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ARTICLE INFO ABSTRACT

Keywords: Modern microgrids require accurate net load forecasting (NLF) for optimal operation and management at high
Machine learning shares of renewable energy sources. Machine learning (ML) principles can be used to develop precise and reliable
Microgrid

NLF models. This paper evaluates the performance of different ML models, that are optimally trained using
supervised learning regimes, for direct short-term net load forecasting (STNLF) in renewable microgrids.
Different categories of ML models, such as neural network, ensemble, linear regression, nearest neighbor, and
support vector machine were used. The comparative assessment was conducted utilizing historical net load,
meteorological, and time-related categorical data acquired from the renewable integrated microgrid of the
University of Cyprus in Nicosia, Cyprus. The results showed that all STNLF ML models achieved normalized root
mean square error (nRMSE) values below 10%. Amongst the investigated models, the Bayesian neural network
(BNN) presented the highest forecasting accuracy, exhibiting a daily average error of 3.58%. In addition, the
BNN model yielded robust forecasts regardless of the season and weather conditions. Finally, the results
demonstrated that optimally constructed ML models can be applied to provide STNLF in renewable integrated
microgrids, which can be used by microgrid operators to efficiently control and manage their assets.

Net load forecasting
Photovoltaic
Renewable energy sources

Nomenclature HNL,..x Weekly time-lagged historical net load.
IEA International Energy Agency.

ANFIS  Adaptive neuro-fuzzy inference system. KNN k-nearest neighbor.
ANN Artificial neural network. LR Linear regression.
ARIMAX Autoregressive integrated moving average with exogenous LSTM Long short-term memory.

variables. MAE Mean absolute error.
ARMA  Autoregressive moving average. MAPE  Mean absolute percentage error.
ARX Autoregressive with exogenous variables. MISO Multi-input single-output.
BNN Bayesian neural network. ML Machine learning.
BTM Behind-the-meter. MLP Multi-layer perceptron.
DPT Dew point temperature. MLR Multiple linear regression.
DT Decision tree. Mycar Month of the year.
Dyeex Day of the week. n Total number of observations.
GBM Gradient boosting machine. NLF Net load forecasting.
GHI Global horizontal irradiance. NPM Naive persistence model.
HI Heat index. NPMgy,y Naive persistence model using daily time-lagged data.
HNLg,,  Daily time-lagged historical net load. NPM,.x Naive persistence model using weekly time-lagged data.
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nRMSE Normalized root mean square error.
OLS Ordinary least squares.

Prax Maximum measured net load power.
PV Photovoltaic.

P, Water vapor pressure.

Py g Water vapor saturation pressure.
RES Renewable energy sources.

RF Random forest.

RH Relative humidity.

RMSE Root mean square error.

RNN Recurrent neural network.

SD Standard deviation.

STLF Short-term load forecasting.

STNLF  Short-term net load forecasting.

SVM Support vector machine.

SVR Support vector regression.

SVRX Support vector regression with exogenous inputs.
Toamb Ambient temperature.

Taay Time of the day.

ucy University of Cyprus.

WS Wind speed.

XGBoost Extreme gradient boosting.

Yactual Actual net load.

Yrorecasted  FOTEcCasted net load.

1. Introduction

The International Energy Agency (IEA) reported that the annual
renewable capacity additions will reach 460 GW in 2027, with solar
photovoltaic (PV) and wind constituting the highest shares [1]. Current
research efforts aim to develop accurate net load forecasting (NLF)
models that effectively mitigate the variability and uncertainty issues
arising due to the increasing penetration of renewable energy sources
(RES) in modern power grids [2].

Net load is defined as the difference between consumption and
renewable energy generation [3]. NLF can be achieved directly (i.e., a
single forecast of the net load) or indirectly (i.e., by calculating the
difference between the load and the RES generation forecasts) [4].
Direct NLF has become increasingly important lately due to its compu-
tational advantage over indirect NLF and the availability of net load data
[5]. Moreover, high shares of PV systems are installed behind-the-meter
(BTM) and their contribution is not observable to grid operators [6], [7].
In this domain, the use of data-driven techniques (i.e., machine learning
algorithms) that do not require additional knowledge of system char-
acteristics becomes imperative for the construction of high-performing
NLF models.

