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Abstract

With the advancement of modern rail transport systems, high-speed railways’ safety and reliability is improved enormously
due to proper intelligent traffic management systems. The automatic train control and operating system receive the train
location beacons and the railway line’s essential information through various channels, such as Balise wirelessly. However,
this technology is vulnerable to cyber-physical attacks. This article aims to investigate the existing cyber attacks on Balise
that can result a physical turmoil. Due to the limitations and constraints of the railway infrastructures, the attacks and failure
detection methods are proposed based on machine learning. Also, a fuzzy countermeasure system is developed to improve
train safety against known and unknown cyber-attacks. The simulation results show 92% accuracy in the proposed success-
ful attacks detection system. Moreover, a small amount of false-positive and false-negative warnings can be also revealed
employing the proposed scheme. The proposed method does not require change railway infrastructure.

Keywords Train transport security - Machin learning - Cyber-attacks - European train control system (ETCS) - Adaptive

neural-fuzzy inference system (ANFIS) - Support vector machine (SVM)

1 Introduction

The development of intelligent rail transportation systems
has increased the speed and number of modern trains over
the rail tracks, so that today, over 4000 billion passenger-
kilometers travel across the world during the year 2020 [1].
Consequently, it is vital to ensure that passengers safety and
security. Communication-based train control (CBTC), Euro-
pean rail traffic management systems (ERTMS), or other
similar systems worldwide have a crucial role in safety,
management, signaling, and train control systems. One of
the mentioned systems is the European train control sys-
tem (ETCS) which is responsible for signaling, Automatic
train control (ATC), and Automatic train protection (ATP)
[2]. The primary objectives for designing the aforemen-
tioned systems are standardization and passenger safety, but
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security is not taken into account. It should be emphasized
that the security vulnerabilities could compromise the safety
of passengers, which is the main issue of this paper.

According to the ETCS standard, on-board train systems
include Vital computer (VC), Balise transmission module
(BTM), odometric sensors, Doppler radar, and lineside
equipment which includes Balise and Lineside electronic
unit (LEU) [3]. The Balise is a beacon transponder installed
between the rails. When the train passes over, it commu-
nicates with the train BTM via an air-gap interface. BTM
is an on-board module with an antenna installed under the
train to send and receive a message (telegram) from Balise.
The pre-programmed telegram contains Balise informa-
tion, such as the header ID, train position and geographical
location, speed limit, route, movement authority, and link-
ing data (distance to the next Balise or its group). Balise
has a mechanism similar to Radio frequency identification
(RFID), including two types of fixed and controllable Balise.
Fixed Balise is activated by BTM tele-powering that con-
tinually responds to the BTM the copies of telegram until
the train passes over. Controllable Balise is energized by
the LEU and can transmit (up-link) and receive (down-link)
dynamic data [4].
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The ETCS system is designed to increase the safety,
speed, and automaticity of train transportation; however,
security against cyber-attacks has not been considered [2].
The Balise telegram is sent as plaintext without checking
the integrity and timestamps, increasing the potential for
possible attacks. Moreover, an attacker can be a dissat-
isfied team member, or a malicious contractor who can
collect, tamper, relay, replay, and block telegram data.
As a result, ambiguity in positioning and compromising
train safety can lead to passenger life threats, train derail-
ment, or catastrophic collisions [5, 6]. According to the
mentioned issues, this study aims to improve the security
of the train control system based on artificial intelligence
systems.

Until now, many researchers have proposed a scheme
to improve the security of the train control system. These
schemes can be categorized in a cryptographic method,
a challenge-response authentication mechanism, and a
localization approach (i.e., employ on-board sensors and
equipments).

Guo et al. [7] proposed a method based on the AES
encryption and a hash-based Message authentication code
(MAC) to check the integrity, authenticity, and confiden-
tiality of the telegram message. Lim et al. [4] presented a
lightweight encryption algorithm to protect the telegram’s
integrity on the Balise side and, on the train side, they
also designed a hybrid controller to reduce the impacts of
various attacks. Another paper proposed a cryptography
solution to improve Balise-BTM communication security
which is based on the Deoxys II encryption method [8].
The authors of the aforementioned papers do not explain
how to implement their algorithms according to the ETCS
standards regarding to Balise processing time and memory
limitations.

Many researchers employ the challenge-response authen-
tication mechanism over the Balise communication sys-
tems [9, 10]. This mechanism is proposed by the distance-
bounding protocol to defeat relay and replay attacks based
on the private key and distance measurement to calculate
the Round-trip delay (RTD) of sending the challenge and
receiving the relevant response [11, 12]. Wu et al. [6] have
demonstrated the impact of attacks by simulation, and their
proposed solution is to provide a challenge-response authen-
tication mechanism.

One of the schemes that do not require trackside signal-
ling equipment and focus on using on-board equipment of
the train is solely the reference [13] that uses data fusion of
the Global navigation satellite system (GNSS) and speed
sensors to improve safety and security. In references [14,
15], the train’s position and speed are estimated online with
data fusion of the Odometer sensor and IMUs; the weak-
ness of such methods is the uncertainty and inaccuracy of
the sensors.
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References [16, 17] analyze cyber-attacks on the CBTC,
and [18] has proposed an intrusion detection system to detect
attacks in the wireless train network protocols.

