain of evidence, added as supplementary
material, indicates how much of our findings are backed by data we
collected. The chain of evidence links each organizational structure
and supplementary property to supporting coding, memos, and ex-
cerpts. Such linkage is critical for the credibility of qualitative research
findings [34,15,35].

We now present each one of the organizational structures and their
core and supplementary properties.

7 http://ccsl.ime.usp.br/devops/2020-06-14/feedback-form.html

http://ccsl.ime.usp.br/devops/2020-06-14/feedback-form.html

L. Leite et al.

a) Conceptual framework growth

325 A

300 A

275 1

250 A

2251

200 A

Number of elements
in the conceptual framework

175 A

150

5 10 15 20 25 30 35
Number of interviews

Information and Software Technology 139 (2021) 106672

b) Taxonomy high-level view growth

o
L

Number of elements
in the taxnomy
w

4
3 4
24 L
—e— Number of organizational structures
1 —A— Number of supplementary properties
0 5 10 15 20 25 30 35

Number of interviews

Fig. 2. Evidence of theoretical saturation.

enabler team

[Siloed deparrmenrs] [Classical DevOps] [Cross—funcrional reamsj [Platform ream]

/

infra as deve\o?f
ment collaborator

with a platform /—\

can qualif
E?EEL?’Q?';?{Y vy Orgamzanonal srrucrure

supp\emenrary can qualify structures supplemenrary
property(ies) qualified as > properry(les

dedicafed infrastructure
professionals

developers with
infra background

no infra
background

cloud fagade
customized

private platform

in-ho!

open-; source plafform

Fig. 3. High-level view of our taxonomy: discovered organizational structures and their supplementary properties.

4.1. Siloed departments

With siloed departments, developers and the infrastructure staff are
segregated from each other, with little direct communication among
them. Frictions occurs among silos, since developers want to deliver
as much as possible, whereas operations target stability and block de-
liveries. The DevOps movement was born in 2008 [36] to handle such
problems. We found seven organizations adhering to this structure, and
six others transitioning out of this structure.

While supplementary properties did not emerge for this structure,
we found seven core properties for corporations with siloed depart-
ments:

— Developers and operators have well-defined and differentiated
roles; as stated by #I120: “the wall was very clear: after committing,
our work [as developers] was done”. Therefore, there are no conflicts
concerning attributions. Well-defined roles and pipelines can decrease
the need for inter-departmental direct collaboration (#I10).

— Each department is guided by its own interests, looking for
local optimization rather than global optimization, an old and problem-
atic pattern [37]. Participant #126 told us “there is a big war there. .. the
security, governance, and audit groups must still be convinced that the tool
[Docker/Kubernetes] is good”.

— Developers have minimal awareness of what happens in
production (#I126). So monitoring and handling incidents are mostly
done by the infrastructure team (#I5).

— Developers often neglect non-functional requirements
(NFRs), especially security (#1I5). In #130, conflicts among developers
and the security group arise from disagreement on technical decisions.
In other cases, developers have little contact with the security group
(#126).

— Limited DevOps initiatives, centered on adopting tools, do
not improve communication and collaboration among teams (#130) or
spread awareness about automated tests (#I5, #I15). In #130, a “De-
vOps team” maintaining the deployment pipeline behaves as another
silo, sometimes bottlenecking the delivery [38].

L. Leite et al.

Table 2
Interview’s classification. In the second column,

“to” indicates transitioning from one structure to another.

Information and Software Technology 139 (2021) 106672

Interview Organizational structure Supplementary properties Delivery performance Organization size
#11 Cross-functional With dedicated infra professionals High > 200 and < 1000
#12 Classical DevOps High > 200 and < 1000
#13 Cross-functional Without infra background Not-high < 200
#14 Platform team Cloud facade High > 1000
With enabler team
#15 Siloed departments Not-high > 1000
#16 Classical DevOps Not-high > 200 and < 1000
#17 Siloed departments Not-high > 200 and < 1000
to Classical DevOps
#18 Siloed departments With a customized private platform Not-high > 1000
to Platform team
#19 Platform team Cloud facade High > 200 and < 1000
With enabler team
#110 Siloed departments Not-high < 200
#I11 Classical DevOps With enabler team Not-high > 200 and < 1000
#112 Platform team With a customized private platform High > 200 and < 1000
With enabler team
#113 Siloed departments Not-high > 1000
#114 Classical DevOps Cloud facade Not-high > 200 and < 1000
to Platform team
#I15 Siloed departments Not-high > 200 and < 1000
to Classical DevOps
#116 Cross-functional With dedicated infra professionals Not-high > 1000
to platform team With a customized private platform
With enabler team
#117 Classical DevOps With enabler team High > 200 and < 1000
#118 Classical DevOps With enabler team Not-high > 1000
#119 Siloed departments Not-high < 200
#120 Siloed departments With an in-house open source platform High > 1000
to Platform team
#121 Classical DevOps With developers having infra background High < 200
to Cross-functional
#122 Classical DevOps With a platform Not-high > 1000
With a customized private platform
#123 Siloed departments Not-high < 200
#124 Siloed departments With dedicated infra professionals High > 200 and < 1000
to cross-functional
#125 Cross-functional With developers having infra background Not-high < 200
With a platform
Cloud facade
#126 Siloed departments Not-high > 1000
to Classical DevOps
#127 Cross-functional With dedicated infra professionals Not-high < 200
#128 Cross-functional With dedicated infra professionals Not-high > 200 and < 1000
#129 Classical DevOps High < 200
#130 Siloed departments With enabler team Not-high > 1000
With a platform
With an in-house open source platform
#131 Classical DevOps infra as development collaborator Not-high > 1000
With enabler team
#132 Cross-functional Without infra background Not-high < 200
#133 Platform team Cloud facade High > 1000
#134 Classical DevOps Not-high < 200
#135 Cross-functional With dedicated infra professionals Not-high < 200
#136 Classical DevOps Not-high > 1000
#137 Siloed departments Not-high > 1000

— Organizations are less likely to achieve high delivery perfor-
mance as developers need bureaucratic approval to deploy applications
and evolve the database schema (#I5, #130). Table 3 shows that only
two of 13 siloed organizations presented high delivery performance,
and these two were already transitioning to other structures. However,
we observed cases in which low delivery performance was not a prob-
lem, such as short-lived research experiments (#113) and releases of
new phases of a game not requiring code changes (#I10). Network
isolation policies may also hinder frequent deployment (#B1, #17).

— We observed a lack of proper test automation in many orga-
nizations (#I5, #I15, #123, #126). In #126, developers automate only
unit tests. Organization #I15 was leaving test automation only for QA
people, which is not suitable for TDD or unit tests. Although siloed
organizations are not the only ones that lack test automation (#I3,
#132, #135), in this structure developers can even ignore its value (#I5,

#123, #137). We notice that some of the observed scenarios were more
challenging for test automation, such as games.

4.2. Classical DevOps

The classical DevOps structure focuses on collaboration among de-
velopers and the infrastructure team. It does not eliminate all conflicts,
but promotes a better environment to deal with them (#I34). We
named this structure “Classical DevOps” because we understand that
a collaborative culture is the core DevOps concern [23,26,39]. We
classified ten organizations into this structure. We also observed three
organizations transitioning to this structure and three transitioning out
of this structure.

The eight core properties observed for organizations adopting clas-
sical DevOps are as follows:

L. Leite et al.

Table 3
Organizational structures and delivery performance observed in our interviews.