Load forecasting is essential to energy suppliers that strive to main-
tain balance in electricity networks [8-17]. Specifically, the load fore-
casting techniques presented in [9], [10], were applied to residential
households, while the forecasting models of [11], [12] focused on
commercial-scale buildings. In addition, [13], [14] performed load
forecasting in microgrids, whereas distribution system level forecasting
was presented in [15], [16]. In [17] load forecasting for low-voltage
electricity networks was applied. Prior research studies compared the
performance of various machine learning (ML) models for short-term
load forecasting (STLF) applications [18-25]. Specifically, a previous
study evaluated the performance of different ML models based on arti-
ficial neural networks (ANNs), k-nearest neighbors (KNNs), random
forest (RF), recurrent neural networks (RNNs), and support vector
regression (SVR) [18]. The analysis was performed on several datasets at
different load aggregation levels (e.g., low, medium, and high). The
findings demonstrated that the RF was the best performing STLF model
for all datasets. Another comparative STLF study presented the perfor-
mance of adaptive neuro-fuzzy inference system (ANFIS), ANN, multiple
linear regression (MLR), and SVR models [19]. The results proved that
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the ANN was the most reliable and accurate model, with a prediction
error of 1.67% when applied to electricity load data. In [20], decision
tree (DT), KNN, linear regression (LR), long short-term memory (LSTM),
RF, and SVR models were benchmarked for STLF. The results showed
that the RF and SVR algorithms exhibited the highest forecasting accu-
racies amongst the investigated models. The authors in [21] evaluated
the performance of extreme gradient boosting (XGBoost), LSTM, and RF
models for STLF in smart buildings. In terms of accuracy and execution
time efficiency, the XGBoost algorithm outperformed all other models.
The XGBoost yielded a mean absolute percentage error (MAPE) of
2.01%. A comparison between STLF methods for several types of
buildings (residential, schools, and shopping centers) was carried out in
[22]. The investigated techniques comprised of KNN, LSTM, multi-layer
perceptron (MLP), MLR, RF, and SVR. The KNN model yielded the
lowest mean normalized root mean square error (nRMSE) of 1.01% for
the residential dataset. Conversely, the MLP model achieved the lowest
error for the school and shopping center loads, with nRMSE of 0.28%
and 0.18%, respectively. Another STLF study presented the MLR appli-
cation on power system data at two distinct seasons. The constructed
MLR model provided MAPE values of 3.52% and 4.34% for the dry and
rainy seasons, respectively [23]. In [24], MLR was proposed for STLF,
yielding a MAPE of 3.99%. The authors in [25] proposed a STLF method
using exponential smoothing and gradient boosting machine (GBM).
The proposed method achieved MAPE values in the range of 2.08% to
2.62% for the two test sets.

Even though prior studies focused on STLF, the net effects of
increased RES penetration to the performance of NLF algorithms remain
a field of main concern, especially for microgrids. Along this context, the
implementation and actual-life demonstration of novel short-term net
load forecasting (STNLF) methodologies for the construction of accu-
rately performing models have attracted considerable attention in
microgrids with RES penetration. Several studies employed statistical
and ML principles for STNLF [26-35]. An ANN-based model was pro-
posed for STNLF in micro-neighborhoods with high RES penetration
[28]. The ANN model outperformed an autoregressive integrated mov-
ing average with exogenous variables (ARIMAX) model, yielding an
average mean absolute error (MAE) equivalent to 5.4% of the maximum
measured net load. Direct and indirect STNLF methodologies were
compared for a distribution substation utilizing MLP and autoregressive
with exogenous variables (ARX) models [29]. The MLP model out-
performed the ARX model, achieving MAPE of 9.33% and 8.94% for the
direct and indirect method, respectively. In [30], direct and indirect NLF
methods based on the LSTM model were compared for systems with
disaggregated BTM PV generation. The comparison proved that the in-
direct NLF achieved a root mean square error (RMSE) reduction of
9.98% compared to the direct NLF. Multi-input single-output (MISO)
LSTM, batch LSTM, online LSTM, autoregressive moving average
(ARMA), and persistence models were compared for indirect residential
STNLF [31]. The results demonstrated the superiority of the online
LSTM model at the household level (7.3% improvement) and the MISO
LSTM at the aggregate level (13.2% improvement). The authors in [32],
conducted a comparison between direct and indirect NLF for a microgrid
with high renewable energy penetration. The results provided evidence
that the direct strategy outperformed the indirect approach. Specifically,
the ARX model achieved a reduced MAPE (4.60%), while the support
vector regression with exogenous inputs (SVRX) model achieved lower
MAE (54.74 kW) and RMSE (82.59 kW). A direct STNLF methodology
based on the Bayesian neural network (BNN) model for renewable-based
microgrids was proposed in [33], [34]. The devised model outperformed
the naive persistence model (NPM), yielding nRMSE values between
3.98% and 5.35% when applied to individual buildings (with and
without PV shares) and to the solar-integrated microgrid. A direct STNLF
model based on BNN and statistical post-processing was proposed in
[35]. The results showed that the BNN model with post-processing
outperformed the simplistic NPM achieving nRMSE values between
1.02% and 1.29% for all three solar-integrated distribution feeders.
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Table 1
Taxonomy of ML models used for STLF and STNLF in the literature.
Category Model Forecasting
Load Net load
Neural network ANN [18],[19] [28]
BNN - [33]-
[35]
RNN (simple and [18],[20]- [301,
LSTM) [22] [31]
MLP [22] [29]
Ensemble RF [18],[20]-
[22]
XGBoost [21]
GBM [25]
Linear regression LR [20]
MLR [19],[22]-
[24]
Neural network and fuzzy ANFIS [19]
logic
Decision tree DT [20]
Nearest neighbor KNN [18],[20],
[22]
Support vector machine SVR [18]-[20], [32]
[22]

Table 1 summarizes the categorical taxonomy of previous STLF and
STNLF studies based on ML models.

