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A B S T R A C T   

Modern microgrids require accurate net load forecasting (NLF) for optimal operation and management at high 
shares of renewable energy sources. Machine learning (ML) principles can be used to develop precise and reliable 
NLF models. This paper evaluates the performance of different ML models, that are optimally trained using 
supervised learning regimes, for direct short-term net load forecasting (STNLF) in renewable microgrids. 
Different categories of ML models, such as neural network, ensemble, linear regression, nearest neighbor, and 
support vector machine were used. The comparative assessment was conducted utilizing historical net load, 
meteorological, and time-related categorical data acquired from the renewable integrated microgrid of the 
University of Cyprus in Nicosia, Cyprus. The results showed that all STNLF ML models achieved normalized root 
mean square error (nRMSE) values below 10%. Amongst the investigated models, the Bayesian neural network 
(BNN) presented the highest forecasting accuracy, exhibiting a daily average error of 3.58%. In addition, the 
BNN model yielded robust forecasts regardless of the season and weather conditions. Finally, the results 
demonstrated that optimally constructed ML models can be applied to provide STNLF in renewable integrated 
microgrids, which can be used by microgrid operators to efficiently control and manage their assets.   

Nomenclature 

ANFIS Adaptive neuro-fuzzy inference system. 
ANN Artificial neural network. 
ARIMAX Autoregressive integrated moving average with exogenous 

variables. 
ARMA Autoregressive moving average. 
ARX Autoregressive with exogenous variables. 
BNN Bayesian neural network. 
BTM Behind-the-meter. 
DPT Dew point temperature. 
DT Decision tree. 
Dweek Day of the week. 
GBM Gradient boosting machine. 
GHI Global horizontal irradiance. 
HI Heat index. 
HNLday Daily time-lagged historical net load. 

HNLweek Weekly time-lagged historical net load. 
IEA International Energy Agency. 
KNN k-nearest neighbor. 
LR Linear regression. 
LSTM Long short-term memory. 
MAE Mean absolute error. 
MAPE Mean absolute percentage error. 
MISO Multi-input single-output. 
ML Machine learning. 
MLP Multi-layer perceptron. 
MLR Multiple linear regression. 
Myear Month of the year. 
n Total number of observations. 
NLF Net load forecasting. 
NPM Naïve persistence model. 
NPMday Naïve persistence model using daily time-lagged data. 
NPMweek Naïve persistence model using weekly time-lagged data. 
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nRMSE Normalized root mean square error. 
OLS Ordinary least squares. 
Pmax Maximum measured net load power. 
PV Photovoltaic. 
Pv Water vapor pressure. 
Pv,sat Water vapor saturation pressure. 
RES Renewable energy sources. 
RF Random forest. 
RH Relative humidity. 
RMSE Root mean square error. 
RNN Recurrent neural network. 
SD Standard deviation. 
STLF Short-term load forecasting. 
STNLF Short-term net load forecasting. 
SVM Support vector machine. 
SVR Support vector regression. 
SVRX Support vector regression with exogenous inputs. 
Tamb Ambient temperature. 
Tday Time of the day. 
UCY University of Cyprus. 
WS Wind speed. 
XGBoost Extreme gradient boosting. 
yactual Actual net load. 
yforecasted Forecasted net load. 

1. Introduction 

The International Energy Agency (IEA) reported that the annual 
renewable capacity additions will reach 460 GW in 2027, with solar 
photovoltaic (PV) and wind constituting the highest shares [1]. Current 
research efforts aim to develop accurate net load forecasting (NLF) 
models that effectively mitigate the variability and uncertainty issues 
arising due to the increasing penetration of renewable energy sources 
(RES) in modern power grids [2]. 

Net load is defined as the difference between consumption and 
renewable energy generation [3]. NLF can be achieved directly (i.e., a 
single forecast of the net load) or indirectly (i.e., by calculating the 
difference between the load and the RES generation forecasts) [4]. 
Direct NLF has become increasingly important lately due to its compu
tational advantage over indirect NLF and the availability of net load data 
[5]. Moreover, high shares of PV systems are installed behind-the-meter 
(BTM) and their contribution is not observable to grid operators [6], [7]. 
In this domain, the use of data-driven techniques (i.e., machine learning 
algorithms) that do not require additional knowledge of system char
acteristics becomes imperative for the construction of high-performing 
NLF models. 