Organizational structure Delivery performance Number of interviews

Siloed departments Not-high 7
Classical DevOps High 3
Classical DevOps Not-high 7
Cross-functional High 1
Cross-functional Not-high 6
Platform team High 4
Siloed departments Not-high 3
to Classical DevOps

Siloed departments High 1
to Cross-functional

Siloed departments High 1
to Platform team

Siloed departments Not-high 1

to Platform team
Classical DevOps High 1
to Cross-functional

Classical DevOps Not-high 1
to Platform team
Cross-functional Not-high 1

to Platform team

— We observed that, in classical DevOps settings, many practices
foster a culture of collaboration. We saw the sharing of database
management: infrastructure staff creates and fine tunes the database,
whereas developers write queries and manage the database schema
(#117). We heard about open communication among developers and
the infrastructure team (#12, #16, #117, #122, #131, #136). Participant
#12 highlighted that: “Development and infrastructure teams participate
in the same chat; it even looks like everyone is part of the same team”.
Developers also support the product in its initial production (#131).

— Roles remain well-defined, and despite the collaboration on some
activities, there are usually no conflicts over who is responsible for
each task.

— Developers feel relieved when they can rely on the infrastruc-
ture team (#I17). Participant #I31 claimed that his previous job in
a cross-functional team had a much more stressful environment than
his current position in a development team in a classical DevOps
environment. On the other hand, stress can persist at high levels
for the infrastructure team (#I134), especially “if the application is
ill-designed and has low performance” (#136).

— In this structure, the project’s success depends on the alignment
of different departments, which is not trivial to achieve. In #B3, dif-
ferent teams understood the organization’s goals and the consequences
of not solving problems, like wrongly computing amounts in the order
of millions of dollars. Moreover, #17 described that alignment emerges
when employees focus on problem-solving rather than role attributions.

— Development and infrastructure teams share NFR responsi-
bilities (#17). For example, in #12, both were very concerned with low
latency, a primary requirement for their application.

— Usually, the infrastructure staff is the front line of tracking
monitoring and incident handling (#12, #I111, #129, #131, #136).
However, if needed, developers are summoned and collaborate (#I17,
#134). In #134, monitoring alerts are directed to the infrastructure team
but copied to developers. However, in some cases developers never
work after-hours (#12, #122).

— Humble expects a culture of collaboration among developers
and the infrastructure staff to prescind from a “DevOps team” [38].
We understand this criticism applies to DevOps teams with dedicated
members, such as we saw in #I30, since they behave as new silos.
However, we found in #I36 a well-running DevOps team working
as a committee for strategic decisions — a forum for the leadership
of different departments. We also found DevOps groups working as
guilds (#14, #18), supporting knowledge exchange among different
departments [40].

Information and Software Technology 139 (2021) 106672

— Collaboration and delivery automation, critical values of the
DevOps movement, are not enough to achieve high delivery per-
formance. Of 10 classical DevOps organizations not transitioning from
or to other structures, only three presented high delivery performance
(Table 3). One possible reason is the lack of proper test automation
(#122, #136) [41]. Another limitation for delivery performance is the
adoption of release windows (#I11, #131, #114, #136), which seek to
mitigate deployment risk by restricting software delivery to periodic
time slots. Release windows are adopted by considering either the
massive number of users (#I31) or the system’s financial criticality
(#136). Release windows may also result from fragile architectures
(#137) or the monolith architectural style (#111) since any deployment
has an increased risk of affecting the whole system.

Supplementary properties

For classical DevOps organizations, we found one supplementary
property that we describe in the following.

Infra as development collaborator. The infrastructure staff con-
tributes to the application code to optimize the system’s performance,
reliability, stability, and availability. Although this aptitude requires
advanced coding skills from infrastructure professionals, it is a suitable
strategy for maintaining large-scale systems, like the ones owned by
#131.

4.3. Cross-functional teams

In our context, a cross-functional team takes responsibility for both
software development and infrastructure management. This structure
aligns with the Amazon motto “You built it, you run it” [42] and with
the “autonomous squads” at Spotify [40]. This gives more freedom to
the team, along with a great deal of responsibility. As interviewee #I1
described: “it is like each team is a different mini-company, having the
freedom to manage its own budget and infrastructure”. We found seven
organizations with this structure, two organizations transitioning to this
structure, and one transitioning out of it.

The four core properties found for cross-functional teams are as
follows:

— Independence among teams may lead to misalignment. Lack
of communication and standardization among cross-functional teams
within a single organization may lead to duplicated efforts (#128).
However, this is not always a problem (#I1).

— It is hard to ensure a team has all the necessary skills. For
instance, we interviewed two cross-functional teams with no infrastruc-
ture expertise (#13, #132). Participant #127 recognizes that “there is
a lack of knowledge” on infrastructure, deployment automation, and
monitoring. A possible reason for such adversity is that, as #129 taught
us, it is hard to hire infrastructure specialists and senior developers.

— We expected cross-functional teams to provide too much idle
time for specialists, as opposed to centralized pools of specialization.
However, we find no evidence of idleness for specialists. From #I16,
we heard quite the opposite: the infrastructure specialists were too busy
to be shared with other teams. Having the infrastructure specialists
code features in their spare time avoids such idleness (#135).

— Most of the cross-functional teams we interviewed were in
small organizations (Table 4), likely because there is no sense in
creating multiple teams in too small organizations.

Supplementary properties

Dedicated infra professionals. The team has specialized people
dedicated to infrastructure tasks. In #I1, one employee specializes in
physical infrastructure, and another is “the DevOps”, taking care of
the deployment pipeline and monitoring. In this circumstance, the
infrastructure specialists become the front-line for tackling incidents
and monitoring (#128, #135).

Developers with infra background. The team has developers
knowledgeable in infrastructure management; these professionals are
also called full-stack engineers or even DevOps engineers (#I125).
Participant #I25 is a full-stack engineer and claimed to “know all the

L. Leite et al.

Table 4
Organizational structures and organization size observed in our interviews.

Organizational structure Organization size Number of interviews

Siloed departments < 200 3
Siloed departments > 1000 4
Classical DevOps < 200 2
Classical DevOps > 200 and < 1000 4
Classical DevOps > 1000 4
Cross-functional < 200 5
Cross-functional > 200 and < 1000 2
Platform team > 200 and < 1000 2
Platform team > 1000 2
Siloed departments > 200 and < 1000 2
to Classical DevOps

Siloed departments > 1000 1
to Classical DevOps

Siloed departments > 200 and < 1000 1
to Cross-functional

Siloed departments > 1000 2
to Platform team

Classical DevOps < 200 1
to Cross-functional

Classical DevOps > 200 and < 1000 1
to Platform team

Cross-functional > 1000 1

to Platform team

involved technologies: front-end, back-end, and infrastructure; so I am the
person able to link all of them and to firefight when needed”. Participant
#129, a consultant, is skeptical regarding full-stack engineers and stated
that “these people are not up to the task”. He complained that developers
are usually unaware of how to fine tune the application, such as
configuring database connections.

