
Vol.:(0123456789)1 3

International Journal of Intelligent Transportation Systems Research 
https://doi.org/10.1007/s13177-021-00274-1

Improve Safety and Security of Intelligent Railway Transportation 
System Based on Balise Using Machine Learning Algorithm and Fuzzy 
System

Abolfazl Falahati1   · Ebrahim Shafiee1

Received: 23 December 2020 / Revised: 25 July 2021 / Accepted: 31 August 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
With the advancement of modern rail transport systems, high-speed railways’ safety and reliability is improved enormously 
due to proper intelligent traffic management systems. The automatic train control and operating system receive the train 
location beacons and the railway line’s essential information through various channels, such as Balise wirelessly. However, 
this technology is vulnerable to cyber-physical attacks. This article aims to investigate the existing cyber attacks on Balise 
that can result a physical turmoil. Due to the limitations and constraints of the railway infrastructures, the attacks and failure 
detection methods are proposed based on machine learning. Also, a fuzzy countermeasure system is developed to improve 
train safety against known and unknown cyber-attacks. The simulation results show 92% accuracy in the proposed success-
ful attacks detection system. Moreover, a small amount of false-positive and false-negative warnings can be also revealed 
employing the proposed scheme. The proposed method does not require change railway infrastructure.

Keywords  Train transport security · Machin learning · Cyber-attacks · European train control system (ETCS) · Adaptive 
neural-fuzzy inference system (ANFIS) · Support vector machine (SVM)

1  Introduction

The development of intelligent rail transportation systems 
has increased the speed and number of modern trains over 
the rail tracks, so that today, over 4000 billion passenger-
kilometers travel across the world during the year 2020 [1]. 
Consequently, it is vital to ensure that passengers safety and 
security. Communication-based train control (CBTC), Euro-
pean rail traffic management systems (ERTMS), or other 
similar systems worldwide have a crucial role in safety, 
management, signaling, and train control systems. One of 
the mentioned systems is the European train control sys-
tem (ETCS) which is responsible for signaling, Automatic 
train control (ATC), and Automatic train protection (ATP) 
[2]. The primary objectives for designing the aforemen-
tioned systems are standardization and passenger safety, but 

security is not taken into account. It should be emphasized 
that the security vulnerabilities could compromise the safety 
of passengers, which is the main issue of this paper.

According to the ETCS standard, on-board train systems 
include Vital computer (VC), Balise transmission module 
(BTM), odometric sensors, Doppler radar, and lineside 
equipment which includes Balise and Lineside electronic 
unit (LEU) [3]. The Balise is a beacon transponder installed 
between the rails. When the train passes over, it commu-
nicates with the train BTM via an air-gap interface. BTM 
is an on-board module with an antenna installed under the 
train to send and receive a message (telegram) from Balise. 
The pre-programmed telegram contains Balise informa-
tion, such as the header ID, train position and geographical 
location, speed limit, route, movement authority, and link-
ing data (distance to the next Balise or its group). Balise 
has a mechanism similar to Radio frequency identification 
(RFID), including two types of fixed and controllable Balise. 
Fixed Balise is activated by BTM tele-powering that con-
tinually responds to the BTM the copies of telegram until 
the train passes over. Controllable Balise is energized by 
the LEU and can transmit (up-link) and receive (down-link) 
dynamic data [4].

 *	 Abolfazl Falahati 
	 afalahati@iust.ac.ir

1	 Present Address: Department of Electrical Engineering 
(DCCS Lab), Iran University of Science and Technology, 
University St, 1311416846 Tehran, Iran

http://orcid.org/0000-0003-1682-6563
http://crossmark.crossref.org/dialog/?doi=10.1007/s13177-021-00274-1&domain=pdf


	 International Journal of Intelligent Transportation Systems Research

1 3

The ETCS system is designed to increase the safety, 
speed, and automaticity of train transportation; however, 
security against cyber-attacks has not been considered [2]. 
The Balise telegram is sent as plaintext without checking 
the integrity and timestamps, increasing the potential for 
possible attacks. Moreover, an attacker can be a dissat-
isfied team member, or a malicious contractor who can 
collect, tamper, relay, replay, and block telegram data. 
As a result, ambiguity in positioning and compromising 
train safety can lead to passenger life threats, train derail-
ment, or catastrophic collisions [5, 6]. According to the 
mentioned issues, this study aims to improve the security 
of the train control system based on artificial intelligence 
systems.

Until now, many researchers have proposed a scheme 
to improve the security of the train control system. These 
schemes can be categorized in a cryptographic method, 
a challenge-response authentication mechanism, and a 
localization approach (i.e., employ on-board sensors and 
equipments).

Guo et al. [7] proposed a method based on the AES 
encryption and a hash-based Message authentication code 
(MAC) to check the integrity, authenticity, and confiden-
tiality of the telegram message. Lim et al. [4] presented a 
lightweight encryption algorithm to protect the telegram’s 
integrity on the Balise side and, on the train side, they 
also designed a hybrid controller to reduce the impacts of 
various attacks. Another paper proposed a cryptography 
solution to improve Balise-BTM communication security 
which is based on the Deoxys II encryption method [8]. 
The authors of the aforementioned papers do not explain 
how to implement their algorithms according to the ETCS 
standards regarding to Balise processing time and memory 
limitations.

Many researchers employ the challenge-response authen-
tication mechanism over the Balise communication sys-
tems [9, 10]. This mechanism is proposed by the distance-
bounding protocol to defeat relay and replay attacks based 
on the private key and distance measurement to calculate 
the Round-trip delay (RTD) of sending the challenge and 
receiving the relevant response [11, 12]. Wu et al. [6] have 
demonstrated the impact of attacks by simulation, and their 
proposed solution is to provide a challenge-response authen-
tication mechanism.