Load forecasting is essential to energy suppliers that strive to main
tain balance in electricity networks [8–17]. Specifically, the load fore
casting techniques presented in [9], [10], were applied to residential 
households, while the forecasting models of [11], [12] focused on 
commercial-scale buildings. In addition, [13], [14] performed load 
forecasting in microgrids, whereas distribution system level forecasting 
was presented in [15], [16]. In [17] load forecasting for low-voltage 
electricity networks was applied. Prior research studies compared the 
performance of various machine learning (ML) models for short-term 
load forecasting (STLF) applications [18–25]. Specifically, a previous 
study evaluated the performance of different ML models based on arti
ficial neural networks (ANNs), k-nearest neighbors (KNNs), random 
forest (RF), recurrent neural networks (RNNs), and support vector 
regression (SVR) [18]. The analysis was performed on several datasets at 
different load aggregation levels (e.g., low, medium, and high). The 
findings demonstrated that the RF was the best performing STLF model 
for all datasets. Another comparative STLF study presented the perfor
mance of adaptive neuro-fuzzy inference system (ANFIS), ANN, multiple 
linear regression (MLR), and SVR models [19]. The results proved that 

the ANN was the most reliable and accurate model, with a prediction 
error of 1.67% when applied to electricity load data. In [20], decision 
tree (DT), KNN, linear regression (LR), long short-term memory (LSTM), 
RF, and SVR models were benchmarked for STLF. The results showed 
that the RF and SVR algorithms exhibited the highest forecasting accu
racies amongst the investigated models. The authors in [21] evaluated 
the performance of extreme gradient boosting (XGBoost), LSTM, and RF 
models for STLF in smart buildings. In terms of accuracy and execution 
time efficiency, the XGBoost algorithm outperformed all other models. 
The XGBoost yielded a mean absolute percentage error (MAPE) of 
2.01%. A comparison between STLF methods for several types of 
buildings (residential, schools, and shopping centers) was carried out in 
[22]. The investigated techniques comprised of KNN, LSTM, multi-layer 
perceptron (MLP), MLR, RF, and SVR. The KNN model yielded the 
lowest mean normalized root mean square error (nRMSE) of 1.01% for 
the residential dataset. Conversely, the MLP model achieved the lowest 
error for the school and shopping center loads, with nRMSE of 0.28% 
and 0.18%, respectively. Another STLF study presented the MLR appli
cation on power system data at two distinct seasons. The constructed 
MLR model provided MAPE values of 3.52% and 4.34% for the dry and 
rainy seasons, respectively [23]. In [24], MLR was proposed for STLF, 
yielding a MAPE of 3.99%. The authors in [25] proposed a STLF method 
using exponential smoothing and gradient boosting machine (GBM). 
The proposed method achieved MAPE values in the range of 2.08% to 
2.62% for the two test sets. 

Even though prior studies focused on STLF, the net effects of 
increased RES penetration to the performance of NLF algorithms remain 
a field of main concern, especially for microgrids. Along this context, the 
implementation and actual-life demonstration of novel short-term net 
load forecasting (STNLF) methodologies for the construction of accu
rately performing models have attracted considerable attention in 
microgrids with RES penetration. Several studies employed statistical 
and ML principles for STNLF [26–35]. An ANN-based model was pro
posed for STNLF in micro-neighborhoods with high RES penetration 
[28]. The ANN model outperformed an autoregressive integrated mov
ing average with exogenous variables (ARIMAX) model, yielding an 
average mean absolute error (MAE) equivalent to 5.4% of the maximum 
measured net load. Direct and indirect STNLF methodologies were 
compared for a distribution substation utilizing MLP and autoregressive 
with exogenous variables (ARX) models [29]. The MLP model out
performed the ARX model, achieving MAPE of 9.33% and 8.94% for the 
direct and indirect method, respectively. In [30], direct and indirect NLF 
methods based on the LSTM model were compared for systems with 
disaggregated BTM PV generation. The comparison proved that the in
direct NLF achieved a root mean square error (RMSE) reduction of 
9.98% compared to the direct NLF. Multi-input single-output (MISO) 
LSTM, batch LSTM, online LSTM, autoregressive moving average 
(ARMA), and persistence models were compared for indirect residential 
STNLF [31]. The results demonstrated the superiority of the online 
LSTM model at the household level (7.3% improvement) and the MISO 
LSTM at the aggregate level (13.2% improvement). The authors in [32], 
conducted a comparison between direct and indirect NLF for a microgrid 
with high renewable energy penetration. The results provided evidence 
that the direct strategy outperformed the indirect approach. Specifically, 
the ARX model achieved a reduced MAPE (4.60%), while the support 
vector regression with exogenous inputs (SVRX) model achieved lower 
MAE (54.74 kW) and RMSE (82.59 kW). A direct STNLF methodology 
based on the Bayesian neural network (BNN) model for renewable-based 
microgrids was proposed in [33], [34]. The devised model outperformed 
the naïve persistence model (NPM), yielding nRMSE values between 
3.98% and 5.35% when applied to individual buildings (with and 
without PV shares) and to the solar-integrated microgrid. A direct STNLF 
model based on BNN and statistical post-processing was proposed in 
[35]. The results showed that the BNN model with post-processing 
outperformed the simplistic NPM achieving nRMSE values between 
1.02% and 1.29% for all three solar-integrated distribution feeders.  
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Table 1 summarizes the categorical taxonomy of previous STLF and 
STNLF studies based on ML models. 

