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A B S T R A C T

Plug-in electric vehicles (PEVs) are one of the most promising technologies for decarbonizing the transportation
sector towards the global Net-zero target. However, charging/discharging of PEVs impacts the electricity
network’s stability, increases the operating costs, and affects the voltage profile. This paper proposes a flexible
multi-objective optimization approach to evaluate and deploy vehicle-to-grid and grid-to-vehicle technologies
considering techno-economical and environmental factors. Furthermore, life cycle of PEV batteries, charg-
ing/discharging pattern, and driving behaviours of the PEV owners are considered. The simulations are run
over a modified IEEE 69-bus radial distribution test system to minimize two objective functions including the
operating costs and CO2 emissions using the heuristic-based Firefly Algorithm in a stochastic optimization
framework considering renewable generations, load consumption, and charging/discharging timing of PEVs
as the uncertain parameters. The results demonstrate significant reductions in the operating costs and CO2
emissions, and the voltage profile of the network is improved properly. Besides, by implementing the
discharging facility of PEVs in the network, the PEV owners save a considerable amount in operating costs.
1. Introduction

1.1. Motivation

In recent times, there has been a growing awareness of the adverse
effects of climate change. In a contemporary report from the United
Nations (UN), climate change was declared a ‘‘code red for humanity’’
by the UN secretary-general [1]. Conversely, scientific researchers have
shown that long term sustainable reductions in CO2 and other green-
house gases (GHG) emissions could improve air quality and stabilize
global temperatures in 20 to 30 years [2]. However, the growing
population and expanding industrial development pose a considerable
challenge in decarbonizing the distribution networks (DNs) [3]. Hence,
over the next two decades, the amount of electricity consumed is pro-
jected to rise by almost 50%, putting additional strain on existing power
networks [4]. Furthermore, there are concerns about energy security,
supply and fossil fuel’s environmental and human impacts within the
transportation system. To this end, plug-in electric vehicles (PEVs) are
highly recommended as a practical solution to reduce the dependency
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on fossil fuels and decarbonizing the transportation sector [5]. Also,
curbing air pollution from fossil fuel engines in the transportation
system have necessitated the use of sustainable and renewable energy
sources (RES), which has further increased the use of PEVs and RESs in
DNs [6,7]. However, PEVs’ integration into the electrical power grids
causes significant technical, economic, and regulatory issues. Also, the
increasing use of PEVs further constitutes more financial and decar-
bonization challenges in the operation of power and energy networks
[8]. The environmental benefits of PEVs may differ subject to the
combination of charging and driving patterns, weather condition, and
the carbon intensity of the network [9]. However, most governments
outline incentives to attain adoption objectives, only emphasizing on
the number and type of PEV adopted as a result in contrast to the
charging behaviour or the supporting RES capacity to balance extra
PEV demand [10]. Furthermore, several regulations meant to motivate
PEV owners have weakened carbon accounting by applying sales-
averaged CO2 emissions that are reduced via PEV policy incentives and
excluding charging emissions [11].
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Nomenclature

Acronyms

CP Charging Point
DER Distributed Energy Resource
DG Distributed Generation
DN Distribution Network
FA Firefly Algorithm
FC Fuel Cell
G2V Grid to Vehicle
LHS Latin Hypercube Sampling
MT Micro-Turbine
MO Multi-Objective
PV Photovoltaic
PEV Plug-in Electric Vehicle
RES Renewable Energy Sources
STC Standard Testing Condition
SOC State of Charge
V2G Vehicle to Grid
WT Wind Turbine

Indices

𝑐 Set for FC
𝑔 Set for MT
𝑏 Set for PEV
𝑒 Set for renewable unit
𝑙 Set for bus
𝑠 Set for scenario
ℎ Set for time

Parameters

𝑃 𝑙𝑜𝑎𝑑
𝑙,ℎ Active load in bus 𝑙th at hour h [kW]

𝑄𝑙𝑜𝑎𝑑
𝑙,ℎ Reactive load in bus 𝑙th at hour h [kW]