One of the schemes that do not require trackside signal-
ling equipment and focus on using on-board equipment of 
the train is solely the reference [13] that uses data fusion of 
the Global navigation satellite system (GNSS) and speed 
sensors to improve safety and security. In references [14, 
15], the train’s position and speed are estimated online with 
data fusion of the Odometer sensor and IMUs; the weak-
ness of such methods is the uncertainty and inaccuracy of 
the sensors.

References [16, 17] analyze cyber-attacks on the CBTC, 
and [18] has proposed an intrusion detection system to detect 
attacks in the wireless train network protocols.

The contribution of this paper can be summarized as fol-
lows. We analyze Balise security issues to identify vulner-
abilities and abnormal behavioral patterns. To detect threat 
patterns, we employ machine learning algorithms. The 
features of the attack pattern are extracted from the radio 
communication characteristics of Balise and the train’s sen-
sory data. The proposed method can detect an anomaly in 
the control system by monitoring the extracted features. By 
integrating a novel auxiliary fuzzy controller, the destructive 
effects of the attacks are reduced.

In the rest of the paper, an overview of existing attacks is 
presented. In Section 3, we present the proposed approach 
based on machine learning for attack and failure detection. 
In this algorithm, train sensory data are collected as fea-
tures. According to observing features, machine learning 
algorithms such as ANFIS, SVM, and Multi-layer percep-
tron (MLP) classify standard operations and attacks. Subsec-
tion 3.2 presents a fuzzy controller for mitigating the impact 
of attacks. Section 4 discusses the simulation of the pro-
posed algorithms using a real urban rail configuration as an 
example. Section 5 presents the simulation results analysis. 
In Section 6, we make a comparison between the proposed 
method and other well-known articles methods.

2 � Balise Security, Vulnerabilities, 
and Threats

The cyber-physical attacks on the rail transportation system 
can aim to endanger safety, passenger injuries (even death), 
property damage, and economic losses. So, it is essential to 
know the types of cyber-physical attacks on Balise and their 
impact. By understanding the strategy of attacks and their 
effects, we can extract features to provide an intelligent solu-
tion to deal with possible attacks. In order to model threats, 
the following five assumptions are considered:

•	 An attacker is aware of the theory and details of the train 
control mechanism’s operation and can be mobile [19].

•	 An attacker can install fake Balise or manipulate the 
information of legitimate Balise.

•	 An attacker is able to activate Balise by tele-powering 
and relay or record its telegram to replay by modification 
with another time and place [9].

•	 An attacker is able to eavesdrop or transmit fake and 
jamming signals by using radio equipment around the 
railway line.

•	 An attacker cannot manipulate train on-board devices 
or physically remove, destruct, or move Balise without 
being detected [4].
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2.1 � Threats Overview

In this section, we present a brief description of how Balise 
attacks are performed and their risks. Based on this infor-
mation, the impact of such attacks on the train system is 
recognized. As a result, we can identify the signs of attacks. 
Afterwards, we contribute an artificial intelligence-based 
solution for detecting and preventing attacks. So, the aim of 
this study is to introduce novel measures to improve security 
against all the threats as follows:

Sniffing Attack When a legitimate BTM of a train ener-
gizes a Balise, a second malicious receiver can monitor 
the plaintext communication and obtain critical informa-
tion on the telegram or a BTM impersonation sniffed tele-
gram data. This attack is the prelude to other attacks [20].
Jamming Attack When sending and receiving data 
between BTM-Balise, the attacker can jam the communi-
cation by emitting a high-power electromagnetic interfer-
ence in the Balise operating frequency band. Due to Bal-
ise jamming or covering, Balise telegram is not received. 
This attack is also known as the Balise missing attack [6].
Tampering Attack The Balise is designed with a rewrit-
able memory to allow railway maintenance staff to update 
the telegram on the Balises. This opens up the possibility 
of rewriting telegram data which can motivate the mali-
cious adversary to manipulate vital information in tel-
egram. Injecting false data by the adversary causes auto-
matic train control (ATC) to show incorrect reactions and 
compromise the lives of passengers [4].
Balise Cloning Balise cloning is to make an unauthor-
ized copy of a valid telegram from a legitimate Balise 
to a new Balise. Cloned Balise can be a genuine Balise 
or producing a circuit design of the Balise. The Balise 
cloning threat can cause a significant train transportation 
disruption [4].
Fake Telegram In this attack, the adversary fabricates an 
arbitrary telegram to transmit for passing trains BTM by 
software-defined radio. The ATC system cannot distin-

guish the received message as a fake telegram. A fake tel-
egram can make the train to stop immediately or to con-
tinue at full speed at the same track occupied by another 
train which can cause a fatal collision [9].
Transmission Extension Attack (TE) In this attack, the 
adversary can extend the Balise activation time by tele-
powering or increasing the total number of received tel-
egrams with repeated replaying telegram. Eventually, 
make a significant train parking (stopping) error [6].
Telegram Relay Attack According to the safety rules, the 
train must reduce its speed before passing through a bent 
rail. Therefore, if the attacker relays the valid telegram 
after the bent rail for the on-board BTM, the train may 
derail from rails and cause disastrous consequences.
Telegram Replay Attack There are no proper authenti-
cation mechanisms for BTM. So, the attacker can acti-
vate the Balise, record the valid telegram and replay it at 
another strategic place and time without any difficulty. 
As Fig. 1a depicts, this attack creates ambiguity and 
inconsistency in train position ( ̃Pn ) and disrupts the train 
movement. Also, this attack is known as Balise displace-
ment [19].