The contribution of this paper can be summarized as fol-
lows. We analyze Balise security issues to identify vulner-
abilities and abnormal behavioral patterns. To detect threat
patterns, we employ machine learning algorithms. The
features of the attack pattern are extracted from the radio
communication characteristics of Balise and the train’s sen-
sory data. The proposed method can detect an anomaly in
the control system by monitoring the extracted features. By
integrating a novel auxiliary fuzzy controller, the destructive
effects of the attacks are reduced.

In the rest of the paper, an overview of existing attacks is
presented. In Section 3, we present the proposed approach
based on machine learning for attack and failure detection.
In this algorithm, train sensory data are collected as fea-
tures. According to observing features, machine learning
algorithms such as ANFIS, SVM, and Multi-layer percep-
tron (MLP) classify standard operations and attacks. Subsec-
tion 3.2 presents a fuzzy controller for mitigating the impact
of attacks. Section 4 discusses the simulation of the pro-
posed algorithms using a real urban rail configuration as an
example. Section 5 presents the simulation results analysis.
In Section 6, we make a comparison between the proposed
method and other well-known articles methods.

2 Balise Security, Vulnerabilities,
and Threats

The cyber-physical attacks on the rail transportation system
can aim to endanger safety, passenger injuries (even death),
property damage, and economic losses. So, it is essential to
know the types of cyber-physical attacks on Balise and their
impact. By understanding the strategy of attacks and their
effects, we can extract features to provide an intelligent solu-
tion to deal with possible attacks. In order to model threats,
the following five assumptions are considered:

e An attacker is aware of the theory and details of the train
control mechanism’s operation and can be mobile [19].

e An attacker can install fake Balise or manipulate the
information of legitimate Balise.

e An attacker is able to activate Balise by tele-powering
and relay or record its telegram to replay by modification
with another time and place [9].

e An attacker is able to eavesdrop or transmit fake and
jamming signals by using radio equipment around the
railway line.

e An attacker cannot manipulate train on-board devices
or physically remove, destruct, or move Balise without
being detected [4].
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2.1 Threats Overview

In this section, we present a brief description of how Balise
attacks are performed and their risks. Based on this infor-
mation, the impact of such attacks on the train system is
recognized. As a result, we can identify the signs of attacks.
Afterwards, we contribute an artificial intelligence-based
solution for detecting and preventing attacks. So, the aim of
this study is to introduce novel measures to improve security
against all the threats as follows:

Sniffing Attack When a legitimate BTM of a train ener-
gizes a Balise, a second malicious receiver can monitor
the plaintext communication and obtain critical informa-
tion on the telegram or a BTM impersonation sniffed tele-
gram data. This attack is the prelude to other attacks [20].
Jamming Attack When sending and receiving data
between BTM-Balise, the attacker can jam the communi-
cation by emitting a high-power electromagnetic interfer-
ence in the Balise operating frequency band. Due to Bal-
ise jamming or covering, Balise telegram is not received.
This attack is also known as the Balise missing attack [6].
Tampering Attack The Balise is designed with a rewrit-
able memory to allow railway maintenance staff to update
the telegram on the Balises. This opens up the possibility
of rewriting telegram data which can motivate the mali-
cious adversary to manipulate vital information in tel-
egram. Injecting false data by the adversary causes auto-
matic train control (ATC) to show incorrect reactions and
compromise the lives of passengers [4].

Balise Cloning Balise cloning is to make an unauthor-
ized copy of a valid telegram from a legitimate Balise
to a new Balise. Cloned Balise can be a genuine Balise
or producing a circuit design of the Balise. The Balise
cloning threat can cause a significant train transportation
disruption [4].

Fake Telegram In this attack, the adversary fabricates an
arbitrary telegram to transmit for passing trains BTM by
software-defined radio. The ATC system cannot distin-

guish the received message as a fake telegram. A fake tel-
egram can make the train to stop immediately or to con-
tinue at full speed at the same track occupied by another
train which can cause a fatal collision [9].

Transmission Extension Attack (TE) In this attack, the
adversary can extend the Balise activation time by tele-
powering or increasing the total number of received tel-
egrams with repeated replaying telegram. Eventually,
make a significant train parking (stopping) error [6].
Telegram Relay Attack According to the safety rules, the
train must reduce its speed before passing through a bent
rail. Therefore, if the attacker relays the valid telegram
after the bent rail for the on-board BTM, the train may
derail from rails and cause disastrous consequences.
Telegram Replay Attack There are no proper authenti-
cation mechanisms for BTM. So, the attacker can acti-
vate the Balise, record the valid telegram and replay it at
another strategic place and time without any difficulty.
As Fig. la depicts, this attack creates ambiguity and
inconsistency in train position (P,) and disrupts the train
movement. Also, this attack is known as Balise displace-
ment [19].

2.2 Multi-Stage Advanced Attacks

If an adversary inserts a significant error in the train navi-
gation system, the probability of detecting and announcing
a security breach increases; under this condition, the train
is switched to a fail-safe state, so the attacker can launch
several combined independent attacks with limited error to
create a serious security challenge. Some of these attacks
are introduced:

Joint Jamming-Faking Attack According to Fig. 1b, when
the train passes over the legitimate Balise, the attacker
jams the valid telegram using radio equipment and imme-
diately generates a fake telegram with the correct iden-
tification and structure according to the ETCS standard.
Furthermore, it sends the fake telegram with high power
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Fig. 1 Attacks on balise, a The adversary stops the train before the
station in position P, by replaying/relaying the telegram B,. b The
attacker first jams balise B, signal, then sends a fake telegram con-
taining wrong rail information that the rail is not occupied and the

train continues on the route. Finally, it causes the train to collide with
a leading train stopped on the railway. “=""means that telegram infor-
mation does not receive bypassing trains
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Attacks on Train Control Systems Based on Balise
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Fig.2 Flowchart of attacks on Balise. In Multi-Stage attacks (---), the
jamming attacks have been used to cover valid Balise

ratio. In this case, the on-board VC receives the fake tel-
egram instead of the original telegram [9].