𝑃 𝑝𝑣
stc Active power generated by a PV under

standard testing condition [kW]
𝐺𝑝𝑣 Radiation intensity [kW/m2]
𝐺𝑝𝑣

stc Intensity of radiation under standard test-
ing condition [kW/m2]

𝜆𝑝𝑣mpt Heat factor relating to the maximum power
𝑇 𝑝𝑣
𝑐 Temperature of PV module

𝑇 𝑝𝑣
ref Reference temperature

𝑇 𝑝𝑣
𝑎 Ambient temperature of the site

𝑁𝑝𝑣
𝑜𝑡 Temperature of PV cell in normal operation

𝑣𝑤𝑡 Wind speed [m/s]
𝑣𝑤𝑡
0 Location parameter of WT [m/s]

𝜆𝑤𝑡 Shape factor of WT
𝑐𝑤𝑡 Scale parameter of WT
𝜇𝑤𝑡 Average value of wind velocity
𝜎𝑤𝑡 Standard deviation of wind velocity
𝑃𝑤𝑡
𝑟𝑎𝑡𝑒𝑑 Rated power of WT [kW]

𝛼𝑤𝑡
1 − 𝛼𝑤𝑡

3 Generation coefficients of WT
𝑣𝑤𝑡
𝑟 Rated wind speed [m/s]

𝑣𝑤𝑡
𝑐𝑖 ∕𝑣

𝑤𝑡
𝑐𝑜 Cut-in/Cut-out wind speed [m/s]

𝑃𝑚𝑡,𝑚𝑖𝑛
𝑔 Minimum power generation limits of MT

𝑔th [kW]
𝑃𝑚𝑡,𝑚𝑎𝑥
𝑔 Maximum power generation limits of MT

𝑔th [kW]
𝑃𝑚𝑡,𝑟𝑢
𝑔 Ramp-up limits of MT 𝑔th [kW]

𝑃𝑚𝑡,𝑟𝑑
𝑔 Ramp-down limits of MT 𝑔th [kW]
2

𝛼𝑚𝑡1,𝑔 − 𝛼𝑚𝑡3,𝑔 Cost function coefficient of MT 𝑔th
𝐸𝑓𝑐 FC potential obtained in an open circuit
𝐹 Constant of Faraday
𝜀 Maximum allowed voltage deviation [%]
𝛥𝐺 Change in the free Gibbs energy
𝛥𝑆 Change of the entropy
𝑅 Universal constant of the gases
𝑃H2

Partial pressure of hydrogen
𝑃O2

Partial pressure of oxygen
𝑇 𝑓𝑐 FC operation temperature
𝑇 𝑓𝑐
𝑟 FC reference temperature

𝜆𝑓𝑐1 − 𝜆𝑓𝑐4 Parametric coefficient for the FC model
𝜆𝑓𝑐5 Parametric coefficient that relies on the FC

and its operation state
𝑅𝑓𝑐
𝑚 Internal resistance of FC [Ω]

𝑅𝑓𝑐
𝑐 Constant resistance to the transfer of pro-

tons through the membrane [Ω]
𝛼𝑓𝑐1,𝑐 − 𝛼𝑓𝑐2,𝑐 Cost function coefficient of the 𝑐th FC
𝑃 𝑝𝑒𝑣,𝑡𝑜𝑡
𝑏 Capacity of the 𝑏th PEV battery [kW]

𝜂𝑝𝑒𝑣+∕𝜂𝑝𝑒𝑣− Charging/Discharging efficiencies of PEVs
[%]

𝑆𝑂𝐶𝑝𝑒𝑣∕𝑆𝑂𝐶
𝑝𝑒𝑣

Minimum/Maximum SoC of the PEV battery
[%]

𝑆𝑂𝐶𝑝𝑒𝑣
𝑑𝑒𝑝 Desired SoC of PEVs during the departure

period [%]
𝛼𝑝𝑒𝑣+∕𝛼𝑝𝑒𝑣− Charging/Discharging costs of PEVs

[$/kWh]