2.2 � Multi‑Stage Advanced Attacks

If an adversary inserts a significant error in the train navi-
gation system, the probability of detecting and announcing 
a security breach increases; under this condition, the train 
is switched to a fail-safe state, so the attacker can launch 
several combined independent attacks with limited error to 
create a serious security challenge. Some of these attacks 
are introduced:

Joint Jamming-Faking Attack According to Fig. 1b, when 
the train passes over the legitimate Balise, the attacker 
jams the valid telegram using radio equipment and imme-
diately generates a fake telegram with the correct iden-
tification and structure according to the ETCS standard. 
Furthermore, it sends the fake telegram with high power 
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ratio. In this case, the on-board VC receives the fake tel-
egram instead of the original telegram [9].
Balise Jamming-Displacement Attack Because the jam-
ming attack is detected as Balise missing, the attacker 
exploits security vulnerability. The attacker jams the valid 
telegram sent by an authorized Balise and then transmits 
that valid telegram at another location after a specific time 
has elapsed. In other words, the jamming and the replay 
attacks occur successively, thus reducing the probabil-
ity of attack detection. In another scenario, the attacker 
can first replay the pre-recorded victim’s Balise telegram 
sooner and then prevent the train BTM from receiving 
the valid telegram when the train passes over the genuine 
victim’s Balise by jamming. Hence, the railway safety of 
service is reduced [6].
Consecutive Balise Displacement Attack To increase the 
probability of the attack success, the adversary makes a 
Balise displacement attack on each Balise of the Balise 
group with limited error. The on-board VC cannot detect 
the error based on the information of the Balise data link 
(the relationship between neighboring Balise). Eventu-
ally, these attacks cause a significant error after passing 
over several Balises, which may be financial loss or fatal 
accidents depending on the train conditions. Another sce-
nario of this attack is direction reversal. Attackers can 
replay the telegram of all Balises in the reverse direction 
to train BTM in the bi-directional railway [7].

2.3 � Attacks Classification

In this article, the mentioned attacks are classified based on 
similarity into four categories, which are shown in the Fig. 2:

3 � Proposed Approach

The railways have already been widely spread to large 
geographical areas of every countries. Upgrading the cur-
rent railway signalling infrastructure to secure the railways 
against cyber-physical attacks is costly. Therefore, the pro-
posed method must be applied to the current infrastructure 
and does not require a significant change in the existing sys-
tem or the purchase of new equipment. According to the 
fixed data format and structure of passive Balise as well as 
low power and processing capabilities, it is far-fetched to 
be possible to implement a classic challenge-response pro-
tocol or a cryptographic algorithm. We must also propose 
a method that can detect known and unknown attacks by 
insiders as well as outsiders because Balise documents are 
available to everyone.

The proposed method is placed in the middleware layer 
(Virtual computer) and analyzing VC’s receiving data. 
This method monitors the data received from the vari-
ous sensors and records its observations into an audit log. 
The audit records are analyzed to detect anomalous opera-
tions. When an abnormal operation is detected, the audit 
records have deviated from the normal train operation or 
signatures of activity close to some previously introduced 
attack definition. After an attack detection, an alerting sig-
nal is triggered, and the appropriate reciprocal reaction is 
accomplished. Thereupon, this type of proposed method 
can call a train-based Intrusion detection system (IDS). 
The components of the proposed approach are shown in 
Fig. 3. The implementation procedure is presented in the 
three following steps:

Stage One When the train is in the range of informa-
tion exchange with Balise, each sensory data (suitable 
features) is recorded in an audit recorder. The auditing 
module then store these extracted features in an audit 
log. The audit log is a dataset whose columns are the 
features and whose rows are from each record.
Stage Two The Attack detection module (ADM) is an 
artificial intelligence system based on machine learn-
ing for pattern recognition. This module analyzes the 
received audit records to classify train operations and 
warn suspicious behavior or malicious activities.
Stage Three The vital computer decides to perform the 
procedural tasks according to the alert signals and train 
conditions. These countermeasures can include: reject-
ing the telegram, reducing speed until safety is assured, 
immediately stopping the train (Emergency brake), or 
other appropriate actions that will be discussed in Sec-
tion. 3.3.
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3.1 � Auditing Module

This module’s task is to receive the sensory data and extract 
the appropriate features to detect an attack, and then these 
features are stored in the audit record. In order to collect 
appropriate features from the raw data, we have extracted 
seven numerical features that have a different pattern dur-
ing the malicious activities and are evidence of abnormal 
behavior. Ultimately, this makes the artificial intelligence 
algorithms perform well. Since the attacker uses the air gap 
between Balise and BTM to carry out attacks, the features 
can be extracted from the Balise physical layer parameters 
and Balise information content. By measuring flowing com-
munication link characteristics in a normal communication, 
any deviation from normal values can be considered as mali-
cious behavior. The details of each feature, how they cause 
distinguishing between normal and abnormal behaviors, are 
described in the following:

(1)	 Balise Transmitting Power The attacker propagates its 
fake signal from another location with a particular radio 
transmitter. When the train passes over the fixed Bal-
ise, the Balise is excited and communicates with the 
tele-powering at the 4.233 MHz frequency (fc). Most of 
the attacks mentioned show that the faraway adversary 
transmits a fake signal to the train’s BTM independent 
of the train’s tele-powering, which does not correspond 
to the calculated amount of receiving power. The Friis’s 
formula can be used to calculate the power received 
from the Balise in the free space:

In (1), PTx.Balise, GTx.Balise, and GRx.BTM are the transmit 
power of Balise, the Balise transmitter antenna gain, and 
BTM receiver antenna gain, respectively. r is the transmit-
ter–receiver distance, and ψ is the wavelength.