No infra background. Product teams manage the infrastructure
without the corresponding expertise. We saw this pattern in two places.
One was a very small company and had just released their application,
having only a few users (#I32) and being uncertain about hiring
specialized people soon. Interviewee #I3 understands that operations
work (e.g., spotting errors during firmware updates in IoT devices and
starting Amazon VMs for new clients) is too menial for software engi-
neers, taking too much of their expensive time. So the organization was
planning the creation of an operations sector composed of a cheaper
workforce. Interviewee #I19 argued that such an arrangement could
not sustain growth in his company in the past.

4.4. Platform teams

Platform teams are infrastructure teams that provide highly auto-
mated infrastructure services that can be self-serviced by developers
for application deployment. The infrastructure team is no longer a
“support team”; it behaves like a product team, with the “platform” as
its product and developers as internal customers. In this setting, infras-
tructure specialists need coding skills; product teams have to operate
their business services; and the platform handles much of the non-
functional concerns. We found four organizations fully embracing this
model and four others in the process of adopting it. We also observed
the platform team pattern in three of the brainstorming sessions.

The core properties of platform teams are as follows:

— Product teams are fully accountable for the non-functional
requirements of their services. They become the first ones called
when there is an incident, which is escalated to the infrastructure
people only if the problem relates to an infrastructure service (#18, #19,
#112, #133).

— Although the product team becomes fully responsible for NFRs of
its services, it is not a significant burden that developers try to refuse
(#133). The platform itself handles many NFR concerns, such as
load balancing, auto-scaling, throttling, and high-speed communica-
tions between data-centers (#14, #I8, #I16, #133). As participant #133

Information and Software Technology 139 (2021) 106672

told us, “you do not need to worry about how things work, they just work”.
Moreover, we observed infrastructure people willingly supporting de-
velopers for the sake of services availability, performance, and security
(#19, #114).

— Product teams become decoupled from the members of the
platform team. Usually, the communication among these teams hap-
pens when developers and infrastructure people gather to solve inci-
dents (#I8, #19); when infrastructure people provide consulting for
developers to master non-functional concerns (#19); or when develop-
ers demand new capabilities from the platform (#18, #112). In this way,
the decoupling between the platform and product teams does not imply
the absence of collaboration among these groups.

— The infrastructure team is no longer requested for opera-
tional tasks. The operational tasks are automated by the platform.
Therefore, one cannot merely call platform-team members “operators”,
since they also engineer the infrastructure solution. We remark that, in
other industries, “operator” is a title attributed to menial workers.

— The platform avoids the need for product teams to have in-
frastructure specialists. Participant #133 expressed wanting to better
understand what happens “under the hood” of the platform, which
indicates how well the platform relieves the team from mastering
infrastructure concerns. On the other hand, since developers are re-
sponsible for the deployment, they must have some basic knowledge
about the infrastructure and the platform itself.

— The platform may not be enough to deal with particular
requirements. Participant #116 stated that “if a lot of people do similar
functionality, over time usually it gets integrated to the platform. .. but each
team will have something very specialized. .. ” to explain the presence of
infrastructure staff within the team, even with the usage of a platform,
considering the massive number of virtual machines to be managed.

— If the organization develops a new platform to deal with its
specificities, it will require development skills from the infrastruc-
ture team. Nevertheless, even without developing a new platform, the
infrastructure team must have a “dev mindset” to produce scripts and
use infrastructure-as-code [43] to automate the delivery path (#114).
One strategy we observed to meet this need was to hire previous
developers for the infrastructure team (#114).

— All four organizations that have fully embraced the platform
team structure are high performers, while no other structure pro-
vided such a level of success (Table 3). An explanation for such a
relation is that this structure decouples the infrastructure and product
teams, which prevents the infrastructure team from bottlenecking the
delivery path. As stated by #120: “Now developers have autonomy for
going from zero to production without having to wait for anyone”. This
structure also contributes to service reliability by letting product teams
handle non-functional requirements and incidents.

— In Table 4, among the interviewed organizations with platform
teams, none had less than 200 employees. Since assembling a platform
team requires dedicated staff with specialized knowledge, it makes
sense that such a structure is not suitable for small companies.
Supplementary properties

The description of a platform can be refined by applying one of the
following supplementary properties:

Cloud facade. The platform ultimately deploys applications on
public clouds, such as Amazon WS, Google Cloud, or Azure. Although
these clouds allow easier deployment when compared to managing
physical servers, they still offer dozens of services and a multitude of
configurations. The in-house platform standardizes the usage of public
cloud vendors within the organization, so developers do not need to
understand many details about the cloud (#14, #114, #133); therefore
“enhancing the usability of the [cloud] infrastructure” (#116).

Customized private platform. The platform is built on top of inter-
nal physical servers (#B1, #I1, #18, #112, #120), hiding infrastructure
complexities from developers, such as the use and even the existence
of Kubernetes, an open-source platform used for managing the lifecycle
of Docker containers.

L. Leite et al.

3 Classical DevOps —
/ l 1
Siloed departments S [Cross-funcﬂonal reams]

il
2
Platform team -~
. n
Organizational structure 1| ———> (Organizarional structure 2]

fury

n is the number of observed organizations
transitioning from structure 1 to structure 2

Fig. 4. Observed transition flows.

In-house open-source platform. The platform is an open-source
software deployed on-premise. Organization #I20 uses Rancher,® a
graphical interface for developers to interact with Kubernetes.

4.5. Shared supplementary properties

This section presents the found supplementary properties that are
not linked to one organizational structure only. These properties are
relevant since they are shared among multiple organization structures,
as depicted in Fig. 3.

Enabler team. An enabler team provides consulting and tools for
product teams but does not own any service. Consulting can be on per-
formance (#118) or security (#19, #116, #131), for example. Tools pro-
vided by enabler teams include the deployment pipeline (#14, #130),
high-availability mechanisms (#I11), monitoring tools (#112), and se-
curity tools (#I17). We found them in every organizational structure.
We learned the term “enabler team” during our interview with #I11.

With a platform. The organization possesses a platform that can
provide deployment automation, but not following the patterns of
human interaction and collaboration described by the core properties
of platform teams. Participant #I25 developed an ‘“autonomous IaaC
for integration and deployment with Google Cloud”, which provides a
platform’s capabilities to other developers of the team. However, since
in this context there is a single cross-functional team, it cannot be
called a “platform team”. We classified organization #I30 as a siloed
structure, even with a platform team, since developers and the platform
team have a conflicted relationship. The supplementary properties of
platform teams can also be applied to organizations with a platform.

4.6. Transitioning

Organizations are not static. We identified nine of them transition-
ing from one structure to another. Considering the transition flows in
Fig. 4, we perceive that (i) no organization is transitioning to siloed
departments, (ii) most of the transitions are from siloed departments,
and (iii) no organization is transitioning out of the platform team.
These observations agree with our theoretical considerations about the
problems of siloed structures and the promises of platform teams.

Nonetheless, transitioning organizational structures is a hard en-
deavor, as confirmed by some interviewees. Although his organization
did an excellent job transitioning to a platform structure and achiev-
ing high-delivery performance, interviewee #I20 claims that the “old
world” still coexists with the “new one”. In the same way, as reported by
Nybom et al. [6], there are some responsibility conflicts and “dissident

8 http://rancher.com

10

Information and Software Technology 139 (2021) 106672

forces”: some operations personnel do not like developers with admin-
istrative powers, while some developers do not want such powers. The
interviewee declared that “it is not yet everybody together”.

Similarly, interviewee #21 stated that “There are two worlds. .. one
was born in the cloud, and it is nice that it influences the legacy system
to become more robust. There are many worlds we wish to bring together.
However, we need to rewrite even the culture; we must reset everything”.
These examples also show how culture is a crucial factor for change.