Despite the fact that numerous ML models utilized and compared
different STLF models (e.g., [18]-[22]), a thorough comparison of
optimized methods to develop direct STNLF models leveraging ML
principles applicable to utility-scale renewable microgrids remains an
unexplored area. Moreover, the pressuring needs for highly accurate and
robust STNLF models is another area of increasing research interest for
future power systems. The purpose of this work is to bridge this gap
while meeting the needs of the electric power industry by presenting and
analyzing various ML models applied to a renewable integrated micro-
grid capable of facilitating its management and operation. This paper
expands on a previous work [36], where six ML algorithms (ANN,
XGBoost, KNN, RF, RNN, and SVR) were benchmarked for direct STNLF
in a renewable integrated microgrid. These ML models were chosen
based on their high accuracies demonstrated in prior load forecasting
literature [18]-[22]. In this paper, the analysis is extended by devel-
oping and tuning additional ML models, extensively investigating the
daily performance for all STNLF models, and evaluating the daily net
load profiles for the best performing model over different meteorolog-
ical seasons and weather conditions. The ML investigated models
included ANN, BNN, XGBoost, GBM, KNN, MLP, MLR, RF, RNN, and
SVR. The BNN model was added due to its promising results when
applied to STNLF methodologies applicable to renewable-based micro-
grids [33], [34] and solar-integrated distribution systems [35]. The MLP
model was also selected since it provided highly accurate forecasts for
different building types [22], and STNLF for a distribution substation
[29]. In addition, the GBM and MLR models were employed due to the
high STLF accuracies achieved in prior studies [23]-[25]. All ML models
were developed utilizing historical net load, weather, and categorical
data from the microgrid of the University of Cyprus (UCY) in Nicosia,
Cyprus. The performance of each model was assessed using common
performance metrics and against two NPMs, which served as baseline
(reference) models.

Overall, the contributions of this work are the following:

e Introduction of new data-driven NLF concepts applied to utility-scale
renewable microgrids, therefore presenting new knowledge on the
usage of historical data and data-driven approaches for direct NLF.

e Implementation of a novel direct STNLF methodology for the
development of accurate and robust direct forecasting ML models.
The proposed methodology presents a unique pipeline of stages
applicable to renewable-based microgrids at all scales.
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e Comparison and actual-life verification of different models (ten ML
and two NPMs) for direct STNLF, thereby presenting models with
accuracies that exceed the state-of-the-art. The best performing
model can achieve accurate and reliable direct STNLF that facilitates
decision-making by microgrid operators.

e Determination of the best performing model for STNLF by looking at
the hourly and daily performance of the day-ahead forecasting ho-
rizon. This presents important information to the research commu-
nity on novel approaches utilized to develop optimized STNLF
models.

e Robustness and adaptability verification of the best performing
model in different seasons and weather conditions to provide insights
about the impact of external weather factors on forecasting
performance.

The rest of this paper is organized as follows: Section 2 describes the
methodology and models used in this study, Section 3 discusses the re-
sults emanating from this work, while Section 4 highlights the conclu-
sions of this work.

2. Methodology

The methodology used to develop and evaluate the performance of
the optimally performing STNLF models, leveraging ML principles,
consists of four steps (as shown in Fig. 1): (a) experimental setup and
input feature acquisition, (b) data pre-processing, (c) training and tun-
ing of ML models, and creation of baseline models, and (d) performance
evaluation.

The detailed procedure for forecasting the net load output is shown
in Fig. 2. In particular, the input features that were used for the training
stage of the ML models comprised of categorical and numerical
(computed and measured) parameters. The dataset comprised of data
acquired at a granularity of a second and recorded at hourly intervals.
The time of the day (Tg.y), day of the week (Dycck), and month of the year
(Mye.r), were the categorical data. The computed data were the heat
index (HI), while the historically measured data were the global hori-
zontal irradiance (GHI), relative humidity (RH), ambient temperature
(Tamb), wind speed (WS), daily time-lagged historical net load (HNLq,y),
and weekly time-lagged historical net load (HNLyy). Data pre-
processing was then performed to clean the raw data and construct a
high-fidelity cleansed dataset over a three-year period. The cleansed
dataset was divided into 70% train set and 30% test set. The ML fore-
casting models (i.e., ANN, BNN, XGBoost, GBM, KNN, MLP, MLR, RF,
RNN, and SVR) were thus developed and tuned using the train set. The
naive persistence model using daily time-lagged data (NPMg,,) and the
naive persistence model using weekly time-lagged data (NPM.ck)
employed the HNLy,, and HNL,. input parameters, respectively. The
STNLF models were then used to forecast the net load at hourly in-
tervals. The performance of the models was evaluated using the test set.
Specifically, the forecasted net load data (derived from the STNLF
models) were compared with the actual net load data obtained from the
test set (at hourly resolution). In addition, the forecasted and actual net
load data were also aggregated into daily intervals. Moreover, the
forecasted and actual net load was compared using the aggregated daily
data in order to rank the STNLF models (by performing day-by-day
evaluation). Finally, common performance metrics were employed for
the performance evaluation.