Despite the fact that numerous ML models utilized and compared 
different STLF models (e.g., [18]–[22]), a thorough comparison of 
optimized methods to develop direct STNLF models leveraging ML 
principles applicable to utility-scale renewable microgrids remains an 
unexplored area. Moreover, the pressuring needs for highly accurate and 
robust STNLF models is another area of increasing research interest for 
future power systems. The purpose of this work is to bridge this gap 
while meeting the needs of the electric power industry by presenting and 
analyzing various ML models applied to a renewable integrated micro
grid capable of facilitating its management and operation. This paper 
expands on a previous work [36], where six ML algorithms (ANN, 
XGBoost, KNN, RF, RNN, and SVR) were benchmarked for direct STNLF 
in a renewable integrated microgrid. These ML models were chosen 
based on their high accuracies demonstrated in prior load forecasting 
literature [18]–[22]. In this paper, the analysis is extended by devel
oping and tuning additional ML models, extensively investigating the 
daily performance for all STNLF models, and evaluating the daily net 
load profiles for the best performing model over different meteorolog
ical seasons and weather conditions. The ML investigated models 
included ANN, BNN, XGBoost, GBM, KNN, MLP, MLR, RF, RNN, and 
SVR. The BNN model was added due to its promising results when 
applied to STNLF methodologies applicable to renewable-based micro
grids [33], [34] and solar-integrated distribution systems [35]. The MLP 
model was also selected since it provided highly accurate forecasts for 
different building types [22], and STNLF for a distribution substation 
[29]. In addition, the GBM and MLR models were employed due to the 
high STLF accuracies achieved in prior studies [23]–[25]. All ML models 
were developed utilizing historical net load, weather, and categorical 
data from the microgrid of the University of Cyprus (UCY) in Nicosia, 
Cyprus. The performance of each model was assessed using common 
performance metrics and against two NPMs, which served as baseline 
(reference) models. 

Overall, the contributions of this work are the following:  

• Introduction of new data-driven NLF concepts applied to utility-scale 
renewable microgrids, therefore presenting new knowledge on the 
usage of historical data and data-driven approaches for direct NLF.  

• Implementation of a novel direct STNLF methodology for the 
development of accurate and robust direct forecasting ML models. 
The proposed methodology presents a unique pipeline of stages 
applicable to renewable-based microgrids at all scales.  

• Comparison and actual-life verification of different models (ten ML 
and two NPMs) for direct STNLF, thereby presenting models with 
accuracies that exceed the state-of-the-art. The best performing 
model can achieve accurate and reliable direct STNLF that facilitates 
decision-making by microgrid operators.  

• Determination of the best performing model for STNLF by looking at 
the hourly and daily performance of the day-ahead forecasting ho
rizon. This presents important information to the research commu
nity on novel approaches utilized to develop optimized STNLF 
models.  

• Robustness and adaptability verification of the best performing 
model in different seasons and weather conditions to provide insights 
about the impact of external weather factors on forecasting 
performance. 

The rest of this paper is organized as follows: Section 2 describes the 
methodology and models used in this study, Section 3 discusses the re
sults emanating from this work, while Section 4 highlights the conclu
sions of this work. 

2. Methodology 

The methodology used to develop and evaluate the performance of 
the optimally performing STNLF models, leveraging ML principles, 
consists of four steps (as shown in Fig. 1): (a) experimental setup and 
input feature acquisition, (b) data pre-processing, (c) training and tun
ing of ML models, and creation of baseline models, and (d) performance 
evaluation. 

The detailed procedure for forecasting the net load output is shown 
in Fig. 2. In particular, the input features that were used for the training 
stage of the ML models comprised of categorical and numerical 
(computed and measured) parameters. The dataset comprised of data 
acquired at a granularity of a second and recorded at hourly intervals. 
The time of the day (Tday), day of the week (Dweek), and month of the year 
(Myear), were the categorical data. The computed data were the heat 
index (HI), while the historically measured data were the global hori
zontal irradiance (GHI), relative humidity (RH), ambient temperature 
(Tamb), wind speed (WS), daily time-lagged historical net load (HNLday), 
and weekly time-lagged historical net load (HNLweek). Data pre- 
processing was then performed to clean the raw data and construct a 
high-fidelity cleansed dataset over a three-year period. The cleansed 
dataset was divided into 70% train set and 30% test set. The ML fore
casting models (i.e., ANN, BNN, XGBoost, GBM, KNN, MLP, MLR, RF, 
RNN, and SVR) were thus developed and tuned using the train set. The 
naïve persistence model using daily time-lagged data (NPMday) and the 
naïve persistence model using weekly time-lagged data (NPMweek) 
employed the HNLday and HNLweek input parameters, respectively. The 
STNLF models were then used to forecast the net load at hourly in
tervals. The performance of the models was evaluated using the test set. 
Specifically, the forecasted net load data (derived from the STNLF 
models) were compared with the actual net load data obtained from the 
test set (at hourly resolution). In addition, the forecasted and actual net 
load data were also aggregated into daily intervals. Moreover, the 
forecasted and actual net load was compared using the aggregated daily 
data in order to rank the STNLF models (by performing day-by-day 
evaluation). Finally, common performance metrics were employed for 
the performance evaluation. 