4.7. Summary

We close the description of our taxonomy by highlighting the key
differences among its organizational structures. Table 5 summarizes,
for each structure, (i) the differentiation between development and
infrastructure groups regarding operations activities (deployment, in-
frastructure setup, and service operation in run-time); and (ii) how
these groups interact (integration).

5. Discussion

In this section, we discuss feedback sessions and our emerging
theory in light of the received feedback.

5.1. Feedback

We sent to each one of the 37 first interviewees a feedback form
asking whether the interviewee agreed with the chosen classification
(organizational structure and supplementary properties) for its context
using the following Likert scale: strongly agree, weakly agree, I do
not know, weakly disagree, strongly disagree. In case of disagreement,
there were free text fields for explanation. We also asked the inter-
viewees whether they perceived our taxonomy as comprehensive and
whether they would add or remove elements. Finally, we also left a
free field for general comments. We sent the form in four batches of
twenty, five, five, and seven emails spread across the last five months of
our interviewing period; we used the feedback incrementally to refine
our theory. We also attached to the emails a digest describing our
taxonomy.

We received 11 answers. Nine participants strongly agreed with
the received classification regarding the organizational structure, while
two of them weakly agreed with it. No one disagreed. Five partic-
ipants strongly agreed with the received classification regarding the
supplementary properties, while one of them weakly agreed with it.
Regarding our model’s comprehensiveness, seven participants strongly
agreed with it, three of them weakly agreed with it, and one of them
did not know. This result suggests resonance of the participants with
our theory, which refers to the degree to which findings make sense to
participants.

The free-text answers from participants were valuable in refining
the taxonomy. We conceived the supplementary properties from the
analysis of the first round of feedback. One interviewee’s comments
helped us improve our taxonomy digest (we refined a figure to better
express the idea of platform team). Moreover, some participants raised
concerns about how different parts of the organization act under dif-
ferent patterns, and how this evolves. We considered such concerns
since our classification is not for the whole organization, but for the
interviewee’s context at a point in time.

5.2. Evaluating our emerging theory

According to Ralph, good taxonomies should increase cognitive
efficiency and assist reasoning by facilitating more inferences [15].
However, evaluating whether a taxonomy satisfies such quality criteria
demands a different type of research approach than we employed;
e.g., a case study [34]. Although case studies can test theories [44],

http://rancher.com

L. Leite et al.

Table 5
Summary of organizational structures.

Information and Software Technology 139 (2021) 106672

Organizational structure Development differentiation

Infrastructure differentiation Integration

Just builds the

application package
Participates/collaborates in
some operations activities
Responsible for all
operations activities
Responsible for all
operations activities

With the platform support

Siloed departments
Classical DevOps
Cross-functional teams

Platform teams

Limited collaboration
among the groups

Responsible for all
operations activities
Responsible for all Intense collaboration
operations activities among the groups
Does not exist -

Provides the platform
automating much of
the operations activities

Interaction happens
for specific situations,
not on a daily basis

they are more useful for demonstrating how a current theory is incom-
plete or inadequate to explain the observed case [12,11]. A single case
study does not prove a social theory. Moreover, even after decades of
robust tests confirming theories, new work can still expand them [13].

On the other hand, grounded Theory (GT) focuses on generating
theory rather than validating preconceived hypotheses. Although re-
searchers can be tempted to try to validate their theory as soon as
it is born, Glaser and Strauss caution that verificational approaches
hinder theory development too early [14]. Therefore, in this paper,
we present only incipient steps related to theory assessment: hearing
feedback on our taxonomy (Section 5.1) and comparing it to other
existing classifications (Section 6). Nonetheless, such steps evidence the
resonance of our theory.

By following Guba’s framework for naturalistic research evalua-
tion [35], practitioner and literature resonance also provide some
credibility (internal validity, how plausible or true the findings are) and
confirmability (objectivity, opportunities for correcting research bias).
The remaining of Guba’s criteria are dependability (reliability), which
is provided by our chain of evidence, and transferability (external
validity or generalizability), which is supported by our diverse selection
of participants.

Though it is inadequate to evaluate our emerging theory as a
finished product, we can evaluate our process of generating the theory [14,
15]. This can be done by checking adherence to GT prescriptions and
Ralph’s recommendations for taxonomy generation [15]. We described
the adherence to GT guidelines (i.e., theoretical sampling, coding,
theoretical sensitivity, and theoretical saturation) in Section 3. In the
following, we discuss our adherence to Ralph’s recommendations.

A warning from Ralph is that theory should explain, not prescribe.
In this way, it is essential to note that although our theory is intended
to be used by practitioners in practical settings, as is the goal of a
grounded theory, the theory itself provides an explanation of the world,
not a guide for action.

A more severe impact on our work comes from Ralph’s advice for
favoring first-hand observations over interviews due to interviewees’ bi-
ases. Although we acknowledge his concerns, in our case organizational
structures are too abstract to grasp only by observation, even meetings
observation, without further conversations with observed people. Our
context thus differs from other software engineering situations, such as
observing a pair-programming session. Nonetheless, anonymity reduces
these biases by favoring an open attitude from the participants. We took
care not to ask the research questions directly to participants, which
would force our preconceptions onto them [15]. We carefully crafted
second-level questions [34], which are more objective than the research
questions. Our interview protocol® presents each interview question,
followed by its rationale.

We acknowledge the importance of triangulating results with other
kinds of data and with other participants in the same organizations.
However, we spare these strategies for the future phase of our research.
Observing more scenarios is more valuable for this initial phase of

9 http://ccsl.ime.usp.br/devops/2020-06-14/interview-protocol.html

11

theory elaboration than interviewing more people in each organization,
which would lead to interviews in fewer companies.

Ralph still cautions that researchers should take care in selecting
evaluation criteria to assess a theory development. Since multiple crite-
ria exist and there is no universally accepted set of criteria, researchers
must choose criteria that make sense for the emerging theory [15].
Nonetheless, we apply to our research three crucial criteria suggested
by Ralph: (i) the empirical study is well-executed and clearly described,
(i) there is an explicit chain of evidence from results back to supporting
data (which does not exclude the existence of non-replicable intuitive
leaps [15]), and (iii) the need for the proposed theory must be clear.
The present text and the complete chain of evidence, provided as
supplementary material, must suffice to the reader to judge these
concerns.

6. Related work

Recent research has discussed the benefits and challenges of con-
tinuous delivery [3,45,46,1,47]. Among the challenges, Chen et al.
include organizational issues related to tensions among groups within
an organization [3], which demands studies on the organization of
teams. Some of these studies have focused on how developers migrate
from teams or companies [48,22,49]. Nonetheless, the literature about
the inter-team arrangements for managing IT infrastructure in a con-
tinuous delivery context is still limited. In the following, we discuss
this existing literature [2,6-10] by comparing their classifications of
inter-team relations to our taxonomy.

In one of the foundational writings on DevOps [2], Humble and
Molesky start by criticizing the siloed department structure and man-
agement by project. They then follow by advocating cross-functional
teams and management by product. However, they also suggest prac-
tices for strengthening collaboration among development and oper-
ations, which makes sense in the classical DevOps structure. Such
practices include operators attending agile ceremonies and developers
contributing to incident solving. Humble and Molesky also envision op-
eration groups offering support services (e.g., continuous integration)
and infrastructure as a service to product teams, which relates in our
taxonomy to enabler teams and the platform team structure.