2.1. Experimental setup

A three-year historical dataset of hourly average net load data from
UCY microgrid was used to develop day-ahead direct STNLF models
(developed using the Python programming language) by leveraging ML
principles. The dataset contained net load data obtained from an
advanced metering infrastructure consisting of a network of smart
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Fig. 1. Flowchart of the proposed methodology for developing and evaluating data-driven direct STNLF models.

Input features Construction of cleansed Split of cleansed Development of Ll Performance
(at hourly resolution) dataset (three-year) dataset (three-year) forecasting models evaluation
* Categorical * Thay * D Train set: 70% of the * ANN * BNN r Output: net load
* Computed M o HI entire dataset * XGBoost * GBM
ol « KNN + MLP
Test set: 30% of the
entire dataset * SR = B
* RNN * SVR
Data cleaning || * NPMaoy
process * NPM, ek

Fig. 2. Flowchart detailing the training and testing procedure of the STNLF models.

meters installed at key positions of the low-voltage side (400 V AC) of
the microgrid. Fig. 3 provides a satellite imagery of the utility-scale UCY
microgrid comprising of 17 buildings and distributed generation (PV
systems).

The net load characteristics of UCY microgrid are depicted in Fig. 4.
Fig. 4a shows the net load duration curve over the three-year period, while
Fig. 4b illustrates the hourly mean net load histogram. The maximum
measured net load power of the microgrid is 3.996 MW, while the total PV
capacity is 434.80 kW, (equivalent to 10.88% PV penetration).

Fig. 3. Satellite imagery of UCY microgrid (utility-scale microgrid).

2.2. Input feature acquisition and data pre-processing

Categorical (i.e., Tgay, Dyeek, and Mye,) and weather-related variables
were employed as input features for the development of ML models. The
weather parameters include GHI, RH, T,mb», WS, and HI, which captures
the real feel. The weather-related variables, except for HI, were histor-
ical on-site measurements.

The HI was computed using Eq. (1) as a function of T,,, and dew
point temperature (DPT). Due to lack of DPT data, Eqgs. (2) - (4) were
used to estimate this parameter. Using Eq. (2), the partial water vapor
pressure (P,) can be estimated as a function of RH (available from field
measurements) and water vapor saturation pressure (P, ) [37], [38].

HI = Tamb - 1-0799'60'037557‘d"‘b [1 _ eOrOSOI(DPT714)] (1)
243.5log(P, /6.112)
DPT = ,
17.67 — log(P,/6.112) @
P, =RH-Py (3)
1767ty
PV,sa[ = 6.112-eTamp 72835 (4)

Furthermore, two additional features were used: HNL,,y and HNL,cek.
Table 2 summarizes the input features employed by utilizing categorical
data, historical measurements, and computed variables.

Data pre-processing was performed prior to model development
through a series of filtering stages to identify missing data and remove
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Fig. 4. Net load characteristics of the microgrid: (a) net load duration curve and (b) histogram of hourly mean net load.

Table 2

Input features used in the ML models.
Input feature Type of data Unit
Taay Categorical Numeric
Dyeek Categorical Numeric
Myear Categorical Numeric
GHI Historical W/m?
RH Historical %
Tamb Historical °C
ws Historical m/s
HI Computed from historical data using Eqs. (1)-(4) °C
HNLg,y Historical w
HNL,eex Historical w

any erroneous entries to ensure high quality data. Specifically, row
deletion was performed for less than 10% invalid data points of the
entire dataset. Otherwise, data inference techniques were applied to
reconstruct the dataset [39].

2.3. Short-term net load forecasting models

Ten supervised ML models were implemented for direct STNLF and
demonstrated at the investigated renewable integrated microgrid.
Furthermore, NPMs were utilized as baseline models to compare the
behavior of more sophisticated ML models with that of simplistic ones.
The developed models are briefly described in this section.

2.3.1. Artificial neural network

ANN is a powerful computational tool for dealing with complex
problems with both linear and non-linear relationships. ANN-based
models can have an adaptive behavior to noisy data [40]. The ANN ar-
chitecture consists of a number of hidden layers and nodes (neurons). The
ANN tuning was conducted by assessing various activation functions,
learning rate coefficients, hidden layers, hidden nodes, and solvers.

2.3.2. Bayesian neural network

The BNN model combines neural network operational techniques
with Bayesian inference. High accuracy forecasts, low computational
complexity, short training time, reduced sensitivity to small datasets,
and ease of managing hyperparameters are some of the main benefits of
the BNN model [41]. Tuning of hidden layers and nodes was performed
to develop an optimized BNN model.

2.3.3. Extreme gradient boosting

XGBoost is an ensemble algorithm that makes use of GBM. XGBoost
can control overfitting better than GBM, resulting in improved perfor-
mance [42]. The XGBoost model was tuned by evaluating different
column samples, loss reductions, learning rates, depths, weights, esti-
mators, threads, and subsample sizes.

2.3.4. Gradient boosting machine

The GBM combines iteratively several simple models (i.e., weak
learners) to obtain a strong learner with improved forecasting accuracy
[43]. Tuning of the learning rate, depth, samples split, and estimators
was performed.