(1)PRx.BTM =
PTx.baliseGTx.baliseGRx.BTM�

2

(4�)2r2

According to the conditions of near field communication 
and considering the electromagnetic coupling, the relation 
(1) can be written as:

where, k = 2π/ψ. At near field communication mode, power 
rolls off as powers higher than inverse square, typically 
inverse fourth (1/r4) or higher. The value calculated from this 
equation is a good approximation of the measured values 
[21]. The histogram of the Received signal strength (RSS) of 
the valid Balise (PRx.BTM) in the up-link is shown in Fig. 4a. 
In order for the train to receive fake telegram correctly, the 
attacker sends the fake telegram with greater power. Any 
noticeable deviation in the expected mean (μ) and variance 
(σ) values of the calculated received power probability den-
sity ‎function can indicate an anomaly or an attack. Devia-
tion from determined μ and σ are then selected as the input 
feature of the machine learning algorithm.

(2)	  Balise Signal-to-Noise Ratio The Signal-to-noise ratio 
(SNR) is defined as the ratio of the Balise signal level 
to the noise level. The SNR value of the attacker sig-
nal and the valid signal are different because the noise 
level of an attacker transmitter and the level of the fake 
signal are different.; thus, we can detect all the attacks 
using the difference between the mean of normal SNR 
and the measured value. It is in metric form as:

where P is the average power in the signal bandwidth. 
In Fig. 4b, the solid line shows the amount of normal 
SNR changes when a train is passing over the Balise, and 
the dash-line reveals the amount of SNR changes when 
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a replay or relay attack occurs. A jamming attack on the 
Balise signal is known to cause the SNR drop sharply to 
less than 1.

(3)	 Telegram Bit Error Rate The number of altered received 
bits divided by the total number of the telegram bits 
is known as the Bit error rate (BER). This altered bit 
can be related to interference, noise, jamming, jitter, 
or intentional bit change. These changes all indicate 
abnormalities. Thus, the average BER transmitting 
(BER) is considered as a feature, which is obtained 
from:

where NTelegram is the number of received telegrams. The 
correctness of telegram data bits is checked with the Cyclic 
redundancy check (CRC) algorithm [3].

(4)	 Balise Communication Frequency (ΔF) According to 
ERTMS specification documents, Balise-BTM com-
munication takes place with Frequency shift keying 
(FSK) modulation. The up-link signal power spectrum 
is shown in Fig. 5. For a logical bit ‘0’ transmission, a 
narrowband continuous wave is emitted at a frequency 
of f0=3.951 MHz in seven periods, and for a logical 
bit ‘1’ transmission, eight periods of continuous-wave 
f1=4.516 MHz is emitted [3].

A shift in the frequency (ΔF) of the receiving signal 
may occur due to inaccuracy of an attacker’s local oscilla-
tor or due to the fact that the attacker transmitter is mov-
ing. This shift in frequency signifies anomaly that could 

(4)
BER =

Ntelegram∑

i=1

BERi

Ntelegram

(5)BERi =
Number of altered bits

Telegram data Lenght

indicate an attack. By monitoring the communication 
frequency, an unauthorized telegram transmitter can be 
recognized as:

In (6), f̂  is the frequency of receiving signal.

(5)	  The Number of Received Telegrams (NTelegram) Accord-
ing to SUBSET-036 Balise specifications [3], the cov-
erage zone of the Balise is activated with tele-powering 
(Dtele_powering) is 1.1 to 1.4 m. By considering the train 
speed (VTrain), the approximate time of the Balise-BTM 
communicating connection can be calculated as:

There are two standard forms of the short telegram (341 
bits) for the high-speed train and the long telegram (1023 
bits). According to the data transfer rate (BRate=564.48 
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kbit/s), the number of received copies of the telegram 
(NTelegram) can be calculated from the following equations, 
and a criterion can be considered to detect the anomaly:

where LTelegram is the telegram length. In most mentioned 
attacks, the adversary keeps sending copies of the fake tel-
egram, regardless of the train’s speed, which is inconsist-
ent with the number of valid telegrams that BTM receives 
each time the train passes over the genuine Balise. Also, in 
the transmission extension attack, the attacker replays more 
valid telegrams to obscure the train’s position. If the meas-
ured number of received telegrams significantly drifts from 
the calculated value, a suspicious action is detected.

(6)	 Inconsistency in the Balise Position (ΔD) After decod-
ing the telegram information of a Balise, its distance to 
the next Balise group is registered in the linking data 
packet. Besides, the distance between the pre-installed 
Balise is already known [19]. According to the follow-
ing relation, the actual travelled distance (Dtravelled) is 
obtained by train internal sensory data and distance to 
the next Balise (DNext) decoding from telegram infor-
mation. The difference between Dtravelled and DNext 
is calculated as a convenient feature (ΔD=|Dtravelled- 
DNext|) for attack detection.

where Ncounter and Ntacho are the number of train tachom-
eter pulse output in travel time and the number of pulses 
per wheel revolution, respectively. Rwheel is the radius of 
the train wheel.

(7)	 Position Difference obtained from GNSS and Balise 
(ΔP) One of the features that can detect a fake telegram 
is the difference between the decoded telegram position 
and the position obtained from the satellite position-
ing system. If the feature values have a significant drift 
from the statistic mean, it is a sign of an anomaly.

There are many methods to drive ΔP, such as Euclidean 
distance, Manhattan Distance or Minkowski Distance, here 
we employ the two former methods as follows:

(8)
TTelegram =

LTelegram

BRate

=
1023 (Bit)

564.48 × 103 (Bit∕s)
= 1.812 ms

(9)NTelegram =
TCom

Ttelegram

(10)Dtravelled =
2� × Ncounter

Ntacho

× RWheel

Each balise has a unique identification number, and its 
geographical position along the track is known by VC. Given 
the geographical position of each installed balise and obtain-
ing the train’s location through the global navigation satellite 
system (GNSS), when the train passes over the balise, we 
can calculate ΔP from: 

where LongBalise and LatBalise determine the longitude and 
latitude of balise position, respectively. LongTrain and LatTtrain 
are the longitude and latitude of train position obtained from 
GNSS [6].