Nybom et al. present three distinct approaches to DevOps adop-
tion [6]: (i) assigning development and operations responsibilities to
all engineers; (ii) composing cross-functional teams of developers and
operators; and (iii) creating a DevOps team to bridge development
and operations. However, the article is about a case study matching
the first approach only; developers undertook operational tasks, and
collaboration was promoted among the development and operations de-
partments. According to our taxonomy, such a scenario was an attempt
to migrate from siloed departments to classical DevOps. However, de-
spite some perceived benefits, new sources of friction emerged among
the departments, and several employees disagreed with the adopted
approach. We associate these sub-optimal results to the reported lack
of automation investments, which suggests that trying any DevOps
adoption without aiming for continuous delivery is not promising.

The 2018 State of DevOps Report surveyed respondents about the
organizational structures used in their DevOps journeys [7], offering

http://ccsl.ime.usp.br/devops/2020-06-14/interview-protocol.html

L. Leite et al.

a closed set of alternatives: cross-functional teams responsible for specific
services or applications, dedicated DevOps teams, centralized IT teams with
multiple application development teams, site reliability engineering teams,
and service teams providing DevOps capabilities (e.g., building test environ-
ments, monitoring). However, the text does not further describe such
options. Thus, associating our structures to the options presented by
the survey would be an error-prone activity.

Skelton and Pais present nine “DevOps topologies” and seven anti-
patterns [8], as the most informal of our comparison sources — a
blog post. The presentation of each topology and anti-pattern is short,
lacking details about how corporations apply them. We now present
the correspondences among the DevOps topologies/anti-patterns and
our taxonomy. Dev and ops silos corresponds to our siloed departments
structure. Dev do not need ops corresponds to our cross-functional teams
with no infra background. In some organizations adopting classical
DevOps, we saw the rebranding of the infrastructure team to SRE or
DevOps (#12, #16, #131), but this situation did not entirely match the
rebranded sysadmin anti-pattern since there were cultural changes in
the observed cases. Ops embedded in dev team corresponds to our cross-
functional teams with dedicated infra professionals, although we saw
positive results with this configuration in #I1. In a siloed organization
(#130), we also observed the DevOps team silo. Dev and ops collaboration
corresponds to our classical DevOps structure. Ops as infrastructure-as-
a-service (platform) corresponds to our platform teams. We consider
SRE team topology to match our classical DevOps structures with infra
as development collaborator, although the topology description does
not include this SRE activity of coding the application to improve its
non-functional requirements [50].

The Team Topologies book [9], from the same authors of the DevOps
topologies blog post, presents four dynamic patterns of teams for
software-producing corporations:
stream-aligned teams, delivering software in a business-aligned constant
flow; complicated sub-system teams, with highly specialized people work-
ing on a complicated problem; enabler teams, providing consulting for
stream-aligned teams in a specific technical or product domain; and
platform teams, providing internal services for self-service by stream-
aligned teams, abstracting infrastructure and increasing autonomy for
stream-aligned teams.

The stream-aligned team corresponds to what we call a product team
or development team in this paper. The complicated sub-system team is
not considered in our taxonomy since it is related to splitting work
within development only. The enabler team proposed by Skelton and
Pais is very close to what we also call an enabler team (e.g., interviewee
#I18 was in an enabler team providing consulting on performance
for product teams); however, Skelton and Pais advocate that such
consulting must be time-bounded, which is an aspect absent from our
observed enabler teams. Finally, the platform team proposed by Skelton
and Pais includes our notion of platform team; however, our concept
is restricted to the services related to the execution environment of
the applications, i.e., while we considered teams providing pipeline
services as enabler teams, Skelton and Pais would consider them as
platform teams.

Another significant difference from team topologies to our work is
that the book seeks to present things how they should be, while we try to
summarize thing how they are. In this sense, although we acknowledge
the existence of the classical DevOps structure, it is not included in the
team topologies, since the authors discourage the handover it causes.
We also note that the terms “platform team” and “enabler team”
emerged from our interviewees, without the Teams Topologies book’s
direct influence.

Most of the discussed work so far [6,2,7,8] presents sets of organi-
zational structures without an empirical elaboration of how such sets
were conceived. The Team Topologies book suggests that the proposed
topologies emerged from field observations, but lacked a scientific
methodology. In this way, Shahin et al. [10] present the closest work

12

Information and Software Technology 139 (2021) 106672

to ours, with a set of structures based on field data and scientific
guidelines.

Shahin et al. [10] conducted semi-structured interviews in 19 or-
ganizations and surveyed 93 practitioners to empirically investigate
how development and operation teams are organized in the software
industry toward adopting continuous delivery practices. They found
four types of team structures: (i) separate Dev and Ops teams with higher
collaboration, (ii) separate Dev and Ops teams with a facilitator(s) in the
middle; (iii) small Ops team with more responsibilities for Dev team, and (iv)
no visible Ops team. Structures i and iii map to classical DevOps in our
taxonomy. Structure ii corresponds to the adoption of a DevOps team as
a bridge between development and operations. One of our interviewees
reported that such a pattern occurred in the past in his organization
(#14) and we also observed the DevOps team as a committee bringing
together development and operations leadership in another organiza-
tion (#136); therefore, DevOps teams serving as bridges are likely no
longer common. Finally, structure iv maps to cross-functional teams.
Shahin et al. did not identify the platform teams structure, the most
promising alternative we found in relation to delivery performance.
Moreover, their work does not present the notion of transitioning
between the structures.

Shahin et al. [10] also explored the size of the companies adopting
each structure. They found that structure i is mainly adopted by large
corporations, while structure iv was observed mainly in small ones.
These findings are corroborated by our data in Table 4: classical De-
vOps was less observed in small organizations, while cross-functional
teams were not prevalent in large organizations. However, other fac-
tors may be involved in adopting an organizational structure. Better
understanding these factors and their forces are in our plans for future
work.

In a recent paper, Shahin and Babar recommend adding operation
specialists to the teams [41], which favors cross-functional teams with
dedicated infra professionals.

7. Limitations

The reader must take into account the typical limitations of taxon-
omy theories. The most important limitation is that they rarely make
probabilistic predictions in terms of dependent and independent vari-
ables, as variance theories, common in Physics, do [15]. Thus, it is not
proper to discuss, for a grounded theory, the number of interviewees
in terms of statistical sampling.

A limitation for credibility and dependability [35] is the anonymity
of our participants, since it is not possible to replicate the interviews
with the same people. However, there is a crucial trade-off here:
some participants might not accept an invitation to participate in
a non-anonymous interview. Moreover, anonymity copes with social
desirability bias [51]; interviewing the same person after some time
does not guarantee the same responses.

Although we relied on previous work [18] to adopt the delivery
performance construct, we needed to adapt the original thresholds due
to the reasons exposed in Section 2. We also did not differentiate
low from medium performers, as we judged that such differentiation
would not help distinguish how the structures contribute to delivery
performance, partly because low and medium performers are much
more similar among themselves than when compared to high perform-
ers [52]. Therefore, by changing some decisions related to delivery per-
formance, another researcher could reach different conclusions based
on the same data. We handled this concern mainly by stating our
definitions regarding this topic. Nonetheless, GT does not guarantee
that two researchers working in parallel with the same data would
achieve identical results [14].