Balise Jamming-Displacement Attack Because the jam-
ming attack is detected as Balise missing, the attacker
exploits security vulnerability. The attacker jams the valid
telegram sent by an authorized Balise and then transmits
that valid telegram at another location after a specific time
has elapsed. In other words, the jamming and the replay
attacks occur successively, thus reducing the probabil-
ity of attack detection. In another scenario, the attacker
can first replay the pre-recorded victim’s Balise telegram
sooner and then prevent the train BTM from receiving
the valid telegram when the train passes over the genuine
victim’s Balise by jamming. Hence, the railway safety of
service is reduced [6].

Consecutive Balise Displacement Attack To increase the
probability of the attack success, the adversary makes a
Balise displacement attack on each Balise of the Balise
group with limited error. The on-board VC cannot detect
the error based on the information of the Balise data link
(the relationship between neighboring Balise). Eventu-
ally, these attacks cause a significant error after passing
over several Balises, which may be financial loss or fatal
accidents depending on the train conditions. Another sce-
nario of this attack is direction reversal. Attackers can
replay the telegram of all Balises in the reverse direction
to train BTM in the bi-directional railway [7].

2.3 Attacks Classification

In this article, the mentioned attacks are classified based on
similarity into four categories, which are shown in the Fig. 2:
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3 Proposed Approach

The railways have already been widely spread to large
geographical areas of every countries. Upgrading the cur-
rent railway signalling infrastructure to secure the railways
against cyber-physical attacks is costly. Therefore, the pro-
posed method must be applied to the current infrastructure
and does not require a significant change in the existing sys-
tem or the purchase of new equipment. According to the
fixed data format and structure of passive Balise as well as
low power and processing capabilities, it is far-fetched to
be possible to implement a classic challenge-response pro-
tocol or a cryptographic algorithm. We must also propose
a method that can detect known and unknown attacks by
insiders as well as outsiders because Balise documents are
available to everyone.

The proposed method is placed in the middleware layer
(Virtual computer) and analyzing VC’s receiving data.
This method monitors the data received from the vari-
ous sensors and records its observations into an audit log.
The audit records are analyzed to detect anomalous opera-
tions. When an abnormal operation is detected, the audit
records have deviated from the normal train operation or
signatures of activity close to some previously introduced
attack definition. After an attack detection, an alerting sig-
nal is triggered, and the appropriate reciprocal reaction is
accomplished. Thereupon, this type of proposed method
can call a train-based Intrusion detection system (IDS).
The components of the proposed approach are shown in
Fig. 3. The implementation procedure is presented in the
three following steps:

Stage One When the train is in the range of informa-
tion exchange with Balise, each sensory data (suitable
features) is recorded in an audit recorder. The auditing
module then store these extracted features in an audit
log. The audit log is a dataset whose columns are the
features and whose rows are from each record.

Stage Two The Attack detection module (ADM) is an
artificial intelligence system based on machine learn-
ing for pattern recognition. This module analyzes the
received audit records to classify train operations and
warn suspicious behavior or malicious activities.
Stage Three The vital computer decides to perform the
procedural tasks according to the alert signals and train
conditions. These countermeasures can include: reject-
ing the telegram, reducing speed until safety is assured,
immediately stopping the train (Emergency brake), or
other appropriate actions that will be discussed in Sec-
tion. 3.3.
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3.1 Auditing Module

This module’s task is to receive the sensory data and extract
the appropriate features to detect an attack, and then these
features are stored in the audit record. In order to collect
appropriate features from the raw data, we have extracted
seven numerical features that have a different pattern dur-
ing the malicious activities and are evidence of abnormal
behavior. Ultimately, this makes the artificial intelligence
algorithms perform well. Since the attacker uses the air gap
between Balise and BTM to carry out attacks, the features
can be extracted from the Balise physical layer parameters
and Balise information content. By measuring flowing com-
munication link characteristics in a normal communication,
any deviation from normal values can be considered as mali-
cious behavior. The details of each feature, how they cause
distinguishing between normal and abnormal behaviors, are
described in the following:

(1) Balise Transmitting Power The attacker propagates its
fake signal from another location with a particular radio
transmitter. When the train passes over the fixed Bal-
ise, the Balise is excited and communicates with the
tele-powering at the 4.233 MHz frequency (f.). Most of
the attacks mentioned show that the faraway adversary
transmits a fake signal to the train’s BTM independent
of the train’s tele-powering, which does not correspond
to the calculated amount of receiving power. The Friis’s
formula can be used to calculate the power received
from the Balise in the free space:

2
PTxbalise GTx.balise GR.X.BTMW
(4m)2r?

Preprm = (H
In (1), Pry,patiser Ore.Baiise, a0d G, pry are the transmit
power of Balise, the Balise transmitter antenna gain, and
BTM receiver antenna gain, respectively. r is the transmit-
ter—receiver distance, and y is the wavelength.