It must be noted that, according to Telegram Data 
Structure standards, Telegram data packet 79 contains the 
geographic position in the payload data structure of balise 
[3, 8]. Besides, the longitudinal position of the train along 
the track is being derived from the telegram, which are 
being used as absolute position references. As a result, by 
calculating the longitudinal position of the train through 
the GNSS, we can obtain ΔP employing a simple differ-
ence Distance method as:

where Position is the longitudinal position of the balise or 
train.

3.2 � Attack Detection Module

The seven features extracted by the auditing module are for-
warded to the Attack detection module (ADM). Hence, the 
ADM consists of a machine learning algorithm for pattern 
recognition. The output of this module is classified as the 
standard or abnormal operation.

It is challenging to model normal and abnormal behavior 
patterns and determine decision-making rules in ambiguous 
and nonlinear issues. The use of human skills and experi-
ence alone in this issue reduces the accuracy and quality of 
results. Thus, machine learning and human skill are used 
simultaneously to detect attacks. Expert human knowledge 
and skills are used to extract characteristics and label activi-
ties. Furthermore, the machine is trained based on labelled 
data and makes decisions for previously unseen conditions.

In this paper, to solve attack detection problems, three dif-
ferent and well-known machine learning algorithms called 
MLP, SVM, and ANFIS are employed. These algorithms 
can categorize normal logs from abnormal ones after the 
training process. At the end, the results are compared with 
each other.

Artificial neural networks (ANNs) are suitable for super-
vised classification and pattern recognition. Its function is 

(11)
ΔP =
√

(LongBalise − LongTrain)
2 + (LatBalise − LatTrain)

2

(12)ΔP = ||PositionBalise − PositionTrain
||
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inspired by the human brain, which has the least error in 
modelling the output by observing an event’s characteristics 
as input and determining the type of output. The least model-
ling error during the training process is done by determining 
the optimal weight of the links and the neurons’ bias (Fig. 6). 
Each neuron is a nonlinear mathematical transfer function of 
given weighted inputs [22].

3.2.1 � Machine Learning Algorithms

MLP Algorithm The proposed MLP network can identify 
the attacks by classifying the operating data. MLP struc-
ture consists of seven neurons in the input layer (features), 
five neurons in the hidden layer, and one neuron in the out-
put layer (Fig. 6). The value of output neuron (α) changes 
between zero and one, with zero indicating normal behavior 
and one indicating exactly an attack occurrence. The sig-
moid function defines the output of each neuron. In Fig. 6, 
λ is a constant number in the range of 0 to 1 that determines 
the attack detection threshold.

SVM Algorithm In the proposed method; the SVM algo-
rithm is a classifier with a linear kernel function. In this 
algorithm, the input is a features vector in the coordination 
space. Each axis represents the value of a feature. Based 
on the training data, the SVM finds an optimal separating 
hyperplane in the coordinate space with maximum margins 
than the two sets of normal and abnormal data. In other 
words, the optimal hyperplane has the maximum distance 
from the data in the margin between the two categories. The 
optimal hyperplane is obtained by the Quadratic Program-
ming (QP) method, which is a well-known method for solv-
ing constrained optimization problems [22].

ANFIS The attack detection module must be able to 
classify data with uncertainty. For this reason, an ANFIS 
is employed to detect any attack. Identification of member 
components in fuzzy rules, extraction, and optimization of 
the structure of fuzzy inference rules are done using learning 

concepts in neural networks. This tuning operation allows 
fuzzy systems to learn their structure from a set of data. 
These attractive features of ANFIS have led to its success 
and application in various scientific fields [23]. Figure 7 
shows the ANFIS structure consisting of five layers that are 
directly linked to each other. The first layer determines the 
degree of membership of seven features as input to each 
fuzzy set, which is called fuzzification. In the second layer, 
the activation rate of each rule is specified (wi) . The output 
of the normalized third layer (wi) is the output of the previ-
ous layer. The third layer takes the normalized values and 
calculates the non-fuzzy values from:

where ci is a parameter obtained during the training process, 
and xi is the value of the ith feature. In the last layer, the final 
overall output is � =

∑
wiFi.

3.3 � Attack Countermeasures Module

In the previous section, the detection module’s output (α) is 
mapped between zero and one. It then is entered into the 
Attack countermeasure module (ACM) input. ACM is a 
fuzzy controller system to mitigate the impact of attacks and 
increases safety. Depending on the inputs, the ACM can stop 
the train immediately (emergency brake), brake safely, slow 
down, or continue the route. Figure 8 depicts the ACM struc-
ture. The first input, α is mapped to three Gaussian combina-
tion membership function (normal, suspect, and attack). The 
second input, β is the ratio of obstacle distance (DObstacle) to 
train’s speed, which is obtained by dividing the Doppler 
value in meters by the on-board speedometer (m/s). Also, 
� =

DObstacle

VTrian

 is mapped to three Gaussian combination mem-
bership functions (Low, Medium, and High). This part is 
called fuzzification, where the membership value of each 
crisp input value to each fuzzy set is calculated [23].