In an ideal process, different researchers would analyze the inter-
views independently, avoiding some possible agreement bias favored
by reviews. However, the cost for independent analysis would be too
onerous (analyzing one interview takes hours). Regarding the review

L. Leite et al.

process, instead of relying on the transcripts produced by a single
author, all researchers could have listened to the original records.
Yet, such an approach also would be too costly in terms of time
commitment. Alternatively, two co-authors took part in a few initial
interviews to standardize the transcription procedures and assess how
the first author conducted these interviews.

We are aware that large companies usually present groups at differ-
ent maturity levels, and that such groups could be classified differently
if we had chosen different interviewees. To verify this, we interviewed
two persons from the same company (#I16 and #I18) working in
different teams. We noted that, indeed, the organizational patterns
were not identical. This effect also happens when transitioning from
one structure to another, since transitioning can be a long process and
take different paces at different organization segments. Therefore, the
reader must note that our descriptions characterize our respondents’
contexts, not the organizations in their totality.

Finally, one particular characteristic of software development teams
is that they are not fixed; developers often move in and out of a team.
Therefore, there is no reason to think about the proposed organizational
structures as immutable. Instead, readers should consider our organiza-
tional structures when moving toward a continuous delivery scenario.
After becoming comfortable and starting to excel with continuous de-
livery, if needed, practitioners could adapt the organizational structure
employed to become effective in other contexts.

8. Conclusion

In this paper, we presented an emerging grounded theory address-
ing the research question “What organizational structures do software-
producing organizations adopt to structure operations activities (application
deployment, infrastructure setup, and service operation in run-time) among
development and infrastructure groups?” We found four organizational
structures:

1. Siloed departments (with seven core properties);

2. Classical DevOps (with eight core properties and one supplemen-
tary property);

3. Cross-functional teams (with four core properties and three sup-
plementary properties);

4. Platform teams (with nine core properties and three supplemen-
tary properties).

Beyond the seven supplementary properties directly related to one
structure each, we also found two other supplementary properties
applicable to more than one structure. The core properties describing
each organizational structure plus the supplementary properties answer
the sub-research question “What are the properties of each of these
organizational structures?”’

Moreover, this study answers the sub-research question “Are some
organizational structures more conducive to continuous delivery than oth-
ers?” by raising the emerging hypothesis that the platform team
structure is more suitable for achieving continuous delivery given its
relationship with delivery performance. We also observed that siloed
departments relate more to organizations with less-than-high perfor-
mance. Additionally, there was no apparent relation between delivery
performance and the other structures (classical DevOps and cross-
functional teams). Nonetheless, we critically state that reaching high
delivery performance is not a need for every software-producing orga-
nization, as adopting platform teams is not adequate for every organiza-
tion. A promising topic for future research is investigating whether the
organization domain influences the need of high delivery performance.

Our work has implications for practice. Software companies could
realize that there are several kinds of organizational structures they
could adopt to excel in continuous delivery and plan which organi-
zational structure they are interested in moving to, maximizing their
chances to succeed in the transition. Further, we clarified the roles

13

Information and Software Technology 139 (2021) 106672

that the participants have to play in each organizational structure. This
evidence could help practitioners cooperate with less friction toward
organizational transformation.

Our work also has implications for research. The elements of our
taxonomy, in Fig. 3, provide a common vocabulary to support the
formulation of new research questions. For example, researchers can
investigate the impact of each property on other perspectives (e.g., soft-
ware architecture, security, database management). Another valuable
endeavor would be to investigate the relation between our taxonomy’s
elements and the internal organization of development and operation
groups, especially platform teams.

In addition, we observed that test automation is still not ade-
quately practiced in many software companies, as also noted by Ols-
son et al. [46], and that the lack of tests is a limiting factor for
achieving high delivery performance. This suggests research opportuni-
ties for proposing automated test generation techniques, especially in
environments in which tests are intrinsically difficult, such as games
or IoT. Moreover, we noticed participants practicing DevOps while
maintaining a monolithic application, which contrasts with the liter-
ature that strongly associates DevOps with microservices. This suggests
researchers should further investigate the differences in applying De-
vOps to monoliths and microservices-based systems. Similarly, since
we also observed some participants maintaining a monolith core with
peripheral microservices and achieving high delivery performance with
the microservices, researchers could propose novel techniques and
tools that could (semi-) automatically extract peripheral services from
monolith applications.

For future work, we plan to better delineate the forces that drive
organizations to choose different structures. We also intend to employ
our taxonomy to discuss scenarios of corporations not visited by us yet,
which can corroborate the theory’s resonance.

CRediT authorship contribution statement

Leonardo Leite: Conceptualization, Methodology, Investigation,
Resources, Data curation, Writing - original draft, Writing - review
& editing, Visualization, Project administration. Gustavo Pinto:
Resources, Data curation, Writing - review & editing, Visualization.
Fabio Kon: Conceptualization, Methodology, Resources, Writing -
review & editing, Visualization, Supervision, Funding acquisition.
Paulo Meirelles: Conceptualization, Methodology, Resources, Data
curation, Writing - review & editing, Visualization, Supervision, Project
administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We thank the support of the Brazilian Service of Federal Data Pro-
cessing (Serpro), CNPq proc. 309032/2019-9 and proc. 465446,/2014-
0, CAPES - Finance Code 001, and FAPESP proc. 14/50937-1 and proc.
15/24485-9.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.infsof.2021.106672.

https://doi.org/10.1016/j.infsof.2021.106672

L. Leite et al.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

G. Schermann, J. Cito, P. Leitner, H.C. Gall, Towards quality gates in con-
tinuous delivery and deployment, in: 24th IEEE International Conference on
Program Comprehension, ICPC, 2016, pp. 1-4, http://dx.doi.org/10.1109/ICPC.
2016.7503737.

J. Humble, J. Molesky, Why enterprises must adopt DevOps to enable continuous
delivery, Cut. IT J. 24 (8) (2011) 6-12.

L. Chen, Continuous delivery: Huge benefits, but challenges too, IEEE Softw. 32
(2) (2015) 50-54, http://dx.doi.org/10.1109/MS.2015.27.

G. Schermann, J. Cito, P. Leitner, U. Zdun, H.C. Gall, An empirical study on
principles and practices of continuous delivery and deployment, PeerJ PrePrints
4 (2016) e1889, http://dx.doi.org/10.7287/peerj.preprints.1889v1.

N. Oliveira, N. Takahashi, Organizational structure, format, shape design and
architecture, in: Automated Organizations: Development and Structure of the
Modern Business Firm, Springer, 2012.

K. Nybom, J. Smeds, I. Porres, On the impact of mixing responsibilities between
devs and ops, in: International Conference on Agile Software Development, XP
2016, Springer International Publishing, 2016, pp. 131-143, http://dx.doi.org/
10.1007/978-3-319-33515-5_11.

A. Mann, M.S.A. Brown, N. Kersten, 2018 State of DevOps Report, Puppet +
Splunk, 2018, https://puppet.com/resources/whitepaper/2018-state-of-devops-
report. (Accessed July 2019).