Decision variables

𝑃 𝑓𝑙𝑜𝑤
𝑙+1,ℎ Active power flow from bus 𝑙th at hour h

[kW]
𝑄𝑓𝑙𝑜𝑤

𝑙+1,ℎ Reactive power flow from bus 𝑙th at hour h
[kW]

𝑉𝑙,ℎ Voltage magnitude at bus 𝑙th at hour h [V]
𝑃 𝑝𝑣
𝑒,ℎ Output power of PV 𝑒th at time h [kW]

PDF𝑤𝑡 Weibull PDF of wind speed
𝑃𝑤𝑡
𝑒,ℎ Power output of WT 𝑒th at hour h [kW]

𝑃𝑚𝑡
𝑔,ℎ Power generation of MT 𝑔th at time h [kW]

𝜎𝑚𝑡,𝑢𝑐𝑔,ℎ Commitment state of MT 𝑔th at time h [0,1]
𝐶𝑜𝑠𝑡𝑚𝑡 Operating cost of MT [$]
𝐶𝑜𝑠𝑡𝑓𝑐 Operating cost of FC [$]
𝑃 𝑓𝑐
𝑐,ℎ Power output of 𝑐th FC at hour h [kW]

𝑆𝑂𝐶𝑝𝑒𝑣
𝑏,ℎ SoC of the 𝑏th PEV’s battery at time h [%]

𝑃 𝑝𝑒𝑣+
𝑏,ℎ ∕𝑃 𝑝𝑒𝑣−

𝑏,ℎ Charging/Discharging power of 𝑏th PEV at
time h [kW]

𝐶𝑜𝑠𝑡𝑝𝑒𝑣𝑏,ℎ Operating cost of PEV 𝑏th at time h [%]

1.2. Literature review

Many researches have been carried out on energy management
in charging and discharging of PEVs. Authors in [12] presented a
charging strategy for PEVs in a microgrid, focusing on maximizing the
use of distributed energy resources (DERs) to minimize the network’s
reliance on the upstream electricity grid. Nevertheless, this study only
considered a single objective function of reducing the upstream energy
demand by high PEV penetration. Using a modelled off-grid charging
station for PEVs and hydrogen vehicles, [13] applied a mixed-integer
linear programming (MILP) to compute the ideal ratings for an islanded
photovoltaic (PV) and diesel generating station. The result showed
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a 15% savings in operating cost of the diesel generator. Similarly,
authors in [14] implemented a system with a PV, a battery, and a
diesel hybrid system, using a heuristic technique to determine the
ideal power system size for a PEV. Also, the total cost of the sys-
tem declined by 5.21%. However, the amount of reduction seems
insignificant when considering a large-scale deployment. Furthermore,
in order to understand the impacts of the charging/discharging of PEVs
on electricity consumption, the network reliance and stability, [15]
developed a framework to analyse the effects of different grid-to-vehicle
(G2V) and vehicle-to-grid (V2G) power levels on system stability. The
results showed an increase in power demand during the afternoon
period (i.e. when PEVs are charged) and a decline in demand during
the morning period (i.e. when PEV owners are at work and PEVs are
operating in V2G mode). However, the financial and safety implications
were not examined. Conversely, [16] explored the financial impacts
of slow and fast charging of PEVs while considering the drivers’ be-
haviours. This research aimed to reduce annual investment expenses,
lower power losses, and increase annual traffic flow. Regardless, a
multi-objective (MO) evolutionary algorithm was deployed. Authors in
[17] offered an orderly charging strategy for PEVs in a cloud–edge
collaborative environment using deep learning. This approach used
a central controller in the power grid at the cloud environment to
develop a power supply strategy for all the charging stations. Also,
the system predicted loads in residential areas, charging requirements,
and output of RESs on the edge computing servers. Compared to the
uncoordinated charging/discharging method, this procedure reduced
the peak load to an off-peak difference and the standard deviation to
around 30.13% and 16.94%, respectively. Using three case studies of
home microgrid, DN, and utility function in a home grid, [18] imple-
mented an MO techno-economic environmental optimization model in
charging/discharging of PEVs. This method reduced the energy costs,
the PEV’s battery deterioration, CO2 emissions, and power utilization
y 88.2%, 67%, 34% and 90%, respectively. However, a more concise
bjective of CO2 and operating cost reduction was presented in [19].
he authors used a more efficient technique to execute a power flow of
network with PVs, wind turbines (WTs), and PEVs. Also, the Monte
arlo simulation and the MO genetic algorithm were employed to
andle the uncertainties of RESs and PEVs. Nonetheless, this central
anagement technique has a high computational cost.