2.1. Experimental setup 

A three-year historical dataset of hourly average net load data from 
UCY microgrid was used to develop day-ahead direct STNLF models 
(developed using the Python programming language) by leveraging ML 
principles. The dataset contained net load data obtained from an 
advanced metering infrastructure consisting of a network of smart 

Table 1 
Taxonomy of ML models used for STLF and STNLF in the literature.  

Category Model Forecasting 

Load Net load 

Neural network ANN [18],[19] [28] 
BNN - [33]– 

[35] 
RNN (simple and 
LSTM) 

[18],[20]– 
[22] 

[30], 
[31] 

MLP [22] [29] 
Ensemble RF [18],[20]– 

[22] 
- 

XGBoost [21] - 
GBM [25] - 

Linear regression LR [20] - 
MLR [19],[22]– 

[24] 
- 

Neural network and fuzzy 
logic 

ANFIS [19] - 

Decision tree DT [20] - 
Nearest neighbor KNN [18],[20], 

[22] 
- 

Support vector machine SVR [18]–[20], 
[22] 

[32]  
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meters installed at key positions of the low-voltage side (400 V AC) of 
the microgrid. Fig. 3 provides a satellite imagery of the utility-scale UCY 
microgrid comprising of 17 buildings and distributed generation (PV 
systems). 

The net load characteristics of UCY microgrid are depicted in Fig. 4. 
Fig. 4a shows the net load duration curve over the three-year period, while 
Fig. 4b illustrates the hourly mean net load histogram. The maximum 
measured net load power of the microgrid is 3.996 MW, while the total PV 
capacity is 434.80 kWp (equivalent to 10.88% PV penetration). 

2.2. Input feature acquisition and data pre-processing 

Categorical (i.e., Tday, Dweek, and Myear) and weather-related variables 
were employed as input features for the development of ML models. The 
weather parameters include GHI, RH, Tamb, WS, and HI, which captures 
the real feel. The weather-related variables, except for HI, were histor
ical on-site measurements. 

The HI was computed using Eq. (1) as a function of Tamb and dew 
point temperature (DPT). Due to lack of DPT data, Eqs. (2) - (4) were 
used to estimate this parameter. Using Eq. (2), the partial water vapor 
pressure (Pv) can be estimated as a function of RH (available from field 
measurements) and water vapor saturation pressure (Pv,sat) [37], [38]. 

HI = Tamb − 1.0799⋅e0.03755Tamb [1 − e0.0801(DPT − 14)] (1)  

DPT =
243.5log(Pv/6.112)

17.67 − log(Pv/6.112)
(2)  

Pv = RH⋅Pv,sat (3)  

Pv,sat = 6.112⋅e
17.67Tamb

Tamb+243.5 (4) 

Furthermore, two additional features were used: HNLday and HNLweek.  
Table 2 summarizes the input features employed by utilizing categorical 
data, historical measurements, and computed variables. 

Data pre-processing was performed prior to model development 
through a series of filtering stages to identify missing data and remove 

Fig. 1. Flowchart of the proposed methodology for developing and evaluating data-driven direct STNLF models.  

Fig. 2. Flowchart detailing the training and testing procedure of the STNLF models.  

Fig. 3. Satellite imagery of UCY microgrid (utility-scale microgrid).  
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any erroneous entries to ensure high quality data. Specifically, row 
deletion was performed for less than 10% invalid data points of the 
entire dataset. Otherwise, data inference techniques were applied to 
reconstruct the dataset [39]. 

2.3. Short-term net load forecasting models 

Ten supervised ML models were implemented for direct STNLF and 
demonstrated at the investigated renewable integrated microgrid. 
Furthermore, NPMs were utilized as baseline models to compare the 
behavior of more sophisticated ML models with that of simplistic ones. 
The developed models are briefly described in this section. 

2.3.1. Artificial neural network 
ANN is a powerful computational tool for dealing with complex 

problems with both linear and non-linear relationships. ANN-based 
models can have an adaptive behavior to noisy data [40]. The ANN ar
chitecture consists of a number of hidden layers and nodes (neurons). The 
ANN tuning was conducted by assessing various activation functions, 
learning rate coefficients, hidden layers, hidden nodes, and solvers. 

2.3.2. Bayesian neural network 
The BNN model combines neural network operational techniques 

with Bayesian inference. High accuracy forecasts, low computational 
complexity, short training time, reduced sensitivity to small datasets, 
and ease of managing hyperparameters are some of the main benefits of 
the BNN model [41]. Tuning of hidden layers and nodes was performed 
to develop an optimized BNN model. 