M. Skelton, M. Pais, DevOps topologies, 2013, https://web.devopstopologies.
com/. (Accessed July 2019).

M. Skelton, M. Pais, Team Topologies: Organizing Business and Technology
Teams for Fast Flow, IT Revolution Press, 2019.

M. Shahin, M. Zahedi, M.A. Babar, L. Zhu, Adopting continuous delivery and
deployment: Impacts on team structures, collaboration and responsibilities, in:
Proceedings of the 21st International Conference on Evaluation and Assessment
in Software Engineering, EASE’17, ACM, 2017, pp. 384-393, http://dx.doi.org/
10.1145/3084226.3084263.

P.A. Anderson, Decision making by objection and the Cuban missile crisis, Adm.
Sci. Q. 28 (2) (1983) 201-222, http://dx.doi.org/10.2307/2392618.

L.T. Pinfield, A field evaluation of perspectives on organizational decision
making, Adm. Sci. Q. 31 (3) (1986) 365-388, http://dx.doi.org/10.2307/
2392828.

D.G. Sirmon, M.A. Hitt, R.D. Ireland, B.A. Gilbert, Resource orchestration to
create competitive advantage: Breadth, depth, and life cycle effects, J. Manag.
37 (5) (2011) 1390-1412, http://dx.doi.org/10.1177/0149206310385695.

B. Glaser, A. Strauss, The Discovery of Grounded Theory: Strategies for
Qualitative Research, Aldine Transaction, 1999.

P. Ralph, Toward methodological guidelines for process theories and taxonomies
in software engineering, IEEE Trans. Softw. Eng. 45 (7) (2019) 712-735, http:
//dx.doi.org/10.1109/TSE.2018.2796554.

B.B.N. de Franca, H. Jeronimo, G.H. Travassos, Characterizing DevOps by
hearing multiple voices, in: Proceedings of the 30th Brazilian Symposium on
Software Engineering, SBES ’16, ACM, 2016, pp. 53-62, http://dx.doi.org/10.
1145/2973839.2973845.

N. Forsgren, M.A. Rothenberger, J. Humble, J.B. Thatcher, D. Smith, A taxonomy
of software delivery performance profiles: Investigating the effects of devops
practices, in: AMCIS 2020 Proceedings, no. 8, 2020.

N. Forsgren, J. Humble, G. Kim, Measuring performance, in: Accelerate: The
Science of Lean Software and DevOps: Building and Scaling High Performing
Technology Organizations, IT Revolution Press, 2018.

K.-J. Stol, P. Ralph, B. Fitzgerald, Grounded theory in software engineering
research: A critical review and guidelines, in: 2016 IEEE/ACM 38th International
Conference on Software Engineering, ICSE 16, 2016, pp. 120-131, http://dx.doi.
org/10.1145/2884781.2884833.

M. Waterman, J. Noble, G. Allan, How much up-front?: A grounded theory of
agile architecture, in: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, ICSE ’15, 2015, pp. 347-357, http://dx.doi.org/10.1109/
ICSE.2015.54.

R. Hoda, J. Noble, Becoming agile: A grounded theory of agile transitions
in practice, in: 2017 IEEE/ACM 39th International Conference on Software
Engineering, ICSE ’17, 2017, pp. 141-151, http://dx.doi.org/10.1109/ICSE.2017.
21.

R. Santos, F. Silva, C. Magalhaes, C. Monteiro, Building a theory of job rotation in
software engineering from an instrumental case study, in: 2016 IEEE/ACM 38th
International Conference on Software Engineering, ICSE ’16, 2016, pp. 971-981,
http://dx.doi.org/10.1145/2884781.2884837.

W.P. Luz, G. Pinto, R. Bonifacio, Adopting devops in the real world: A theory, a
model, and a case study, J. Syst. Softw. 157 (2019) 110384, http://dx.doi.org/
10.1016/j.jss.2019.07.083.

R. Siqueira, D. Camarinha, M. Wen, P. Meirelles, F. Kon, Continuous delivery:
Building trust in a large-scale, complex government organization, IEEE Softw. 35
(2) (2018) 38-43, http://dx.doi.org/10.1109/MS.2018.111095426.

14

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Information and Software Technology 139 (2021) 106672

D. Cukier, F. Kon, A maturity model for software startup ecosystems, J. Innov.
Entrep. 7 (2018) http://dx.doi.org/10.1186/513731-018-0091-6.

L. Leite, C. Rocha, F. Kon, D. Milojicic, P. Meirelles, A survey of DevOps
concepts and challenges, ACM Comput. Surv. 52 (6) (2019) 127:1-127:35,
http://dx.doi.org/10.1145/3359981.

L. Leite, F. Kon, G. Pinto, P. Meirelles, Building a theory of software teams
organization in a continuous delivery context, in: 42nd International Conference
on Software Engineering Companion, ICSE "20 Companion, 2020, pp. 294-295,
http://dx.doi.org/10.1145/3377812.3390807.

L. Leite, F. Kon, G. Pinto, P. Meirelles, Platform teams: An organizational
structure for continuous delivery, in: IEEE/ACM 42nd International Conference
on Software Engineering Workshops, ICSEW’20, 2020, pp. 505-511, http://dx.
doi.org/10.1145/3387940.3391455.

P.E. Strandberg, Ethical interviews in software engineering, in: International
Symposium on Empirical Software Engineering and Measurement 2019, ESEM
’19, 2019, http://dx.doi.org/10.1109/ESEM.2019.8870192.

W.C. Adams, Conducting semi-structured interviews, in: Handbook of Practical
Program Evaluation, third ed., Jossey-Bass, 2010.

S. Georgieva, G. Allan, Best practices in project management through a grounded
theory lens, Electron. J. Bus. Res. Methods 6 (1) (2008) 43-52.

M. Miles, M. Huberman, Focusing and bounding the collection of data - the
substantive start, in: Qualitative Data Analysis: A Methods Sourcebook, third
ed., Sage Publications, 2013, Chapter 2.

M. Shahin, M. Zahedi, M.A. Babar, L. Zhu, An empirical study of architecting for
continuous delivery and deployment, Empir. Softw. Eng. 24 (2019) 1061-1108,
http://dx.doi.org/10.1007/510664-018-9651-4.

R.K. Yin, Case Study Research, Design and Methods, fourth ed.,
Publications, 2009.

E. Guba, Criteria for assessing the trustworthiness of naturalistic inquiries, Educ.
Technol. Res. Dev. 29 (1981) 75-91, http://dx.doi.org/10.1007/BF02766777.
P. Debois, Just enough documented information, in: Agile 2008 Toronto, 2008.
E.M. Goldratt, J. Cox, The Goal: A Process of Ongoing Improvement, North River
Press, 2014, 30th anniversary edition.

J. Humble, There’s no such thing as a “devops team”, 2012, https:
//continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team.
(Accessed August 2018).

J. Davis, R. Daniels, Effective DevOps: building a Culture of Collaboration,
Affinity, and Tooling At Scale, O’Reilly Media, 2016.

H. Kniberg, Spotify engineering culture (part 1), 2014, https://labs.spotify.com/
2014/03/27 /spotify-engineering-culture-part-1. (Accessed August 2019).

M. Shahin, M.A. Babar, On the role of software architecture in DevOps Transfor-
mation: An industrial case study, in: Proceedings of the International Conference
on Software and System Processes, in: ICSSP ’20, ACM, 2020, pp. 175-184,
http://dx.doi.org/10.1145/3379177.3388891.