When all the values of the introduced properties change 
within the normal range, the output of the attack detec-
tion module (α) is close to zero. If some features’ value is 

(13)wiFi = wi(c0 + x1c1 + ... + x7c7)

Input Layer Hidden Layer Output Layer

Feature #1

Feature #2

Feature #3

Feature #7

…
…

…
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Fig. 6   The proposed artificial neural network structure (MLP) for 
attack detection
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slightly higher or lower than the normal value, the ADM 
output is close to 0.5, and the suspect system mode is 
declared. In this case, the received telegram is rejected, 
and the fuzzy inference system reacts according to the 
table of rules (Table 1 and Fig. 8). Each entry in the table 
defines a rule. For clarification purposes, e.g., rule 7: If 
the characteristics are far from their normal values, and 
there is a possibility of collision, the alarm is triggered, 
and the control center is notified. Then, the VC executes 
the consequent part according to the fuzzy antecedent part, 
i.e., Emergency braking (EB). In rule 8, VC calculates the 
safe braking (SB) distance curve and takes action.

Figure 9 shows the control surface of the confronta-
tion system, the two axes of which are the inputs. Another 
axis is shown relative to the system’s final output, which 
is acceleration. Due to its nature, this fuzzy mitigates the 

impact of the attacks, increasing safety and security, as 
well as passenger comfortations.

4 � Simulation

In this section, the proposed method is tested by high-
fidelity simulation using a real urban rail configuration as 
a case study. The case study is a real rapid transit urban 
rail line with a length of 19.5 km with 22 stations.

Fuzzy Rules
Rule 1: IF  α is N &  β is L THAN  a is RS

Rule 2: IF  α is N &  β is M THAN  a is DC
Rule 3: IF  α is N &  β is H THAN  a is DC
Rule 4: IF  α is S &  β is L THAN  a is SB
Rule 5: IF  α is S &  β is M THAN  a is RS
Rule 6: IF  α is S &  β is H THAN  a is DC
Rule 7: IF  α is A  &  β is L THAN  a is EB
Rule 8: IF  α is A &  β is M THAN  a is SB
Rule 9: IF  α is A &  β is H THAN  a is RS

α 

β 

Fuzzifica�on

Fuzzy Inference 
System

Service Braking 
Accelera�on
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Countermeasure
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Fig. 8   Conservative fuzzy logic controller for increasing safety and security

Table 1   Fundamentals of fuzzy logic control

RS: Reduce speed, DC: Do not care, SB: Safe breaking, (#) Rule num-
ber, EB: Emergency braking

                                                                                      
Attack detection output (α)

Normal Suspect Attack

� =
D

Obstacle

V
Trian

Low (1) RS (4) SB (7) EB
Medium (2) DC (5) RS (8) SB
High (3) DC (6) DC (9) RS

Fig. 9   Resulting fuzzy control surface obtained by plotting the 
inferred control action
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When the train passes over the Balises, each sensory 
data and system mode are recorded in an audit record for 
normal data collection. In fact, simulated attacks has been 
recoded for this proposed studies because performing real 
attacks can endanger passengers and a train for collect-
ing data. The train’s trajectory is simulated based on the 
actual position of the Balise, the stations’ position, the 
dynamic train movement, and signalling data. Each record 
data contains eight elements. The first seven elements are 
the introduced features in subsection 3.1, and the 8th ele-
ment determines its status, i.e., normal or type of attack.

The normal sensory data of the train was collected from the 
studied transport route for the normal dataset. In order to pro-
vide the attacks dataset, it is necessary to analyze the theory of 
attack strategy so that we can determine the amount of change 
in each detection feature based on the wireless channel theory 
and the attack scenario. Therefore, the logical manipulated 
normal record data can be a good representation of the real 
attack data. Figure 10 illustrates the train trajectory tracks in 
normal transit mode as well as the performance of the intro-
duced simulated attacks on the case study [24, 25]. For further 
clarification, we provide the following examples:

In the transmission extension attack, an adversary has 
extended Balise activation by prolonging the duration of tele-
powering or by replaying more copies of the original telegram 
to create “e” meters error in actual Balise position (P). As a 
result, this makes a significant train parking error. In order to 
create a record of this attack with the erroneous position ( ̃P ) 
in the dataset, we increase the number of telegrams received 
in the normal record based on m:

(14)
e = P̃ − P ≈

LTelegram.VTrain(m + 1)

2BRate

−
𝛿

2

0 ≤ 𝛿 <

LTelegramVTrain

BRate

where LTelegram and BRate are the lengths of the telegram and 
telegram transmission bitrate, respectively. In a situation 
where the train passes over the Balise at a constant speed 
VTrain., if the train computer receive m extra telegram mas-
sage, e meter positioning errors can occur. This attack may 
also have symptoms such as replay and relay attacks, affect-
ing the PRx.BTM, SNR, BER , ΔF, ΔD and ΔP features [5]. 
The effect of such attack on each feature can be calculated 
from (1) to (12).

In another example, we describe how a joint jamming-
faking attack affects the features of an audit record (Fig. 10). 
According to the attack strategy described in subsection 2.2 
(Fig. 1b), the adversary interrupts the signal of a valid 
Balise, causing a sharp decrease in signal-to-noise ratio 
(SNR < 1). Also, the telegram message is not received cor-
rectly, and bit error rates are increasing ( BER>10–4) [26]. 
Immediately afterwards, the adversary sends a fake tel-
egram with greater power toward the BTM, which causes 
the mean (μ) and standard deviation (σ) of the density of 
received signal power (PRx.BTM) to change. The adversary 
sends multiple copies of fake telegrams to make sure the 
BTM receives the fake telegram. Due to this, the number of 
telegrams received by BTM (Ntelegram) exceeds the normal 
value calculated from (9). Furthermore, there is an inconsist-
ency in the position extracted from fake telegram data with 
the location obtained from satellite positioning (GPS) and 
telemetry systems. Consequently, the ΔP and ΔD features 
become tens of meters higher than the normal range.