2.3.3. Extreme gradient boosting 
XGBoost is an ensemble algorithm that makes use of GBM. XGBoost 

can control overfitting better than GBM, resulting in improved perfor
mance [42]. The XGBoost model was tuned by evaluating different 
column samples, loss reductions, learning rates, depths, weights, esti
mators, threads, and subsample sizes. 

2.3.4. Gradient boosting machine 
The GBM combines iteratively several simple models (i.e., weak 

learners) to obtain a strong learner with improved forecasting accuracy 
[43]. Tuning of the learning rate, depth, samples split, and estimators 
was performed. 

2.3.5. k-nearest neighbor 
The KNN model assumes that similar instances are close to each 

other and therefore, predicts the numerical target based on a similarity 
measure. The KNN algorithm computes the distances between the test 
data and all the training points and then chooses the k points that are 
closest to the test data. When applied in regression problems, the KNN 
model returns the average value of the target [44]. The optimal hyper
parameters for the KNN model were determined by tuning the number of 
neighbors k and the weighted similarity measure. 

2.3.6. Multi-layer perceptron 
MLP is a class of neural network and is formed from multiple per

ceptron layers. The nodes of MLP are arranged in input, hidden, and 
output layers [45]. The activation function, learning rates, hidden 
layers, hidden nodes, and optimization solvers were tuned to obtain an 
optimized MLP model. 

2.3.7. Multiple linear regression 
MLR is an extension of LR and is based on the relationship between a 

dependent variable and multiple independent variables [24]. MLR relies 
on a subset of the dataset to obtain the coefficients of the multi-variate 
fitting. In this case, the train dataset was used to estimate the coefficients 
of the MLR function. The function was fitted using ordinary least squares 
(OLS) regression, and it was assumed of first-degree polynomial order, 
where each input feature had an associated coefficient cn, with an 
additional constant. The resulting function after the coefficients’ fitting 
was: 

Fig. 4. Net load characteristics of the microgrid: (a) net load duration curve and (b) histogram of hourly mean net load.  

Table 2 
Input features used in the ML models.  

Input feature Type of data Unit 

Tday Categorical Numeric 
Dweek Categorical Numeric 
Myear Categorical Numeric 
GHI Historical W/m2 

RH Historical % 
Tamb Historical ◦C 
WS Historical m/s 
HI Computed from historical data using Eqs. (1)-(4) ◦C 
HNLday Historical W 
HNLweek Historical W  
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c1Myear + c2Dweek + c3Tday + c4HNLday + c5HNLweek + c6RH + c7WS
+ c8GHI + c9Tamb + c10HI + c11

(5)  

where the coefficients are c1 = − 6.181, c2 = − 45.116, c3 = − 1.907, 
c4 = 0.446, c5 = 0.419, c6 = − 0.206, c7 = − 14.449, c8 = − 0.088, 
c9 = 2.049, c10 = 8.101, and c11 = 191.413. Since the forecasting ho
rizon was day-ahead, rounded-up historical weather parameters for the 
next day were used as input (i.e., approximation considering quasi- 
perfect forecast) to compute the STNLF MLR model. 

2.3.8. Random forest 
RF is an ensemble method that creates multitude of DTs during the 

training stage. In regression problems, their output corresponds to the 
average value of the predictions [46]. Hyperparameter tuning was 
achieved by determining the optimal number of trees. 

2.3.9. Recurrent neural network 
RNNs are neural networks that allow prior outputs to be used as 

inputs, enabling the “memory” functionality [47]. RNNs are commonly 
employed to tackle problems involving time-series or other sequential 
input data. The activation function, the fraction of the units to drop for 
the linear transformation of the inputs, the number of epochs, the 
number of hidden layers and hidden nodes, and the dimensionality of 
the output space (i.e., units) were all assessed to determine the optimal 
RNN hyperparameters. 

2.3.10. Support vector regression 
SVR models are modified support vector machine (SVM) models that 

were originally employed for two-class classification problems. The SVR 
model is utilized for regression problems with non-linear relationships. 
This model creates a hyperplane (a straight line required to fit the data) 
and ensures maximum distance between the nearest sample and the 
hyperplane [48]. The tuning phase comprised of evaluating regulari
zation, error sensitivity, curvature weight, and functions. 

2.3.11. Naïve persistence model 
The NPM forecasts the next time-step values based on prior obser

vations [49]. Two NPMs were used in this work: the NPMday and the 
NPMweek, which use time-lagged historical net load data of the same 
timestamp of the immediately preceding day and week, respectively. 

2.4. Training and tuning of machine learning models, and testing of the 
short-term net load forecasting models 

The ML models were developed using a 70:30% train and test dataset 
split approach. The given three-year dataset was divided into a two-year 
train and a one-year test subsets. Specifically, the first two years of the 
entire dataset (consisting of 16831 hourly data points) were used for the 
training process. The last year of the dataset (consisting of 7529 hourly 
data points) was used for testing the models’ accuracy. The same test 
subset was employed to evaluate the performance of the NPMs. 