Down-link Signal

According to the conditions of near field communication
and considering the electromagnetic coupling, the relation
(1) can be written as:

p _P Tx.baliseGTx.baliseGRx.BTM( I 1 1 )
ReBTM 4 kr?2  (kr)*  (kr)S

@)
where, k=2n/y. At near field communication mode, power
rolls off as powers higher than inverse square, typically
inverse fourth (1/r*) or higher. The value calculated from this
equation is a good approximation of the measured values
[21]. The histogram of the Received signal strength (RSS) of
the valid Balise (Pg, p7y,) in the up-link is shown in Fig. 4a.
In order for the train to receive fake telegram correctly, the
attacker sends the fake telegram with greater power. Any
noticeable deviation in the expected mean (¢) and variance
(o) values of the calculated received power probability den-
sity ffunction can indicate an anomaly or an attack. Devia-
tion from determined y and o are then selected as the input
feature of the machine learning algorithm.

(2) Balise Signal-to-Noise Ratio The Signal-to-noise ratio
(SNR) is defined as the ratio of the Balise signal level
to the noise level. The SNR value of the attacker sig-
nal and the valid signal are different because the noise
level of an attacker transmitter and the level of the fake
signal are different.; thus, we can detect all the attacks
using the difference between the mean of normal SNR
and the measured value. It is in metric form as:

P.
signal
> ) 3

noise

P Signal

SNR = — SNR (dB) = 101log <

Noise

where P is the average power in the signal bandwidth.
In Fig. 4b, the solid line shows the amount of normal
SNR changes when a train is passing over the Balise, and
the dash-line reveals the amount of SNR changes when
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where Nz,jqrqm 18 the number of received telegrams. The
correctness of telegram data bits is checked with the Cyclic
redundancy check (CRC) algorithm [3].

(4) Balise Communication Frequency (AF) According to
ERTMS specification documents, Balise-BTM com-
munication takes place with Frequency shift keying
(FSK) modulation. The up-link signal power spectrum
is shown in Fig. 5. For a logical bit ‘0’ transmission, a
narrowband continuous wave is emitted at a frequency
of f,=3.951 MHz in seven periods, and for a logical
bit ‘1’ transmission, eight periods of continuous-wave
f;=4.516 MHz is emitted [3].

A shift in the frequency (AF) of the receiving signal
may occur due to inaccuracy of an attacker’s local oscilla-
tor or due to the fact that the attacker transmitter is mov-
ing. This shift in frequency signifies anomaly that could
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indicate an attack. By monitoring the communication
frequency, an unauthorized telegram transmitter can be
recognized as:

AF = Lfo _ﬁ)‘+|fc_fc

+|h -7 ©)
In (6), ? is the frequency of receiving signal.

(5)  The Number of Received Telegrams (Ny,jog.,,) Accord-
ing to SUBSET-036 Balise specifications [3], the cov-
erage zone of the Balise is activated with tele-powering
(Dyete_powering) 18 1.1 to 1.4 m. By considering the train
speed (Vi) the approximate time of the Balise-BTM
communicating connection can be calculated as:

T _ D tele_powering
Com — V. (7)
Train

There are two standard forms of the short telegram (341
bits) for the high-speed train and the long telegram (1023
bits). According to the data transfer rate (Bg,,.=564.48
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kbit/s), the number of received copies of the telegram
(NZeiegram) can be calculated from the following equations,
and a criterion can be considered to detect the anomaly:

_ LTelegmm

TTelegram -

Bae
Rat (8)

_ 1023 (Bit) 1812 s
564.48 x 103 (Bit/s)

C
NTelegrum = T - (9)

telegram

where Ly, 00,4 18 the telegram length. In most mentioned
attacks, the adversary keeps sending copies of the fake tel-
egram, regardless of the train’s speed, which is inconsist-
ent with the number of valid telegrams that BTM receives
each time the train passes over the genuine Balise. Also, in
the transmission extension attack, the attacker replays more
valid telegrams to obscure the train’s position. If the meas-
ured number of received telegrams significantly drifts from
the calculated value, a suspicious action is detected.

(6) Inconsistency in the Balise Position (AD) After decod-
ing the telegram information of a Balise, its distance to
the next Balise group is registered in the linking data
packet. Besides, the distance between the pre-installed
Balise is already known [19]. According to the follow-
ing relation, the actual travelled distance (D,,,/10q) 18
obtained by train internal sensory data and distance to
the next Balise (Dy,,,) decoding from telegram infor-
mation. The difference between D,,,,,j,0 a0d Dy,
is calculated as a convenient feature (AD_ID
Dy,,) for attack detection.

travelled-

2 XN

counter

D X RWheel (10)

travelled =
tacho

where N, and N,,.,, are the number of train tachom-
eter pulse output in travel time and the number of pulses
per wheel revolution, respectively. R, ;,,; is the radius of

the train wheel.

(7) Position Difference obtained from GNSS and Balise
(AP) One of the features that can detect a fake telegram
is the difference between the decoded telegram position
and the position obtained from the satellite position-
ing system. If the feature values have a significant drift
from the statistic mean, it is a sign of an anomaly.