After analyzing the sensory data records in the audit log, 
the data set are preprocessed. We applied various preproc-
essing methods to the features, such as data normalization 
and multidimensional scaling. As a result, the data are both 
weighted and scaled, so one feature does not have a greater 
effect on ML algorithms than another. In addition, by identi-
fying valuable features that have more entropy, we separated 
them from redundant and irrelevant features, and outlier 
attributes, as well as noisy data, are removed. This preproc-
essing has improved performance and generalized model and 
reduced overfitting and misleading data. The dataset reduces 
to 86 unique records. Because of this, the classifiers will not 
have any bias towards more frequent records. It should be 
noted that, the number of abnormal records is produced on 
the same scale so that the algorithm is appropriately trained 
by the same number of normal and abnormal data in the 
database.

Monte Carlo Cross-Validation (CV) is a method used 
to assess the performance of the proposed machine learn-
ing algorithms on unseen data. This method is also known 
as a repeated random sub-sampling CV. This method cre-
ates multiple splits of the datasets into training, validation, 

(15)m =
e.2BRate

LTelegram.VTrain

− 1 if � = 0

Fig. 10   Simulation of train trajectory due to the stations’ position, 
installed Balises, speed limit, and other configurations
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and test data with a particular share. In other words, about 
70% of the database, i.e., 60 records of the normal dataset 
and in the same way, 60 records of the abnormal dataset, 
are randomly selected for training, and the remaining 26 
records from each category are used for validation and test. 
Throughout the CV procedure, the number of iterations con-
tinues until the fixed number is reached. Consequently, the 
algorithm can perform reliably with a limited set of training 
data in general.

In the attack detection algorithm based on MLP, the Lev-
enberg–Marquardt optimization method has been used to 
update weight and bias values and, as a result, to minimize 
the classification error.

This paper uses a hybrid approach for training ANFIS. 
The hybrid learning procedure combines gradient descent 
and least-squares estimators. Then, the attack detection 
fuzzy membership functions are automatically calculated 
by subtractive clustering. Furthermore, training iterations 
are repeated until the classification error is minimized.

In the SVM algorithm, the empirical risk minimization 
is defined as an objective function, and the parameters are 
adjusted and optimized accordingly [27].

The test dataset contains several known pre-existing 
attacks that were not present in the training dataset to vali-
date the proposed algorithm. With this technique, the gener-
alizability of the algorithm is well tested to detect unknown 
attacks. Training with pre-existing attacks may increase the 
detection rate.

5 � Result Analysis

It is clear that for an efficient algorithm, the False-Negative 
(FN) and False-Positive (FP) rates must be the lowest, while 
the True Negative (TN) and True Positive (TP) rates must 
be the highest. Therefore, to measure an algorithm perfor-
mance, criteria described in Table 2 are employed.

Table. 3 shows the results of the comparison of each pro-
posed method in terms of the evaluation criteria. ANFIS 

system has the highest detection percentage, and then SVM 
and MLP are in the next ranks, respectively. Nonetheless, 
MLP generalizability can categorize new attack patterns 
with other known attack patterns that have the same distin-
guishing features.

A fair criterion for evaluating the algorithm’s computa-
tional complexity is the detection delay (Td). The Td is the 
length of time taken for the algorithm’s output to be deter-
mined after receiving input. To obtain the Td, we can meas-
ure the propagation delay factor in milliseconds. Propagation 
delay is the length of time taken for the input signals to reach 
the output of the attack detection algorithm.

Table 3 provides the Td values for the proposed ‎algo-
rithms. These values are not a determinant and critical fac-
tor in comparison ‎because the detection times order for all 
the algorithms are milliseconds. The MLP approach has a 
minor propagation delay. This result shows the simplicity of 

Table 2   Algorithms analysis criteria

Criteria Formula Description

Accuracy (ACC) ACC =
TP+TN

TP+TN+FP+FN

This criterion shows the number of correct predictions to the total number of 
predictions

False-negative rate (FNR) (Miss rate) FNR =
FN

TP+FN

This criterion shows the number of attacks known as normal to the total 
number of attacks

False-positive rate (FPR) (False alarm) FPR =
FP

TN+FP

The ratio between the standard operations detected as an attack and the total 
number of actual negative events

Positive predictive value (PPV) (Precision) PPV =
TP

TP+FP

The ratio of the number of attacks correctly detected to the total number of 
true and false detections

True positive rate (TPR) (Sensitivity) TPR =
TP

TP+FN

This criterion shows the number of attacks that have been correctly detected

Table 3   Analysis performance of the algorithms (λ = 0.72)

ANFIS MLP SVM

ACC 92.5000 89.1667 87.5000

FNR 6.6670 8.3334 8.3334

FPR 8.3340 13.3330 16.6667

PPV 91.8032 87.3015 84.6153

TPR 93.3334 91.6670 91.6670

Td 5.9096 0.6710 8.4288
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implementing the MLP structure .‏ ‏ ‎ Furthermore, Td ‎shows 
higher complexity of the SVM relative to other algorithms. ‎

An additional factor to consider when comparing the 
computational cost is their order of computational com-
plexity [26, 28]. In Table 4, we listed the computational 
complexities of the algorithms. The first term is the compu-
tational complexity related to the training process, and the 
second term is related to the testing process. Ntr, NTest, and 
NMF are the number of training instances, testing instances 
and membership function, respectively. d is the number of 
features in the data set, It is the number of iterations, and Ac 
is the architect complexity of methods. MLP architect com-
plexity can be obtained from the following relation:

where ip, h, and oP are the number of functions for input 
layer, hidden layer, and output layer of structures. The Θ is 
computational complexity of mathematical functions.