J. Gray, A conversation with Werner Vogels, ACM Queue 4 (4) (2006) 14-22,
http://dx.doi.org/10.1145/1142055.1142065.

K. Morris, Infrastructure as Code: Managing Servers in the Cloud, O’Reilly Media,
2016.

K. Eisenhardt, Building theories from case study research, Acad. Manag. Rev. 14
(4) (1989) 532-550, http://dx.doi.org/10.5465/amr.1989.4308385.

M. Leppanen, S. Makinen, M. Pagels, V. Eloranta, J. Itkonen, M.V. Mantyla,
T. Mannisto, The highways and country roads to continuous deployment, IEEE
Softw. 32 (2) (2015) 64-72, http://dx.doi.org/10.1109/MS.2015.50.

H.H. Olsson, H. Alahyari, J. Bosch, Climbing the “stairway to heaven” - A
mulitiple-case study exploring barriers in the transition from agile development
towards continuous deployment of software, in: 38th Euromicro Conference
on Software Engineering and Advanced Applications, 2012, pp. 392-399, http:
//dx.doi.org/10.1109/SEAA.2012.54.

S. Neely, S. Stolt, Continuous delivery? easy! just change everything (well,
maybe it is not that easy), in: 2013 Agile Conference, 2013, pp. 121-128,
http://dx.doi.org/10.1109/AGILE.2013.17.

A. Mockus, Organizational volatility and its effects on software defects, in:
Proceedings of the Eighteenth ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE ’10, ACM, 2010, pp. 117-126, http:
//dx.doi.org/10.1145/1882291.1882311.

M. Hilton, A. Begel, A study of the organizational dynamics of software teams,
in: Proceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice, ICSE-SEIP ’18, ACM, 2018, pp. 191-200,
http://dx.doi.org/10.1145/3183519.3183527.

B. Beyer, C. Jones, J. Petoff, N.R. Murphy, Site Reliability Engineering: How
Google Runs Production Systems, O’Reilly Media, 2016.

D. Dodou, J. de Winter, Social desirability is the same in offline, online, and
paper surveys: A meta-analysis, Comput. Hum. Behav. 36 (2014) 487-495,
http://dx.doi.org/10.1016/j.chb.2014.04.005.

N. Forsgren, A. Brown, J. Humble, N. Kersten, G. Kim, 2017 State of De-
vOps Report, Puppet + Dora (DevOps Research & Assessment), 2017, https:
//puppet.com/resources/whitepaper/2017-state-of-devops-report. (Accessed De-
cember 2020).

SAGE

http://dx.doi.org/10.1109/ICPC.2016.7503737
http://dx.doi.org/10.1109/ICPC.2016.7503737
http://dx.doi.org/10.1109/ICPC.2016.7503737
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb2
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb2
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb2
http://dx.doi.org/10.1109/MS.2015.27
http://dx.doi.org/10.7287/peerj.preprints.1889v1
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb5
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb5
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb5
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb5
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb5
http://dx.doi.org/10.1007/978-3-319-33515-5_11
http://dx.doi.org/10.1007/978-3-319-33515-5_11
http://dx.doi.org/10.1007/978-3-319-33515-5_11
https://puppet.com/resources/whitepaper/2018-state-of-devops-report
https://puppet.com/resources/whitepaper/2018-state-of-devops-report
https://puppet.com/resources/whitepaper/2018-state-of-devops-report
https://web.devopstopologies.com/
https://web.devopstopologies.com/
https://web.devopstopologies.com/
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb9
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb9
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb9
http://dx.doi.org/10.1145/3084226.3084263
http://dx.doi.org/10.1145/3084226.3084263
http://dx.doi.org/10.1145/3084226.3084263
http://dx.doi.org/10.2307/2392618
http://dx.doi.org/10.2307/2392828
http://dx.doi.org/10.2307/2392828
http://dx.doi.org/10.2307/2392828
http://dx.doi.org/10.1177/0149206310385695
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb14
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb14
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb14
http://dx.doi.org/10.1109/TSE.2018.2796554
http://dx.doi.org/10.1109/TSE.2018.2796554
http://dx.doi.org/10.1109/TSE.2018.2796554
http://dx.doi.org/10.1145/2973839.2973845
http://dx.doi.org/10.1145/2973839.2973845
http://dx.doi.org/10.1145/2973839.2973845
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb18
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb18
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb18
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb18
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb18
http://dx.doi.org/10.1145/2884781.2884833
http://dx.doi.org/10.1145/2884781.2884833
http://dx.doi.org/10.1145/2884781.2884833
http://dx.doi.org/10.1109/ICSE.2015.54
http://dx.doi.org/10.1109/ICSE.2015.54
http://dx.doi.org/10.1109/ICSE.2015.54
http://dx.doi.org/10.1109/ICSE.2017.21
http://dx.doi.org/10.1109/ICSE.2017.21
http://dx.doi.org/10.1109/ICSE.2017.21
http://dx.doi.org/10.1145/2884781.2884837
http://dx.doi.org/10.1016/j.jss.2019.07.083
http://dx.doi.org/10.1016/j.jss.2019.07.083
http://dx.doi.org/10.1016/j.jss.2019.07.083
http://dx.doi.org/10.1109/MS.2018.111095426
http://dx.doi.org/10.1186/s13731-018-0091-6
http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1145/3377812.3390807
http://dx.doi.org/10.1145/3387940.3391455
http://dx.doi.org/10.1145/3387940.3391455
http://dx.doi.org/10.1145/3387940.3391455
http://dx.doi.org/10.1109/ESEM.2019.8870192
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb30
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb30
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb30
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb31
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb31
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb31
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb32
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb32
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb32
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb32
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb32
http://dx.doi.org/10.1007/s10664-018-9651-4
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb34
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb34
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb34
http://dx.doi.org/10.1007/BF02766777
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb37
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb37
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb37
https://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team
https://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team
https://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb39
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb39
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb39
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1
http://dx.doi.org/10.1145/3379177.3388891
http://dx.doi.org/10.1145/1142055.1142065
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb43
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb43
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb43
http://dx.doi.org/10.5465/amr.1989.4308385
http://dx.doi.org/10.1109/MS.2015.50
http://dx.doi.org/10.1109/SEAA.2012.54
http://dx.doi.org/10.1109/SEAA.2012.54
http://dx.doi.org/10.1109/SEAA.2012.54
http://dx.doi.org/10.1109/AGILE.2013.17
http://dx.doi.org/10.1145/1882291.1882311
http://dx.doi.org/10.1145/1882291.1882311
http://dx.doi.org/10.1145/1882291.1882311
http://dx.doi.org/10.1145/3183519.3183527
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb50
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb50
http://refhub.elsevier.com/S0950-5849(21)00132-4/sb50
http://dx.doi.org/10.1016/j.chb.2014.04.005
https://puppet.com/resources/whitepaper/2017-state-of-devops-report
https://puppet.com/resources/whitepaper/2017-state-of-devops-report
https://puppet.com/resources/whitepaper/2017-state-of-devops-report

	The organization of software teams in the quest for continuous delivery: A grounded theory approach
	Introduction
	Background
	Study design
	Grounded theory
	Brainstorming sessions
	Selecting participants
	Conducting the interviews
	Analyzing the interviews
	Theoretical saturation
	Feedback

	The taxonomy of organizational structures
	Siloed departments
	Classical DevOps
	Cross-functional teams
	Platform teams
	Shared supplementary properties
	Transitioning
	Summary

	Discussion
	Feedback
	Evaluating our emerging theory

	Related work
	Limitations
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