Authors in [20] developed a two-level energy management strat-
gy considering flexible demand, storage devices and PEVs. Also, a
tochastic-interval model is presented to handle the uncertainties of
oads, RES, PEVs’ behaviour, and energy pricing. A single-objective
tochastic optimization framework is proposed in [21] for the opti-
al scheduling of a microgrid with RESs and PEVs to minimize the

otal operating cost using modified harmony search algorithm. The
ncertainties of the RESs and the behaviour of the PEV owners in
harging/discharging periods is taken into account. Furthermore, a
echno-economic multi-level optimization strategy and a time varying
rice model is proposed in [22] to minimize the energy cost of a
ome microgrid and analyse the impact it has on voltage stability and
eliability of the network. The proposed strategy develops an algorithm
or smart charging/discharging of battery ESSs and PEVs to enhance
nergy efficiency. In [23], a multi-objective techno-economic schedul-
ng of a smart distribution system is presented taking into account the
iverse resources such as RESs, MT, and battery ESS. Besides, provision
f both real and reactive power from battery ESS is considered in the
cheduling of distribution system. Authors in [24] assessed the optimal
llocation of integrated resources planning for sustainable energy-based
ybrid microgrids considering PV, WT, and bio-energy resources. Be-
ides, combined storage-based virtual-inertia support and PEV charging
tation-based demand-response support units for supply the required
ower and provide demand-side management, respectively. An optimal
nergy management strategy is proposed in [25] for a combined hy-
rogen, heat, and power microgrid with hydrogen fuelling stations for
3

ydrogen vehicles (HVs), PEV parking lots and FC micro-CHP units to
meet power and heat requirements. In order to enhance flexibility and
investigate a low carbon microgrid, heat and power demand response
programs are taken into consideration under the uncertainties of RESs
in a MO information gap decision theory (IGDT) framework. However,
the environmental factors is not considered as the objective function
in [20–25]. An environmentally sustainable framework for optimal
charging/discharging of PEVs in a smart microgrid was presented by
[26]. It aimed to minimize the system’s operating costs and reduce
CO2 emissions for different types of PEVs. Also, drivers’ behaviours,
driving patterns, and V2G functionality were investigated. The authors
used a MO scheduling scheme in the charging/discharging of PEVs
with an augmented e-constraint algorithm in reducing overall operating
costs and CO2 emissions. Authors in [27] allocated PEVs’ charging
tations and smart PV inverters simultaneously in DNs to optimize
hree objective functions, including power loss, voltage deviation, and
oltage unbalance factor in a MO framework using a hybrid fuzzy
areto dominance concept. Also, the scenario-based analysis is applied
o model the uncertainties of the loads, PVs’ power output, and the
emand of PEV charging stations. Authors in [28] provided a multi-
bjective household-scale hybrid renewable energy system considering
echnical modelling of typical components such as PV, WT, battery.
esides, power can be supplied via the grid in grid-connected mode
r can be generated by a MT in off-grid scenarios. However, the
ntegration of fuel cells (FCs) and low-cost micro-turbines (MTs) are
ot considered in [26–28].