The train set was also used for tuning the models’ hyperparameters. 
To this end, the hyperparameters of the ANN, GBM, KNN, MLP, RF, 
RNN, and SVR models were tuned using the grid search. The number of 
hidden nodes in ANN, BNN, and RNN models was determined using a 
rule of thumb method. In particular, the number of hidden nodes should 
be equal to 2/3 of the size of the input layer plus the size of the output 
layer [50]. On the contrary, XGBoost tuning was performed using 
random search. Fig. 5 summarizes the optimal hyperparameters for all 
ML models. 

All ML-based models had a low to moderate computational power 
requirements, except the XGBoost model which had a high computa
tional burden. The computational power requirements depended on the 
number of hyperparameter combinations evaluated. A higher number of 
combinations led to a longer computational time for training the models. 
In the case of XGBoost, there were over 150000 possible combinations of 
hyperparameters. Thus, the hyperparameters of the XGBoost were 
optimized using random search (instead of the grid search) to achieve 
lower computational time. Finally, the NPMs that were implemented 
based on the assumption that nothing changes between current and 
forecasting time, exhibited low computational usage time because no 
training was needed. 

The NPMs and the tuned ML models were then used to forecast the 
net load and to compare their performance on the test set. 

2.5. Performance evaluation 

The common performance metrics of RMSE and nRMSE calculated 
using Eqs. (6) and (7), respectively, were employed to evaluate the 
forecasting performance of the STNLF models using the test set. 

Fig. 5. Optimal hyperparameters for the ML models.  
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(7)  

where yactual,i and yforecasted,i denote the actual and forecasted net load, 
respectively, n is the total number of observations, and Pmax is the 
maximum measured net load power of the microgrid. 

3. Results 

3.1. Benchmarking of short-term net load forecasting models based on 
hourly averaged data 

The scatterplots of the forecasted against the actual net load for each 
STNLF model are depicted in Fig. 6. The results demonstrated that the 
BNN, MLR, and RF models provided high accuracies since the forecasts 
were relatively aligned to the reference line (y = x) of the actual net 
load. In addition, the majority of the ML models exhibited forecasts with 
low data dispersion within the entire net load range. Both NPMs pre
sented high forecasting variations (high data dispersion) suggesting that 
the independent variable (i.e., actual net load) does not by itself entirely 

describe and capture the variance in the dependent variable (i.e., fore
casted net load). 

The forecasting accuracy results given by the performance evalua
tion metrics of the STNLF models are presented in Table 3. The BNN 
model presented the highest forecasting accuracy, with a nRMSE of 
4.26% (equivalent to 170.28 kW given by the RMSE) over the test set 
period, due to the ability of BNN to capture non-linear and complex 

Fig. 6. Scatterplots of the forecasted against the actual net load for the (a) ANN, (b) BNN, (c) XGBoost, (d) GBM, (e) KNN, (f) MLP, (g) MLR, (h) RF, (i) RNN, (j) SVR, 
(k) NPMday, and (l) NPMweek applied to UCY microgrid over the test set period. 

Table 3 
Performance evaluation metrics obtained from the developed STNLF models 
applied to UCY microgrid over the test set period.  

Ranking Model RMSE (kW) nRMSE (%) 

1 BNN 170.28 4.26 
2 RF 172.56 4.32 
3 MLR 202.74 5.07 
4 RNN 260.88 6.53 
5 NPMweek 281.26 7.04 
6 NPMday 297.04 7.43 
7 XGBoost 299.51 7.49 
8 KNN 311.71 7.80 
9 GBM 316.62 7.92 
10 MLP 325.63 8.15 
11 SVR 326.50 8.17 
12 ANN 397.65 9.95  
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behaviors of the varying PV generation and load demand. The BNN 
model slightly outperformed the second-best RF model, which yielded a 
nRMSE of 4.32%. Furthermore, the MLR and RNN models achieved 
nRMSE values below 7%. Moreover, compared to the NPMweek and 
NPMday, the BNN model reported nRMSE improvements of 2.78% and 
3.17%, and RMSE improvements of 110.98 kW and 126.76 kW, 
respectively. The BNN model outperformed the simplistic NPMs due to 
the fact that the net load profiles are not repetitive for the same time
stamp of the previous day or week. Finally, the improvements obtained 
by the BNN model given by nRMSE compared to the XGBoost, KNN, 
GBM, MLP, SVR, and ANN models ranged from 3.23% (i.e., RMSE of 
129.23 kW) to 5.69% (i.e., RMSE of 227.37 kW). 

3.2. Benchmarking of short-term net load forecasting models based on 
daily averaged data 

The daily average error of the developed STNLF models over the test 
set period is presented in Fig. 7. The observed gaps in the plots are 
attributed to missing data (due to outages). The lowest daily mean 
nRMSE (3.58%) among the STNLF models was achieved by the BNN 
model, proving its superiority amongst the investigated models. The RF 
and MLR models also showed high accuracies, achieving daily mean 
nRMSE of 3.63% and 4.20%, respectively. The remaining STNLF models 

yielded daily mean nRMSE values greater than 5% (between 5.26% and 
9.17%). The increased errors (>5%) obtained by the majority of models 
are attributed to their inability to fully capture the behavior of the net 
load profiles for all seasons and weather conditions. 