The output variable (α) of the attack detection mod-
ule varies between 0 and 1. By determining the threshold 
level (λ) of attack detection, a trade-off can be established 
between False Alarm and Miss Rate (Fig. 11a). In the case 
studies, if the output of the detection module exceeds the 
threshold level (λ = 0.72), the attack is detected, and the 
train is switched to fail-safe mode. With this value of λ, the 
ANFIS algorithm has the lowest false alarm and miss rate.

Another method of evaluating the performance of binary 
classification is the Receiver operating characteristic 
(ROC). In the ROC diagram, both of these criteria, Sensi-
tivity and False Positive Rate, are plotted due to the change 

(16)Ac = (iP × h + h × op)Θ + (ip + h + op)Θ

in the detection threshold level (λ) as a curve. According 
to Fig. 11b, the algorithms with ROC curves close to the 
top-left show better performance. ANFIS has the best clas-
sification performance in the ROC plot. The reliable met-
ric to rank the proposed algorithm is Area Under the ROC 
Curve (AUC). Since ANFIS has the highest AUC (AUC​
ANFIS = 0.942), the classifier has the lowest error rate and 
the highest sensitivity. MLP and SVM are ranked second 
and third, respectively (AUC​MLP = 0.906, AUC​SVM = 0.887).

6 � Comparison

Several methods are described for attack detection and coun-
termeasure in the literature in the introduction section and 
Table 5. In the following, we compare and report the tech-
nical challenges of the proposed method and related work.

The contribution of references [8, 19], and [7] are based 
on cryptography. Classic symmetric cipher and authentica-
tion, AES and MAC are not compatible with ETCS stand-
ards. Indeed, due to the limited processing time and low 
memory capacity of the passive device (fix Balise), it is 
impossible to implement advanced cryptography. Further-
more, lightweight encryption/decryption methods do not 
have high security in data integrity, confidentiality, and 
authentication. It is notable that, the secret key cannot be 
securely stored and protected in the Balise memory [3, 8].

Furthermore, these methods are vulnerable to relay 
attacks such as Balise displacement. For example, in the 
scheme of checking the integrity of telegram data using 
HMAC [7], an attacker could be sniffing and recording an 

Table 4   Comparison of the computational complexity

Method Computational complexity Total

MLP O(dNTr ItAc) + O(dNTestAc) 27,544,846
SVM O(dN2

Tr
Θ+N

3

Tr
ItΘ) + O(dNTestΘ) 346,006,112

ANFIS O(dN
Tr

ItAc + dN
Tr

ItNMFΘ) + O(dNTestNMFAc) 242,592,000

Fig. 11   a The trade-off between 
Miss Rate and False Alarm 
according to λ, b Receiver 
Operating Characteristic (ROC) 
diagram

(a)(b)
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encrypted message with a valid authentication code and then 
can replay it elsewhere for the train in the same rail track. 
Alternatively, in the reference [19], to prevent telegram 
replay, nonce and index are used to communicate between 
Balise-BTM. In this case, the attacker can relay the train 
nonce far away from the Balise location and retransmit the 
train’s Balise response [31].

The proposed method is based on artificial intelligence, 
a machine learning software program to detect and counter-
measure anomalies. This software can be installed on the 
train’s vital computer. The proposed method does not require 
extra equipment or change railway infrastructure. The pro-
posed algorithm requires the normal sensory data along the 
rail route for training the detection algorithm only in the 
initial configuration phase.

Mentioned methods based on the challenge-response 
mechanism can increase security against relays and replay 
attacks but can only be employed on controllable Balises 
connected to the LEU because the controllable Balises sup-
port both up-link and down-link communications.

In this type of solution, there are challenges to key man-
agement and key sharing. Furthermore, the MAC cannot be 
computed fast on passive devices and in noisy environments. 
This is because the MAC calculation increases the latency 
of communication, and changing any of the received nonce 
bits due to noise can cause changes to the entire MAC code.

It should be emphasized that the ERTMS/ETCS SUB-
SET-036 standard does not support clock synchronization 
signalling, which is performed by the challenge-response 
mechanism by many papers, but this mechanism is vulner-
able to some attacks, such as distance attack, mafia attack, 
and terrorist attack [32] while with machine learning method 
employed here no clock synchronization is required.

Technical challenge methods that use internal train equip-
ment (such as speed sensors, GNSS, IMU) for safety and 
security applications solely can be referred to as the sensors’ 
uncertainty and inaccuracy. This disadvantage is especially 
true when train lines are close together. Besides, how is it 
possible to locate the train with a satellite positioning sys-
tem when the train is underground or in a tunnel? Similarly, 
satellite positioning systems are also vulnerable to attacks, 
such as spoofing and jamming.

7 � Conclusions

In this study, we reviewed the attacks and demonstrated the 
importance of cybersecurity and the vulnerability of Balise-
based train control systems. The proposed method is a soft-
ware program installed on the train computer to detect and 
countermeasure various attacks on the Balise. Thence, our 
concept is not required to add extra equipment or change 
the railway’s infrastructure. The proposed Machine learning 

(ML) algorithm detects failure behavior using classification 
by collecting raw train data and extracting the distinguish-
ing features. In the ANFIS algorithm, 92% accuracy and 
91% precision of detection are achieved by recognizing the 
signs of the threats from the standard operating patterns. The 
proposed algorithms can detect attacks and failure opera-
tions. Accordingly, the proposed method has the limitation 
of requiring training data to detect threats. In order to train 
the ML algorithm, normal training data were collected from 
sensors in normal travel mode, and abnormal data were 
obtained from the simulation of an actual attack scenario. 
Finally, a fuzzy controller takes the necessary steps to miti-
gate the impact of attacks and increase safety.
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