.3. Contribution

Based on the literature reviewed, there is no work that concurrently
ntegrates PV, WT, MT, and FC technologies with the DN aimed at mini-
izing the operating cost and CO2 emissions in a stochastic framework.
able 1 gives a summary of this research and the reviewed literature.
ccordingly, this paper aims to apply a MO stochastic optimization
ethod under the uncertainties of renewable units, load consumption,

nd charging/discharging timing of PEVs. In particular, the Latin Hy-
ercube Sampling (LHS) strategy is employed to control the mentioned
ncertainties. It also focuses on incorporating DERs considering techno-
conomical and environmental factors to lower operating costs and CO2

emissions simultaneously. The MO heuristic-based Firefly Algorithm
(FA) is comprehensively applied in evaluating the energy management
of PEVs with G2V and V2G technologies to minimize operating costs
and CO2 emissions in the DNs. The major research contributions (RCs)
of this paper are summarized as follows to highlight the novelties:

RC1: Proposing a stochastic optimization framework applying MO
heuristic-based FA to minimize the operating costs, lower CO2
emissions, and improve the voltage profile of DNs as the result,
simultaneously.

RC2: Investigating diverse environmental-friendly DERs including PV,
WT, FC, MT to minimize PEVs charging reliance on the main
grid and improve the voltage profile under the uncertainties of
RESs, load demand, and arrival/departure period of PEVs.

RC3: Proposing a suitable charging method for PEVs considering driv-
ing patterns in an intelligent system to examine the role of the
number of PEVs and their parking time in charging points (CPs)
of PEVs.

1.4. Paper organization

The rest of the paper is laid out as follows. In Section 2, the model
of Uncertainty and the proposed Mo FA are presented. In Section 3,
the problem formulations is presented. Furthermore, the corresponding
results of simulation are presented in Section 4. Finally, the paper is

concluded with some points in Section 5.
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Table 1
A comparative summary of this study and previous works.

Ref Objective function Heuristic approach DER technology

[12] ∙ Minimize energy exchanged Probabilistic power flow algorithm and fmincon solver PV/WT/Battery ESS/MT/PEV
∙ Maximize RES integration

[13] ∙ Operating cost minimization – PV/PEV

[14] ∙ Operating cost minimization – PV/Battery ESS/Diesel/PEV

[15] ∙ System reliability Heuristic algorithm Grid/PEV
∙ System stability

[16] ∙ Minimize investment and operating costs – Grid/PEV
∙ Maximize traffic flow

[17] ∙ Operating cost minimization – PV/WT/Grid/PEV

[18] ∙ Energy cost minimization – PV/Battery ESS/PEV
∙ CO2 minimization
∙ Battery degradation minimization
∙ Grid net exchange minimization

[19] ∙ Minimize operating cost Convolutional neural network and deep belief network PV/WT/PEV
∙ Power losses

[20] ∙ Energy exchanging among prosumers – PV/Grid/Battery ESS/PEV
∙ Collective assets

[21] ∙ Minimize operating cost Modified harmony search algorithm PV/WT/MT/FC/Battery ESS/PEV

[22] ∙ Minimize operating cost – PV/WT/CHP/Battery ESS/PEV

[23] ∙ Minimizing operation cost – PV/WT/Battery ESS/Diesel
∙ Minimizing energy loss

[24] ∙ Minimize planning cost – PV/WT/Bio-Energy/MT/PEV

[25] ∙ Uncertainties of WTs and PVs MO IGDT-Based robust approach Grid/PV/WT/CHP/FC/HV/PEV

[26] ∙ Minimize procurement cost Grey Wolf algorithm and weighed sum PV/WT/CHP/PEV
∙ CO2 emission

[27] ∙ Power loss Hybrid fuzzy Pareto dominance PV/PEV
∙ Voltage deviation
∙ Voltage unbalance factor

[28] ∙ Minimizing net present cost Genetic algorithm PV/WT/Battery ESS/MT
∙ Minimizing total product environmental footprint

This Study ∙ Minimize operating costs MO stochastic heuristic-based FA PV/WT/FC/MT/PEV
∙ CO2 emissions
2. Model description

The proposed system under study has renewable (non-dispatchable)
resources including WT and PV, MT as a dispatchable resource, station-
ary and mobile ESSs including FC and PEVs in the radial distribution
network. The mathematical formulation for implementing the proposed
optimization framework is presented in the following sections.