A summary of the daily average performance given by the mean and 
standard deviation (SD) is presented in Table 4. The BNN model yielded 
the lowest daily mean nRMSE (3.58%) and SD of 2.28%, over a period of 
a year. The GBM model achieved the lowest daily data dispersion rela
tive to its mean (i.e., a daily SD of 1.89%) among the STNLF models. The 
XGBoost and KNN models provided lower daily SD values (1.97% and 
2.25%, respectively) compared to the BNN. However, the daily mean 
nRMSE of the three models (GBM, XGBoost, and KNN) ranged between 
7.22% and 7.68%, indicating lower reliability of their mean values 
compared to the BNN model. The low daily mean nRMSE and SD values 
obtained from the BNN model demonstrated its ability to provide highly 
accurate forecasts with the data clustered closely around its mean. 

3.3. Performance evaluation of the best performing short-term net load 
forecasting model in different seasons and weather conditions 

The best performing ML model (i.e., the BNN) was further evaluated 
to assess its reliability during the different seasons (i.e., winter, spring, 
summer, and autumn). Table 5 outlines the seasonal mean nRMSE 

Fig. 7. Daily nRMSE for the (a) ANN, (b) BNN, (c) XGBoost, (d) GBM, (e) KNN, (f) MLP, (g) MLR, (h) RF, (i) RNN, (j) SVR, (k) NPMday, and (l) NPMweek applied to UCY 
microgrid over the test set period. 
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obtained from the BNN model applied to the UCY microgrid. The lowest 
seasonal mean nRMSE (2.40%) was obtained during the winter season as 
it was the period with the lowest mean actual net load and measured 
GHI. During the spring and autumn seasons the obtained mean nRMSE 
values were 3.22% and 3.36%, respectively. Conversely, the highest 
mean nRMSE (5%) was obtained during the summer season due to the 
increased uncertainty arising from the high mean actual net load de
mand and higher irradiation values. Although there were variations in 
the seasonal mean nRMSE values, the results ranged from 2.40% to 5%, 
indicating robust forecasting behavior by the BNN model regardless of 
the season. 

The obtained daily BNN forecasts at different weather conditions are 
depcited in Fig. 8. The almost identical profiles of the actual and fore
casted net load proved the reliability of the BNN model for diverse 
meteorological conditions throughout the year. Specifically, the ob
tained daily nRMSE values ranged from 0.93% to 1.32% for the different 
selected days. 

Table 6 is provided to gain further insights about the BNN perfor
mance for days with different weather conditions. Specifically, among 
the two days with the lowest mean and maximum GHI, the lowest error 
(daily nRMSE of 0.93%) was achieved for the partly cloudy day due to 
the less cloudy weather that favors the BNN model. A slightly higher 
daily nRMSE of 1.32% was observed for the mostly sunny day compared 
to the other days due to the increased daily mean actual net load demand 
and unstable radiation profile during critical hours. For the sunny day, 
the BNN model yielded an improved daily nRMSE (1.20%) compared to 
the mostly sunny day due to the stable sunny weather. 

The seasonal mean nRMSE and daily nRMSE values obtained from 
the BNN model, proved that the model is robust and adaptable to the 
seasonality of solar PV energy production, meteorology, and changes in 
the electric load consumption profiles of the microgrid throughout the 
year. 

3.4. Discussion 

In this study a three-year dataset was used to train, tune, and test the 

models. The utilization of a three-year dataset enables the collection of 
data under different microgrid operational scenarios, and the acquisi
tion of measurements under varying weather conditions and seasons. 
This facilitates the capture of the intermittent and uncertain behaviors of 
RES generation and load demand that significantly influence the per
formance of the model. In addition, a supervised dataset split approach 
was followed in this study whereby the three-year dataset was divided 
into a 70:30% train and test set. This is a common split approach regime 
which allows sufficient information for training the ML models, while 
also maintaining adequate data for testing the performance of STNLF 
models. The two-year duration of the train set enables the development 
of accurate and robust ML models (due to large amount of data used for 
the training process), while the yearly test set allows the performance 
validation of the models throughout the year (under different weather 
conditions and seasons). The obtained results were derived from per
formance evaluations and comparisons made using the third year of the 
dataset (i.e., the test set). This approach was adopted to ensure a 
rigorous evaluation of the models’ performance on unseen data, which is 
crucial for validating the robustness and reliability of the models. The 
performance of the models in this paper verified the effectiveness of the 
methodology employed and aligned with expectations based on theo
retical underpinnings and empirical evidence from related works [28], 
[29], [32]–[34]. Specifically, by employing various metrics and 
analyzing the results, the BNN outperformed all other models for the 
investigated microgrid. The comparison highlighted the effectiveness of 
the BNN model over other models in handling the complexities and 
uncertainties in solar-integrated microgrids. 