There are many methods to drive AP, such as Euclidean
distance, Manhattan Distance or Minkowski Distance, here
we employ the two former methods as follows:

Each balise has a unique identification number, and its
geographical position along the track is known by VC. Given
the geographical position of each installed balise and obtain-
ing the train’s location through the global navigation satellite
system (GNSS), when the train passes over the balise, we
can calculate AP from:

AP =

(11)
\/(LongBalise - Lonngin)2 + (LatBalise - LatTrain)2

where Longp,;., and Latg,;;., determine the longitude and
latitude of balise position, respectively. Longy,;, and Lat ...
are the longitude and latitude of train position obtained from
GNSS [6].

It must be noted that, according to Telegram Data
Structure standards, Telegram data packet 79 contains the
geographic position in the payload data structure of balise
[3, 8]. Besides, the longitudinal position of the train along
the track is being derived from the telegram, which are
being used as absolute position references. As a result, by
calculating the longitudinal position of the train through
the GNSS, we can obtain AP employing a simple differ-
ence Distance method as:

AP = |Positiong,;,, — Positiong,,,| (12)

where Position is the longitudinal position of the balise or
train.

3.2 Attack Detection Module

The seven features extracted by the auditing module are for-
warded to the Attack detection module (ADM). Hence, the
ADM consists of a machine learning algorithm for pattern
recognition. The output of this module is classified as the
standard or abnormal operation.

It is challenging to model normal and abnormal behavior
patterns and determine decision-making rules in ambiguous
and nonlinear issues. The use of human skills and experi-
ence alone in this issue reduces the accuracy and quality of
results. Thus, machine learning and human skill are used
simultaneously to detect attacks. Expert human knowledge
and skills are used to extract characteristics and label activi-
ties. Furthermore, the machine is trained based on labelled
data and makes decisions for previously unseen conditions.

In this paper, to solve attack detection problems, three dif-
ferent and well-known machine learning algorithms called
MLP, SVM, and ANFIS are employed. These algorithms
can categorize normal logs from abnormal ones after the
training process. At the end, the results are compared with
each other.

Artificial neural networks (ANNSs) are suitable for super-
vised classification and pattern recognition. Its function is

@ Springer
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Fig.6 The proposed artificial neural network structure (MLP) for
attack detection

inspired by the human brain, which has the least error in
modelling the output by observing an event’s characteristics
as input and determining the type of output. The least model-
ling error during the training process is done by determining
the optimal weight of the links and the neurons’ bias (Fig. 6).
Each neuron is a nonlinear mathematical transfer function of
given weighted inputs [22].

3.2.1 Machine Learning Algorithms

MLP Algorithm The proposed MLP network can identify
the attacks by classifying the operating data. MLP struc-
ture consists of seven neurons in the input layer (features),
five neurons in the hidden layer, and one neuron in the out-
put layer (Fig. 6). The value of output neuron (o) changes
between zero and one, with zero indicating normal behavior
and one indicating exactly an attack occurrence. The sig-
moid function defines the output of each neuron. In Fig. 6,
A is a constant number in the range of 0 to 1 that determines
the attack detection threshold.

SVM Algorithm In the proposed method; the SVM algo-
rithm is a classifier with a linear kernel function. In this
algorithm, the input is a features vector in the coordination
space. Each axis represents the value of a feature. Based
on the training data, the SVM finds an optimal separating
hyperplane in the coordinate space with maximum margins
than the two sets of normal and abnormal data. In other
words, the optimal hyperplane has the maximum distance
from the data in the margin between the two categories. The
optimal hyperplane is obtained by the Quadratic Program-
ming (QP) method, which is a well-known method for solv-
ing constrained optimization problems [22].

ANFIS The attack detection module must be able to
classify data with uncertainty. For this reason, an ANFIS
is employed to detect any attack. Identification of member
components in fuzzy rules, extraction, and optimization of
the structure of fuzzy inference rules are done using learning
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concepts in neural networks. This tuning operation allows
fuzzy systems to learn their structure from a set of data.
These attractive features of ANFIS have led to its success
and application in various scientific fields [23]. Figure 7
shows the ANFIS structure consisting of five layers that are
directly linked to each other. The first layer determines the
degree of membership of seven features as input to each
fuzzy set, which is called fuzzification. In the second layer,
the activation rate of each rule is specified (w;). The output
of the normalized third layer (w;) is the output of the previ-
ous layer. The third layer takes the normalized values and
calculates the non-fuzzy values from:

WiFi = Wi(CO +x16‘1 + ... +X7C7) (13)

where c; is a parameter obtained during the training process,
and x; is the value of the ith feature. In the last layer, the final
overall output is @ = Y, w;F.

3.3 Attack Countermeasures Module

In the previous section, the detection module’s output (@) is
mapped between zero and one. It then is entered into the
Attack countermeasure module (ACM) input. ACM is a
fuzzy controller system to mitigate the impact of attacks and
increases safety. Depending on the inputs, the ACM can stop
the train immediately (emergency brake), brake safely, slow
down, or continue the route. Figure 8 depicts the ACM struc-
ture. The first input, a is mapped to three Gaussian combina-
tion membership function (normal, suspect, and attack). The
second input, /3 is the ratio of obstacle distance (D 01 tO
train’s speed, which is obtained by dividing the Doppler
value in meters by the on-board speedometer (m/s). Also,
p= Donue g mapped to three Gaussian combination mem-

Trian

bership functions (Low, Medium, and High). This part is
called fuzzification, where the membership value of each
crisp input value to each fuzzy set is calculated [23].