2.1. Assumptions

The optimization problem is performed in this paper based on the
following assumptions to improve the computation of the scheduling
process:

1. To better investigate the practical calculations in real-world, the
radial DN constraints are thoroughly proposed in this work so
that the distribution power flow and its corresponding data of
the impedance of the lines can properly calculate the power loss
of the system.

2. Since the majority of the PEVs in the system are cars, the
charging capacity of the PEV batteries of the big vehicles such
as buses and trucks are not taken into account in this study.
However, it can be noted that the generality of the model will
not be lost by taking into consideration the big vehicles.

3. Due to the variable nature of renewable resources’ output, load
consumption, and commuting hours (charging and discharging
hours of PEVs), it is assumed that the corresponding data in
fluctuated between ± 10% of the determined values to better
4

investigate the uncertainty of the parameters.
2.2. Model of uncertainty

In this paper, multiple scenarios of renewable generation, load
consumption, and arrival/departure timing of PEVs are generated pre-
senting the LHS strategy to determine the forecasting errors in a 24-h
scheduling interval. The LHS strategy can be developed to the bi-stage
method including the sampling stage and combination stage. In this
study, 1000 samples were generated to consider the probabilistic char-
acteristic of the uncertain parameters in the sampling stage. Therefore,
the Cumulative Distribution Function (CDF) of the uncertain parame-
ters is divided into 1000 segments with an equivalent probability of
1/1000 and converted to the Probability Distribution Function (PDF)
to uniformly investigate the uncertain parameters. Accordingly, the
following method can be proposed for each generated scenario-based
variable, as demonstrated in Fig. 1 [29].

For k = 1 to 1000:

Step 1: An amount of probability is randomly appointed from each
segment. The illustrative probability of the CDF at segment 𝑘th
can be calculated based on Eq. (1).

𝑝𝑟𝑜𝑏𝑘 = 1
1000

(

𝑟𝑛𝑑𝑢 + 𝑘 − 1
)

(1)

where, rnd𝑢 ∈ (0, 1) represents a regularly distributed random
weight.

Step 2: Eq. (2) indicates that the illustrative amount of probability
is constantly adjusted into 𝜌𝑘 using the reversed distribution
function 𝐹−1:

𝜌 = 𝐹−1 (𝑝𝑟𝑜𝑏
)

(2)
𝑘 𝑘
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Fig. 1. Uncertainty modelling using Latin Hypercube sampling.
Fig. 2. Radial model of DN.

End For
Furthermore, to ensure the minimum correlation coefficients within

the decision-making variables, the Cholesky factorization method is
applied to merge the sampled amounts of the uncertain parameters.
Also, a backward scenario reduction method is applied in the stochastic
approach to decrease the number of generated scenarios and improve
the calculation speed [30].

2.3. Firefly algorithm for optimization problem

FA was invented in 2010 to solve optimization problems supporting
metaheuristic algorithms and is based on the flashing behaviour of
fireflies. In addition, the firefly moves due to the light’s intensity, and
this behaviour is deployed in solving a global optimization issue [31].
As a result of its automatic subdivision and ability to deal with multi-
modality, the FA outperforms other metaheuristic algorithms. Three
basic rules are adopted for this algorithm as follows [32].

1. Although fireflies are unisex, they are constantly drawn to other
fireflies regardless of sex.

2. If one firefly is brighter than the other, the flashing firefly is
attracted to the brighter one. However, when both fireflies are
of the same brightness, one will move chaotically. Also, the level
of attractiveness varies with the amount of light.

3. The objective function determines the firefly’s brightness.

The variation of attractiveness 𝛽 with the distance 𝑟 is expressed by
Eq. (3).

𝛽 = 𝛽0𝑒
−𝛾𝑟2 (3)

where the attractiveness at 𝑟 = 0 is determined by 𝛽0. The movement
of firefly 𝑖 to another brighter one 𝑗 is described by Eq. (4).