A simplified version of the best performing model has been suc
cessfully deployed to provide NLF for all the substations of the electricity 
grid in Cyprus. This real-world application demonstrates the model’s 
potential for practical use and its ability to contribute towards the effi
cient management and operation of electricity grids. The effectiveness of 
the model at actual environment suggests that it can be adapted for 
similar practical applications in renewable microgrids. It is important to 
note that the application of the model to a real application requires 
modifications and adaptations based on the specific characteristics and 
requirements of the microgrid system under study. Along this context, 
the model needs to be refined to account for the increased variability 
and uncertainty associated with high-RES penetration, as well as to 
adapt to the specific operational and regulatory frameworks of the 
investigated microgrid. 

Finally, it must be noted that the developed STNLF models were 
validated on a specific microgrid with a particular set of characteristics 
(e.g., moderate level of PV penetration). Therefore, the transferability 
and replicability of the models to other microgrid settings and climates 
remain an open question and a limiting factor. Another important lim
itation is the availability of high-quality data for training data-driven 
models. Specifically, low availability of data, inefficient quality of 
datasets, and low-performing hyperparameter optimization are some of 
the factors that negatively affect the performance of the ML models, 
leading to forecasts with reduced accuracies. Moreover, external factors 
such as sudden or extreme changes in weather conditions, changes in 
operational policies, or unexpected equipment failures, reduce the 
models’ ability to adapt to such unforeseen circumstances, thus affecting 
the accuracy and reliability of the forecasts. Lastly, the transferability 
and scalability of the ML models can be limited due to compatibility 
issues between forecasting platforms and cyber-security regulatory 
requirements. 

4. Conclusions 

The rising penetration of RES in microgrids necessitates the transi
tion from STLF to STNLF in order to enable their efficient operation and 
management, and to reduce uncertainty. Given that the accuracy of 
STNLF is significantly affected by the model used, this paper proposed a 
novel direct STNLF methodology that develops and compares ten ML 

Table 4 
Daily mean nRMSE and SD obtained from the developed STNLF models applied 
to UCY microgrid over the test set period.  

Plot in Fig. 7 Model Daily nRMSE 

Mean SD (%) 

Ranking Value (%) 

(a) ANN 12 9.17 3.77 
(b) BNN 1 3.58 2.28 
(c) XGBoost 7 7.22 1.97 
(d) GBM 10 7.68 1.89 
(e) KNN 8 7.46 2.25 
(f) MLP 11 7.71 2.58 
(g) MLR 3 4.20 2.80 
(h) RF 2 3.63 2.30 
(i) RNN 6 5.72 3.09 
(j) SVR 9 7.60 2.97 
(k) NPMday 5 5.61 4.81 
(l) NPMweek 4 5.26 4.63  

Table 5 
Seasonal mean nRMSE obtained from the BNN model applied to UCY microgrid.  

Season Seasonal irradiance (W/ 
m2) 

Seasonal mean actual 
net load (kW) 

Seasonal mean 
nRMSE (%) 

Mean 
GHI 

Maximum 
GHI 

Winter 116 704 990 2.40 
Spring 285 1063 1203 3.22 
Summer 325 1080 1982 5.00 
Autumn 196 943 1616 3.36  
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models (i.e., ANN, BNN, XGBoost, GBM, KNN, MLP, MLR, RF, RNN, and 
SVR) and two NPMs (i.e., NPMday and NPMweek) applicable to a low- 
voltage microgrid with moderate PV penetration. 

The supervised ML models were developed using historical, cate
gorical, and computed data. Data pre-processing was conducted prior to 
model development to ensure high quality data. The ML models were 
then constructed using a 70:30% train and test set approach. 

Based on the hourly and daily averaged performance results obtained 
for the investigated STNLF models, the BNN model outperformed all 
other models. Specifically, the results revealed that the BNN model 
yielded the lowest error with daily mean nRMSE of 3.58%. The RF and 
MLR models achieved slightly higher forecasting errors. In addition, 
daily mean nRMSE values ≥ 5.26% were obtained from the remaining 
models. Furthermore, the reliability of the optimally constructed BNN 
model was verified in different meteorological seasons and weather 
conditions. Overall, the findings of this study demonstrated that the 
BNN model achieved robust, adaptable, and highly accurate STNLF for a 
solar-integrated microgrid throughout the year. 

The methodology proposed in this study provides information for the 
development of accurate STNLF models applicable to solar-integrated 
microgrids. To this end, an optimally BNN model was constructed for 
STNLF to facilitate the efficient management and control of a microgrid 
with RES penetration. While the model has shown a practical applica
tion, further modifications and adaptations are needed to enable its 
broader use in microgrids with high levels of RES penetration. This will 
be addressed in future studies along with the validation of models’ 
performance in different microgrid characteristics and environments/ 
climates. 
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