When all the values of the introduced properties change
within the normal range, the output of the attack detec-
tion module (a) is close to zero. If some features’ value is
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Fig.8 Conservative fuzzy logic controller for increasing safety and security

Table 1 Fundamentals of fuzzy logic control

Attack detection output (a)

Normal Suspect Attack
B= Dopstacte Low O RS @SB D EB
V rian .
! Medium @DC ®RS ® SB
High ®DC ©®pcC O RS

RS: Reduce speed, DC: Do not care, SB: Safe breaking, * Rule num-
ber, EB: Emergency braking

slightly higher or lower than the normal value, the ADM
output is close to 0.5, and the suspect system mode is
declared. In this case, the received telegram is rejected,
and the fuzzy inference system reacts according to the
table of rules (Table 1 and Fig. 8). Each entry in the table
defines a rule. For clarification purposes, e.g., rule 7: If
the characteristics are far from their normal values, and
there is a possibility of collision, the alarm is triggered,
and the control center is notified. Then, the VC executes
the consequent part according to the fuzzy antecedent part,
i.e., Emergency braking (EB). In rule 8, VC calculates the
safe braking (SB) distance curve and takes action.

Figure 9 shows the control surface of the confronta-
tion system, the two axes of which are the inputs. Another
axis is shown relative to the system’s final output, which
is acceleration. Due to its nature, this fuzzy mitigates the
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eSS %o S X L B
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Alfa_(Detection_Output)
Beta_(Distance/Velocity)

Fig. 9 Resulting fuzzy control surface obtained by plotting the

inferred control action

impact of the attacks, increasing safety and security, as
well as passenger comfortations.

4 Simulation

In this section, the proposed method is tested by high-
fidelity simulation using a real urban rail configuration as
a case study. The case study is a real rapid transit urban
rail line with a length of 19.5 km with 22 stations.
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When the train passes over the Balises, each sensory
data and system mode are recorded in an audit record for
normal data collection. In fact, simulated attacks has been
recoded for this proposed studies because performing real
attacks can endanger passengers and a train for collect-
ing data. The train’s trajectory is simulated based on the
actual position of the Balise, the stations’ position, the
dynamic train movement, and signalling data. Each record
data contains eight elements. The first seven elements are
the introduced features in subsection 3.1, and the 8th ele-
ment determines its status, i.e., normal or type of attack.

The normal sensory data of the train was collected from the
studied transport route for the normal dataset. In order to pro-
vide the attacks dataset, it is necessary to analyze the theory of
attack strategy so that we can determine the amount of change
in each detection feature based on the wireless channel theory
and the attack scenario. Therefore, the logical manipulated
normal record data can be a good representation of the real
attack data. Figure 10 illustrates the train trajectory tracks in
normal transit mode as well as the performance of the intro-
duced simulated attacks on the case study [24, 25]. For further
clarification, we provide the following examples:

In the transmission extension attack, an adversary has
extended Balise activation by prolonging the duration of tele-
powering or by replaying more copies of the original telegram
to create “e” meters error in actual Balise position (P). As a
result, this makes a significant train parking error. In order to
create a record of this attack with the erroneous position (P)
in the dataset, we increase the number of telegrams received
in the normal record based on m:

e=P-Px Levtegram-Virain(m + 1) _é
. ) 2B Rate 2
Litegram Virain (14)
0<§ < —gram ran
B Rate

T T T T T T T T
35 | T an ol ajectoy profle Muti-Stage Attack|
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| |===== Attack scenario profile Replay Attack ( g g)_
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Fig. 10 Simulation of train trajectory due to the stations’ position,
installed Balises, speed limit, and other configurations
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LTelegram . VTmin
where Ly, jrqm and By, are the lengths of the telegram and
telegram transmission bitrate, respectively. In a situation
where the train passes over the Balise at a constant speed
Vivain-» 1f the train computer receive m extra telegram mas-
sage, e meter positioning errors can occur. This attack may
also have symptoms such as replay and relay attacks, affect-
ing the P, gru» SNR, BER, AF, AD and AP features [5].
The effect of such attack on each feature can be calculated
from (1) to (12).

In another example, we describe how a joint jamming-
faking attack affects the features of an audit record (Fig. 10).
According to the attack strategy described in subsection 2.2
(Fig. 1b), the adversary interrupts the signal of a valid
Balise, causing a sharp decrease in signal-to-noise ratio
(SNR < 1). Also, the telegram message is not received cor-
rectly, and bit error rates are increasing (ﬁ>10‘4) [26].
Immediately afterwards, the adversary sends a fake tel-
egram with greater power toward the BTM, which causes
the mean () and standard deviation (o) of the density of
received signal power (P, g7y to change. The adversary
sends multiple copies of fake telegrams to make sure the
BTM receives the fake telegram. Due to this, the number of
telegrams received by BTM (N, ,q,4,) €Xceeds the normal
value calculated from (9). Furthermore, there is an inconsist-
ency in the position extracted from fake telegram data with
the location obtained from satellite positioning (GPS) and
telemetry systems. Consequently, the AP and AD features
become tens of meters higher than the normal range.

After analyzing the sensory data records in the audit log,
the data set are preprocessed. We applied various preproc-
essing methods to the features, such as data normalization
and multidimensional scaling. As a result, the data are both
weighted and scaled, so one feature does not have a greater
effect on ML algorithms than another. In addition, by identi-
fying valuable features that have more entropy, we separated
them from redundant and irrelevant features, and outlier
attributes, as well as noisy data, are removed. This preproc-
essing has improved performance and generalized model and
reduced overfitting and misleading data. The dataset reduces
to 86 unique records. Because of this, the classifiers will not
have any bias towards more frequent records. It should be
noted that, the number of abnormal records is produced on
the same scale so that the algorithm is appropriately trained
by the same number of normal and abnormal data in the
database.