2.3.5. k-nearest neighbor

The KNN model assumes that similar instances are close to each
other and therefore, predicts the numerical target based on a similarity
measure. The KNN algorithm computes the distances between the test
data and all the training points and then chooses the k points that are
closest to the test data. When applied in regression problems, the KNN
model returns the average value of the target [44]. The optimal hyper-
parameters for the KNN model were determined by tuning the number of
neighbors k and the weighted similarity measure.

2.3.6. Multi-layer perceptron

MLP is a class of neural network and is formed from multiple per-
ceptron layers. The nodes of MLP are arranged in input, hidden, and
output layers [45]. The activation function, learning rates, hidden
layers, hidden nodes, and optimization solvers were tuned to obtain an
optimized MLP model.

2.3.7. Multiple linear regression

MLR is an extension of LR and is based on the relationship between a
dependent variable and multiple independent variables [24]. MLR relies
on a subset of the dataset to obtain the coefficients of the multi-variate
fitting. In this case, the train dataset was used to estimate the coefficients
of the MLR function. The function was fitted using ordinary least squares
(OLS) regression, and it was assumed of first-degree polynomial order,
where each input feature had an associated coefficient c,, with an
additional constant. The resulting function after the coefficients’ fitting
was:
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C1Myear + C2Dyeek + €3Taay + C4HNLgay + ¢sHNL e + csRH + c7 WS ®)
+ csGHI + co Ty + c1oHI + 11

where the coefficientsarec; = —6.181,¢c5 = —45.116,¢c3 = —1.907,
¢4 =0.446,c5 =0.419,¢c6 = — 0.206,c; = — 14.449,cs = — 0.088,
cg = 2.049, c;p = 8.101, and ¢33 = 191.413. Since the forecasting ho-
rizon was day-ahead, rounded-up historical weather parameters for the
next day were used as input (i.e., approximation considering quasi-
perfect forecast) to compute the STNLF MLR model.

2.3.8. Random forest

RF is an ensemble method that creates multitude of DTs during the
training stage. In regression problems, their output corresponds to the
average value of the predictions [46]. Hyperparameter tuning was
achieved by determining the optimal number of trees.

2.3.9. Recurrent neural network

RNNs are neural networks that allow prior outputs to be used as
inputs, enabling the “memory” functionality [47]. RNNs are commonly
employed to tackle problems involving time-series or other sequential
input data. The activation function, the fraction of the units to drop for
the linear transformation of the inputs, the number of epochs, the
number of hidden layers and hidden nodes, and the dimensionality of
the output space (i.e., units) were all assessed to determine the optimal
RNN hyperparameters.

2.3.10. Support vector regression

SVR models are modified support vector machine (SVM) models that
were originally employed for two-class classification problems. The SVR
model is utilized for regression problems with non-linear relationships.
This model creates a hyperplane (a straight line required to fit the data)
and ensures maximum distance between the nearest sample and the
hyperplane [48]. The tuning phase comprised of evaluating regulari-
zation, error sensitivity, curvature weight, and functions.

2.3.11. Naive persistence model

The NPM forecasts the next time-step values based on prior obser-
vations [49]. Two NPMs were used in this work: the NPMy,, and the
NPM,,eek, Which use time-lagged historical net load data of the same
timestamp of the immediately preceding day and week, respectively.
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2.4. Training and tuning of machine learning models, and testing of the
short-term net load forecasting models

The ML models were developed using a 70:30% train and test dataset
split approach. The given three-year dataset was divided into a two-year
train and a one-year test subsets. Specifically, the first two years of the
entire dataset (consisting of 16831 hourly data points) were used for the
training process. The last year of the dataset (consisting of 7529 hourly
data points) was used for testing the models’ accuracy. The same test
subset was employed to evaluate the performance of the NPMs.

The train set was also used for tuning the models’ hyperparameters.
To this end, the hyperparameters of the ANN, GBM, KNN, MLP, RF,
RNN, and SVR models were tuned using the grid search. The number of
hidden nodes in ANN, BNN, and RNN models was determined using a
rule of thumb method. In particular, the number of hidden nodes should
be equal to 2/3 of the size of the input layer plus the size of the output
layer [50]. On the contrary, XGBoost tuning was performed using
random search. Fig. 5 summarizes the optimal hyperparameters for all
ML models.

All ML-based models had a low to moderate computational power
requirements, except the XGBoost model which had a high computa-
tional burden. The computational power requirements depended on the
number of hyperparameter combinations evaluated. A higher number of
combinations led to a longer computational time for training the models.
In the case of XGBoost, there were over 150000 possible combinations of
hyperparameters. Thus, the hyperparameters of the XGBoost were
optimized using random search (instead of the grid search) to achieve
lower computational time. Finally, the NPMs that were implemented
based on the assumption that nothing changes between current and
forecasting time, exhibited low computational usage time because no
training was needed.

The NPMs and the tuned ML models were then used to forecast the
net load and to compare their performance on the test set.

2.5. Performance evaluation
The common performance metrics of RMSE and nRMSE calculated

using Eqgs. (6) and (7), respectively, were employed to evaluate the
forecasting performance of the STNLF models using the test set.