𝑥𝑡+1𝑖 = 𝑥𝑡𝑖 + 𝛽0𝑒
−𝛾𝑟2𝑖,𝑗 (𝑥𝑡𝑗 − 𝑥𝑡𝑖) + 𝛼𝑡𝜖

𝑡
𝑖 (4)

where 𝑥𝑖 is the position of a firefly in the iteration 𝑡, 𝛽0𝑒
−𝛾𝑟2𝑖,𝑗 (𝑥𝑡𝑗 −

𝑥𝑡𝑖) represents the attraction between firefly 𝑖 and firefly 𝑗, 𝜖𝑡𝑖 is a
vector of random numbers with a randomization parameter defined
by 𝛼𝑡. This parameter is the initial randomness scaling factor and can
be described as a randomly generated vector of either a uniform or
Gaussian distribution. However, the firefly location could be adjusted
5

sequentially by comparing and updating each pair in every iteration
cycle.

The MO optimization could involve incorporating multiple objec-
tives into a single objective, allowing the application of only one
objective optimization algorithm with slight modification [33]. Ac-
cordingly, the FA is one of the suitable strategies that can be directly
employed to handle MO problems as investigated by [34]. By extending
the notions of the FA, the MO heuristic-based FA is developed, and
its pseudo-code is presented in Algorithm 1. Another way to apply
the FA in the optimization problem is to generate Pareto optimum
fronts directly by expanding the FA approach. However, the objective
functions and nonlinear constraints should be appropriately specified
to achieve this. It begins by creating a population containing 𝑛 fireflies
scattered uniformly over the search space. This is accomplished by
using uniformly distributed sampling methods. When the tolerance or
a specified number of iterations is described, the iterations assess the
fireflies’ brightness and objective attributes, and evaluates each group
of fireflies. Then, a randomized weight vector is created (with the
total corresponding to 1) to create the combined best possible solution
𝑔𝑡⋆. The non-dominated solutions move to the following iteration. In
theory, 𝑛 non-dominated results locations could be found after sev-
eral repetitions to approach the genuine Pareto optimum front. We
could use the weighted sum to discover the best and most reliable 𝑔𝑡⋆
that minimizes a consolidated objective to execute randomized walks
more effectively. The formulation of the uniformly distributed sampling
method is presented in Eqs. (5)–(7).

𝜙(𝑥) =
𝑁
∑

𝑛=1
𝑤𝑛𝑓𝑛 (5)

𝑁
∑

𝑛=1
𝑤𝑛 = 1 (6)

𝑤𝑛 =
𝛱𝑛
𝑛

(7)

where 𝛱𝑛 are the numbers picked at random from a uniformly dis-
tributed sampling method. To be certain that ∑

𝛱𝑛 = 1 after creating
𝑁 evenly distributed values, a re-scaling procedure is conducted. Also,
it is important to note that 𝑤𝑛 must be selected at random through
every iteration, as a result of which the non-dominated option can
analyse in a variety of ways with Pareto front. A firefly travels if it
is not influenced by other fireflies in the context of the Pareto front.
Accordingly, Eq. (4) can be rewritten as Eq. (8).

𝑥𝑡+1𝑖 = 𝑔𝑡⋆ + 𝛼𝑡𝜖
𝑡
𝑖 (8)

where 𝑔𝑡⋆ represents the ultimate option for a given collection of
random weights that has been found thus far. Moreover, because of
the iterations progress, the randomness could be decreased similarly
to how metaheuristics and other random reduction approaches work.
Furthermore, the initial randomness scaling factor, 𝛼𝑡, is defined based
on the Eq. (9).

𝛼𝑡 = 𝛼0𝛿
𝑡 (9)

where 𝛼0 represents the randomization factor at the initial stage. Be-
sides, 𝛿 has a value between 0 and 1 and is set to be 0.9 in this
paper.
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Fig. 3. Weibull’s PDF and CDF for wind speed.
Algorithm 1 The Pseudo-code of MO heuristic-based FA.
1: Define objective functions 𝑓1(𝑋),⋯ , 𝑓𝑛(𝑥) where 𝑥 = (𝑥1,⋯ , 𝑥𝑑 )𝜏 ;
2: Initialize a population of 𝑛 fireflies 𝑥𝑖(𝑖 = 1, 2, 3, 𝑛);
3: while 𝑡> Max generation do
4: for 𝑖,𝑗 = 1:𝑛 (all 𝑛 fireflies) do
5: Evaluate the approximations to the Pareto fronts 𝑗 and 𝑖 for