Monte Carlo Cross-Validation (CV) is a method used
to assess the performance of the proposed machine learn-
ing algorithms on unseen data. This method is also known
as a repeated random sub-sampling CV. This method cre-
ates multiple splits of the datasets into training, validation,
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and test data with a particular share. In other words, about
70% of the database, i.e., 60 records of the normal dataset
and in the same way, 60 records of the abnormal dataset,
are randomly selected for training, and the remaining 26
records from each category are used for validation and test.
Throughout the CV procedure, the number of iterations con-
tinues until the fixed number is reached. Consequently, the
algorithm can perform reliably with a limited set of training
data in general.

In the attack detection algorithm based on MLP, the Lev-
enberg—Marquardt optimization method has been used to
update weight and bias values and, as a result, to minimize
the classification error.

This paper uses a hybrid approach for training ANFIS.
The hybrid learning procedure combines gradient descent
and least-squares estimators. Then, the attack detection
fuzzy membership functions are automatically calculated
by subtractive clustering. Furthermore, training iterations
are repeated until the classification error is minimized.

In the SVM algorithm, the empirical risk minimization
is defined as an objective function, and the parameters are
adjusted and optimized accordingly [27].

The test dataset contains several known pre-existing
attacks that were not present in the training dataset to vali-
date the proposed algorithm. With this technique, the gener-
alizability of the algorithm is well tested to detect unknown
attacks. Training with pre-existing attacks may increase the
detection rate.

5 Result Analysis

It is clear that for an efficient algorithm, the False-Negative
(FN) and False-Positive (FP) rates must be the lowest, while
the True Negative (TN) and True Positive (TP) rates must
be the highest. Therefore, to measure an algorithm perfor-
mance, criteria described in Table 2 are employed.

Table. 3 shows the results of the comparison of each pro-
posed method in terms of the evaluation criteria. ANFIS

Table 2 Algorithms analysis criteria

Table 3 Analysis performance of the algorithms (A=0.72)

100
90
o
80 2 = <
oo <
o0
70
60
50
40
30
20
10 = o i o = ' 3 i
o0 — [=) N
N 1 s
ANFIS MLP SVM
mACC 92.5000 89.1667 87.5000
®FNR 6.6670 83334 83334
EPR 8.3340 13.3330 16.6667
PPV 91.8032 87.3015 84.6153
u TPR 93.3334 91.6670 91.6670
mTd 5.9096 0.6710 8.4288

system has the highest detection percentage, and then SVM
and MLP are in the next ranks, respectively. Nonetheless,
MLP generalizability can categorize new attack patterns
with other known attack patterns that have the same distin-
guishing features.

A fair criterion for evaluating the algorithm’s computa-
tional complexity is the detection delay (7d). The Td is the
length of time taken for the algorithm’s output to be deter-
mined after receiving input. To obtain the Td, we can meas-
ure the propagation delay factor in milliseconds. Propagation
delay is the length of time taken for the input signals to reach
the output of the attack detection algorithm.

Table 3 provides the 7d values for the proposed falgo-
rithms. These values are not a determinant and critical fac-
tor in comparison because the detection times order for all
the algorithms are milliseconds. The MLP approach has a
minor propagation delay. This result shows the simplicity of

Criteria Formula Description
Accuracy (ACC) ACC = —IP+IN___ This criterion shows the number of correct predictions to the total number of
TP+TN+FP+FN L
predictions

False-negative rate (FNR) (Miss rate) FNR = - This criterion shows the number of attacks known as normal to the total
TPHEN - humber of attacks

False-positive rate (FPR) (False alarm) FPR = —tP_The ratio between the standard operations detected as an attack and the total
TVHFP humber of actual negative events

Positive predictive value (PPV) (Precision) PPV = —_The ratio of the number of attacks correctly detected to the total number of
TPHEP {rue and false detections

True positive rate (TPR) (Sensitivity) TPR = —£_This criterion shows the number of attacks that have been correctly detected

TP+FN

@ Springer



International Journal of Intelligent Transportation Systems Research

implementing the MLP structur€] Furthermore, 7d Shows
higher complexity of the SVM relative to other algorithms.

An additional factor to consider when comparing the
computational cost is their order of computational com-
plexity [26, 28]. In Table 4, we listed the computational
complexities of the algorithms. The first term is the compu-
tational complexity related to the training process, and the
second term is related to the testing process. N,,, Ny, and
N, are the number of training instances, testing instances
and membership function, respectively. d is the number of
features in the data set, /, is the number of iterations, and A,
is the architect complexity of methods. MLP architect com-
plexity can be obtained from the following relation:

A, =(pXh+hXo0,)0+(i,+h+0,)0 (16)
where ip, h, and op are the number of functions for input

layer, hidden layer, and output layer of structures. The © is

computational complexity of mathematical functions.

The output variable (a) of the attack detection mod-
ule varies between 0 and 1. By determining the threshold
level (M) of attack detection, a trade-off can be established
between False Alarm and Miss Rate (Fig. 11a). In the case
studies, if the output of the detection module exceeds the
threshold level (A=0.72), the attack is detected, and the
train is switched to fail-safe mode. With this value of A, the
ANFIS algorithm has the lowest false alarm and miss rate.