Model Optimal hyperparameters
¢ Activation function: rectified linear ¢ Alpha (learning rate): 10
ANN e Learning rate: constant o Number of hidden layers: 1
¢ Number of hidden nodes: 8 o Optimization solver: adaptive moment estimation
BNN o Number of hidden layers: 1 o Number of hidden nodes: 8
e Column sample by tree: 0.5 ¢ Gamma (minimum loss reduction): 0.1
XGBoost e Learning rate: 0.03 ¢ Maximum depth: 3
e Minimum child weight: 7 o Number of estimators: 500
e Number of threads: 4 e Subsample: 0.7
GBM e Learning rate: 0.3 e Maximum depth: 7
¢ Minimum samples split: 2 o Number of estimators: 750
KNN e Number of neighbors: 10 o Weights: distance
« Activation function: rectified linear e Alpha (learning rate): 1
MLP e Learning rate: constant « Number of hidden layers: 3
« Number of hidden nodes (per layer): 11 ¢ Optimization solver: adaptive moment estimation
RF e Number of trees: 200
« Activation function: hyperbolic tangent e Dropout rate: 0.15
RNN e Number of epochs: 100 o Number of hidden layers: 1
o Number of hidden nodes: 8 o Number of units: 50
SVR e C (regularization): 100 « Epsilon (error sensitivity): 0.3
e Gamma (curvature weight): 0.001 + Kernel (set of mathematical functions): radial basis function

Fig. 5. Optimal hyperparameters for the ML models.
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1 <&
RMSE = \/n ; (yaclua],i - yforecasled.i)z (6)
100 1 & 2
nRMSE = Pmax' \/}’l ; (yactual.i - yfurecasled,i) (7)

where Yacwai and Yorecasteai denote the actual and forecasted net load,
respectively, n is the total number of observations, and P, is the
maximum measured net load power of the microgrid.

3. Results
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describe and capture the variance in the dependent variable (i.e., fore-
casted net load).
The forecasting accuracy results given by the performance evalua-
tion metrics of the STNLF models are presented in Table 3. The BNN
model presented the highest forecasting accuracy, with a nRMSE of
4.26% (equivalent to 170.28 kW given by the RMSE) over the test set
period, due to the ability of BNN to capture non-linear and complex

Table 3
Performance evaluation metrics obtained from the developed STNLF models
applied to UCY microgrid over the test set period.

Ranking Model RMSE (kW) nRMSE (%)
3.1. Benchmarking of short-term net load forecasting models based on 1 BNN 170.28 426
hourly averaged data 9 RF 172.56 4.32
3 MLR 202.74 5.07
The scatterplots of the forecasted against the actual net load for each 4 RNN 260.88 6.53
STNLF model are depicted in Fig. 6. The results demonstrated that the 2 zm‘”” 52%2 ;'22
BNN, MLR., and RI.J models provided high .accuracies since the forecasts ” XGBg:st 299:51 7: 49
were relatively aligned to the reference line (y = x) of the actual net 8 KNN 311.71 7.80
load. In addition, the majority of the ML models exhibited forecasts with 9 GBM 316.62 7.92
low data dispersion within the entire net load range. Both NPMs pre- 10 MLP 325.63 8.15
sented high forecasting variations (high data dispersion) suggesting that 1 SVR 326.50 8.17
. . ) : . 12 ANN 397.65 9.95
the independent variable (i.e., actual net load) does not by itself entirely
— y=x
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Fig. 6. Scatterplots of the forecasted against the actual net load for the (a) ANN, (b) BNN, (c) XGBoost, (d) GBM, (e) KNN, (f) MLP, (g) MLR, (h) RF, (i) RNN, (j) SVR,

(k) NPMg,y, and (1) NPM.x applied to UCY microgrid over the test set period.
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behaviors of the varying PV generation and load demand. The BNN
model slightly outperformed the second-best RF model, which yielded a
nRMSE of 4.32%. Furthermore, the MLR and RNN models achieved
nRMSE values below 7%. Moreover, compared to the NPM,ex and
NPMy,y, the BNN model reported nRMSE improvements of 2.78% and
3.17%, and RMSE improvements of 110.98 kW and 126.76 kW,
respectively. The BNN model outperformed the simplistic NPMs due to
the fact that the net load profiles are not repetitive for the same time-
stamp of the previous day or week. Finally, the improvements obtained
by the BNN model given by nRMSE compared to the XGBoost, KNN,
GBM, MLP, SVR, and ANN models ranged from 3.23% (i.e., RMSE of
129.23 kW) to 5.69% (i.e., RMSE of 227.37 kW).

3.2. Benchmarking of short-term net load forecasting models based on
daily averaged data

The daily average error of the developed STNLF models over the test
set period is presented in Fig. 7. The observed gaps in the plots are
attributed to missing data (due to outages). The lowest daily mean
nRMSE (3.58%) among the STNLF models was achieved by the BNN
model, proving its superiority amongst the investigated models. The RF
and MLR models also showed high accuracies, achieving daily mean
nRMSE of 3.63% and 4.20%, respectively. The remaining STNLF models
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yielded daily mean nRMSE values greater than 5% (between 5.26% and
9.17%). The increased errors (>5%) obtained by the majority of models
are attributed to their inability to fully capture the behavior of the net
load profiles for all seasons and weather conditions.