Another method of evaluating the performance of binary
classification is the Receiver operating characteristic
(ROC). In the ROC diagram, both of these criteria, Sensi-
tivity and False Positive Rate, are plotted due to the change

Table 4 Comparison of the computational complexity

in the detection threshold level (A) as a curve. According
to Fig. 11b, the algorithms with ROC curves close to the
top-left show better performance. ANFIS has the best clas-
sification performance in the ROC plot. The reliable met-
ric to rank the proposed algorithm is Area Under the ROC
Curve (AUC). Since ANFIS has the highest AUC (AUC
anris = 0.942), the classifier has the lowest error rate and
the highest sensitivity. MLP and SVM are ranked second
and third, respectively (AUCy; p=0.906, AUCgy;=0.887).

6 Comparison

Several methods are described for attack detection and coun-
termeasure in the literature in the introduction section and
Table 5. In the following, we compare and report the tech-
nical challenges of the proposed method and related work.
The contribution of references [8, 19], and [7] are based
on cryptography. Classic symmetric cipher and authentica-
tion, AES and MAC are not compatible with ETCS stand-
ards. Indeed, due to the limited processing time and low
memory capacity of the passive device (fix Balise), it is
impossible to implement advanced cryptography. Further-
more, lightweight encryption/decryption methods do not
have high security in data integrity, confidentiality, and
authentication. It is notable that, the secret key cannot be
securely stored and protected in the Balise memory [3, 8].
Furthermore, these methods are vulnerable to relay
attacks such as Balise displacement. For example, in the
scheme of checking the integrity of telegram data using
HMAC [7], an attacker could be sniffing and recording an

Method Computational complexity Total
MLP O(dNy. 1A.)+O(dNp,A,) 27,544,846
SVM O(dN§r®+N%Il®) +O(dNy,,©) 346,006,112
ANFIS O(dNy LA+ dN I Ny :0O) +O(dN, NyrAL) 242,592,000
Fig. 11 a The trade-off between 100 1 ROC Curves for Train Events Classification
Miss Rate and False Alarm False Alarm 7
R . 9Fr e Miss Rate | 09 /
according to A, b Receiver (b -
Operating Characteristic (ROC) 8o <087 7
diagram £ 7ot Zort 7
o 2 -
8 60r H 06
= °
£ %0 T 05
< a0f 2 o4l .
8 3 ! 7
S 30t S o3 o
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encrypted message with a valid authentication code and then
can replay it elsewhere for the train in the same rail track.
Alternatively, in the reference [19], to prevent telegram
replay, nonce and index are used to communicate between
Balise-BTM. In this case, the attacker can relay the train
nonce far away from the Balise location and retransmit the
train’s Balise response [31].

The proposed method is based on artificial intelligence,
a machine learning software program to detect and counter-
measure anomalies. This software can be installed on the
train’s vital computer. The proposed method does not require
extra equipment or change railway infrastructure. The pro-
posed algorithm requires the normal sensory data along the
rail route for training the detection algorithm only in the
initial configuration phase.

Mentioned methods based on the challenge-response
mechanism can increase security against relays and replay
attacks but can only be employed on controllable Balises
connected to the LEU because the controllable Balises sup-
port both up-link and down-link communications.

In this type of solution, there are challenges to key man-
agement and key sharing. Furthermore, the MAC cannot be
computed fast on passive devices and in noisy environments.
This is because the MAC calculation increases the latency
of communication, and changing any of the received nonce
bits due to noise can cause changes to the entire MAC code.

It should be emphasized that the ERTMS/ETCS SUB-
SET-036 standard does not support clock synchronization
signalling, which is performed by the challenge-response
mechanism by many papers, but this mechanism is vulner-
able to some attacks, such as distance attack, mafia attack,
and terrorist attack [32] while with machine learning method
employed here no clock synchronization is required.

Technical challenge methods that use internal train equip-
ment (such as speed sensors, GNSS, IMU) for safety and
security applications solely can be referred to as the sensors’
uncertainty and inaccuracy. This disadvantage is especially
true when train lines are close together. Besides, how is it
possible to locate the train with a satellite positioning sys-
tem when the train is underground or in a tunnel? Similarly,
satellite positioning systems are also vulnerable to attacks,
such as spoofing and jamming.

7 Conclusions

In this study, we reviewed the attacks and demonstrated the
importance of cybersecurity and the vulnerability of Balise-
based train control systems. The proposed method is a soft-
ware program installed on the train computer to detect and
countermeasure various attacks on the Balise. Thence, our
concept is not required to add extra equipment or change
the railway’s infrastructure. The proposed Machine learning

@ Springer

(ML) algorithm detects failure behavior using classification
by collecting raw train data and extracting the distinguish-
ing features. In the ANFIS algorithm, 92% accuracy and
91% precision of detection are achieved by recognizing the
signs of the threats from the standard operating patterns. The
proposed algorithms can detect attacks and failure opera-
tions. Accordingly, the proposed method has the limitation
of requiring training data to detect threats. In order to train
the ML algorithm, normal training data were collected from
sensors in normal travel mode, and abnormal data were
obtained from the simulation of an actual attack scenario.
Finally, a fuzzy controller takes the necessary steps to miti-
gate the impact of attacks and increase safety.
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