A summary of the daily average performance given by the mean and
standard deviation (SD) is presented in Table 4. The BNN model yielded
the lowest daily mean nRMSE (3.58%) and SD of 2.28%, over a period of
a year. The GBM model achieved the lowest daily data dispersion rela-
tive to its mean (i.e., a daily SD of 1.89%) among the STNLF models. The
XGBoost and KNN models provided lower daily SD values (1.97% and
2.25%, respectively) compared to the BNN. However, the daily mean
nRMSE of the three models (GBM, XGBoost, and KNN) ranged between
7.22% and 7.68%, indicating lower reliability of their mean values
compared to the BNN model. The low daily mean nRMSE and SD values
obtained from the BNN model demonstrated its ability to provide highly
accurate forecasts with the data clustered closely around its mean.

3.3. Performance evaluation of the best performing short-term net load
forecasting model in different seasons and weather conditions

The best performing ML model (i.e., the BNN) was further evaluated
to assess its reliability during the different seasons (i.e., winter, spring,
summer, and autumn). Table 5 outlines the seasonal mean nRMSE

------ Mean nRMSE ~ —— Daily nRMSE
30 d 1 |
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S
w
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s
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<
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Fig. 7. Daily nRMSE for the (a) ANN, (b) BNN, (c) XGBoost, (d) GBM, (e) KNN, (f) MLP, (g) MLR, (h) RF, (i) RNN, (j) SVR, (k) NPMg,y, and (1) NPM,..k applied to UCY
microgrid over the test set period.
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Table 4
Daily mean nRMSE and SD obtained from the developed STNLF models applied
to UCY microgrid over the test set period.

Plot in Fig. 7 Model Daily nRMSE

Mean SD (%)

Ranking Value (%)
(a) ANN 12 9.17 3.77
(b) BNN 1 3.58 2.28
(c) XGBoost 7 7.22 1.97
(d) GBM 10 7.68 1.89
(e) KNN 8 7.46 2.25
® MLP 11 7.71 2.58
€3] MLR 3 4.20 2.80
(h) RF 2 3.63 2.30
(6] RNN 6 5.72 3.09
Q)] SVR 9 7.60 2.97
&) NPMuay 5 5.61 4.81
(0] NPMyeek 4 5.26 4.63

obtained from the BNN model applied to the UCY microgrid. The lowest
seasonal mean nRMSE (2.40%) was obtained during the winter season as
it was the period with the lowest mean actual net load and measured
GHI. During the spring and autumn seasons the obtained mean nRMSE
values were 3.22% and 3.36%, respectively. Conversely, the highest
mean nRMSE (5%) was obtained during the summer season due to the
increased uncertainty arising from the high mean actual net load de-
mand and higher irradiation values. Although there were variations in
the seasonal mean nRMSE values, the results ranged from 2.40% to 5%,
indicating robust forecasting behavior by the BNN model regardless of
the season.

The obtained daily BNN forecasts at different weather conditions are
depcited in Fig. 8. The almost identical profiles of the actual and fore-
casted net load proved the reliability of the BNN model for diverse
meteorological conditions throughout the year. Specifically, the ob-
tained daily nRMSE values ranged from 0.93% to 1.32% for the different
selected days.

Table 6 is provided to gain further insights about the BNN perfor-
mance for days with different weather conditions. Specifically, among
the two days with the lowest mean and maximum GHI, the lowest error
(daily nRMSE of 0.93%) was achieved for the partly cloudy day due to
the less cloudy weather that favors the BNN model. A slightly higher
daily nRMSE of 1.32% was observed for the mostly sunny day compared
to the other days due to the increased daily mean actual net load demand
and unstable radiation profile during critical hours. For the sunny day,
the BNN model yielded an improved daily nRMSE (1.20%) compared to
the mostly sunny day due to the stable sunny weather.

The seasonal mean nRMSE and daily nRMSE values obtained from
the BNN model, proved that the model is robust and adaptable to the
seasonality of solar PV energy production, meteorology, and changes in
the electric load consumption profiles of the microgrid throughout the
year.

3.4. Discussion
In this study a three-year dataset was used to train, tune, and test the

Table 5
Seasonal mean nRMSE obtained from the BNN model applied to UCY microgrid.

Season Seasonal irradiance (W/ Seasonal mean actual Seasonal mean
m?) net load (kW) nRMSE (%)
Mean Maximum
GHI GHI

Winter 116 704 990 2.40

Spring 285 1063 1203 3.22

Summer 325 1080 1982 5.00

Autumn 196 943 1616 3.36
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models. The utilization of a three-year dataset enables the collection of
data under different microgrid operational scenarios, and the acquisi-
tion of measurements under varying weather conditions and seasons.
This facilitates the capture of the intermittent and uncertain behaviors of
RES generation and load demand that significantly influence the per-
formance of the model. In addition, a supervised dataset split approach
was followed in this study whereby the three-year dataset was divided
into a 70:30% train and test set. This is a common split approach regime
which allows sufficient information for training the ML models, while
also maintaining adequate data for testing the performance of STNLF
models. The two-year duration of the train set enables the development
of accurate and robust ML models (due to large amount of data used for
the training process), while the yearly test set allows the performance
validation of the models throughout the year (under different weather
conditions and seasons). The obtained results were derived from per-
formance evaluations and comparisons made using the third year of the
dataset (i.e., the test set). This approach was adopted to ensure a
rigorous evaluation of the models’ performance on unseen data, which is
crucial for validating the robustness and reliability of the models. The
performance of the models in this paper verified the effectiveness of the
methodology employed and aligned with expectations based on theo-
retical underpinnings and empirical evidence from related works [28],
[29], [32]-[34]. Specifically, by employing various metrics and
analyzing the results, the BNN outperformed all other models for the
investigated microgrid. The comparison highlighted the effectiveness of
the BNN model over other models in handling the complexities and
uncertainties in solar-integrated microgrids.

A simplified version of the best performing model has been suc-
cessfully deployed to provide NLF for all the substations of the electricity
grid in Cyprus. This real-world application demonstrates the model’s
potential for practical use and its ability to contribute towards the effi-
cient management and operation of electricity grids. The effectiveness of
the model at actual environment suggests that it can be adapted for
similar practical applications in renewable microgrids. It is important to
note that the application of the model to a real application requires
modifications and adaptations based on the specific characteristics and
requirements of the microgrid system under study. Along this context,
the model needs to be refined to account for the increased variability
and uncertainty associated with high-RES penetration, as well as to
adapt to the specific operational and regulatory frameworks of the
investigated microgrid.

Finally, it must be noted that the developed STNLF models were
validated on a specific microgrid with a particular set of characteristics
(e.g., moderate level of PV penetration). Therefore, the transferability
and replicability of the models to other microgrid settings and climates
remain an open question and a limiting factor. Another important lim-
itation is the availability of high-quality data for training data-driven
models. Specifically, low availability of data, inefficient quality of
datasets, and low-performing hyperparameter optimization are some of
the factors that negatively affect the performance of the ML models,
leading to forecasts with reduced accuracies. Moreover, external factors
such as sudden or extreme changes in weather conditions, changes in
operational policies, or unexpected equipment failures, reduce the
models’ ability to adapt to such unforeseen circumstances, thus affecting
the accuracy and reliability of the forecasts. Lastly, the transferability
and scalability of the ML models can be limited due to compatibility
issues between forecasting platforms and cyber-security regulatory
requirements.

4. Conclusions

The rising penetration of RES in microgrids necessitates the transi-
tion from STLF to STNLF in order to enable their efficient operation and
management, and to reduce uncertainty. Given that the accuracy of
STNLF is significantly affected by the model used, this paper proposed a
novel direct STNLF methodology that develops and compares ten ML
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Fig. 8. Actual and forecasted daily net load profiles given by the BNN model for (a) mostly cloudy, (b) sunny, (c) mostly sunny, and (d) partly cloudy weather applied

to UCY microgrid.

Table 6
Daily nRMSE obtained from the BNN model applied to UCY microgrid for spe-
cific days with different weather conditions.

Plotin  Month- Weather Daily irradiance (W/ Daily Daily
Fig.8  Day m?) mean nRMSE
Mean Maximum actual net 0
load (kW)
GHI GHI
(@ 02-01 Mostly 103 430 993 1.08
cloudy
(b) 04-28 Sunny 321 975 1152 1.20
() 06-16 Mostly 343 1024 1541 1.32
sunny
(d) 10-30 Partly 155 639 1193 0.93
cloudy

models (i.e., ANN, BNN, XGBoost, GBM, KNN, MLP, MLR, RF, RNN, and
SVR) and two NPMs (i.e., NPMgy, and NPM..) applicable to a low-
voltage microgrid with moderate PV penetration.

The supervised ML models were developed using historical, cate-
gorical, and computed data. Data pre-processing was conducted prior to
model development to ensure high quality data. The ML models were
then constructed using a 70:30% train and test set approach.

Based on the hourly and daily averaged performance results obtained
for the investigated STNLF models, the BNN model outperformed all
other models. Specifically, the results revealed that the BNN model
yielded the lowest error with daily mean nRMSE of 3.58%. The RF and
MLR models achieved slightly higher forecasting errors. In addition,
daily mean nRMSE values > 5.26% were obtained from the remaining
models. Furthermore, the reliability of the optimally constructed BNN
model was verified in different meteorological seasons and weather
conditions. Overall, the findings of this study demonstrated that the
BNN model achieved robust, adaptable, and highly accurate STNLF for a
solar-integrated microgrid throughout the year.

The methodology proposed in this study provides information for the
development of accurate STNLF models applicable to solar-integrated
microgrids. To this end, an optimally BNN model was constructed for
STNLF to facilitate the efficient management and control of a microgrid
with RES penetration. While the model has shown a practical applica-
tion, further modifications and adaptations are needed to enable its
broader use in microgrids with high levels of RES penetration. This will
be addressed in future studies along with the validation of models’
performance in different microgrid characteristics and environments/
climates.
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