𝑖 ≠ 𝑗.
6: if Pareto front 𝑗 dominates Pareto front 𝑖 then
7: Move firefly 𝑖 towards 𝑗 using 𝑥𝑡+1𝑖 = 𝑥𝑡𝑖 + 𝛽0 exp

−𝛾𝑟2𝑖,𝑗 (𝑥𝑡𝑗 −
𝑥𝑡𝑖) + 𝛼𝑡𝜖𝑡𝑖

8: Generate new ones if the moves do not satisfy all the
constraints

9: end if
10: if no non-dominated solutions can be found then
11: Generate random weights 𝑤𝑛(1,⋯ , 𝑛)
12: Find the best solution 𝑔𝑡⋆ to minimize 𝜙 in 𝜙(𝑥) =

∑𝑁
𝑛=1 𝑤𝑛𝑓𝑛

13: Random walk around 𝑔𝑡⋆ using 𝑥𝑡+1𝑖 = 𝑔𝑡⋆ + 𝛼𝑡𝜖𝑡𝑖
14: end if
15: Update and pass the non-dominated solutions to next

iterations
16: end for
17: Sort and find the current best approximation to the Pareto front
18: Update 𝑡 ⟵ 𝑡 + 1
19: end while

3. Problem formulations

The formulation of the proposed FA optimization problem is de-
scribed in the following sections.

3.1. Distribution power flow

Fig. 2 illustrates a radial model of DN. The distribution power
flow equations associated with bus 𝑙th of the DN are demonstrated
in Eqs. (10)–(13) [35]. In this model, the impedance of the lines are
represented as 𝑟𝑙 + 𝑗𝑥𝑙.

𝑃 𝑓𝑙𝑜𝑤
𝑙+1,ℎ = 𝑃 𝑓𝑙𝑜𝑤

𝑙,ℎ − 𝑟𝑙

(

𝑃 𝑓𝑙𝑜𝑤
𝑙,ℎ

)2
+
(

𝑄𝑓𝑙𝑜𝑤
𝑙,ℎ

)2

(

𝑉𝑙,ℎ
)2

− 𝑃 𝑙𝑜𝑎𝑑
𝑙+1,ℎ (10)

𝑄𝑓𝑙𝑜𝑤
𝑙+1,ℎ = 𝑄𝑓𝑙𝑜𝑤

𝑙,ℎ − 𝑥𝑙

(

𝑃 𝑓𝑙𝑜𝑤
𝑙,ℎ

)2
+
(

𝑄𝑓𝑙𝑜𝑤
𝑙,ℎ

)2

( )2
−𝑄𝑙𝑜𝑎𝑑

𝑙+1,ℎ (11)
6

𝑉𝑙,ℎ
(

𝑉𝑙+1,ℎ
)2 =

(

𝑉𝑙,ℎ
)2 − 2

(

𝑟𝑙 .𝑃
𝑓𝑙𝑜𝑤
𝑙,ℎ + 𝑥𝑙 .𝑄

𝑓𝑙𝑜𝑤
𝑙,ℎ

)

+

[

(

𝑟𝑙
)2 +

(

𝑥𝑙
)2
]

(

𝑃 𝑓𝑙𝑜𝑤
𝑙,ℎ

)2
+
(

𝑄𝑓𝑙𝑜𝑤
𝑙,ℎ

)2

(

𝑉𝑙,ℎ
)2

(12)

1 − 𝜀 ≤ 𝑉𝑙,ℎ ≤ 1 + 𝜀 (13)

3.2. Modelling of PV cell

The generated power from PV arrays is fed into an inverter, con-
verting it from direct current to alternating current at an appropriate
voltage level before being connected to the power grid. PV cells harness
solar energy, which is a renewable energy source. Hence, they are eco-
friendly, require minimal maintenance and have a high potential to
lower electricity bills. However, the power generated by PV cells varies
greatly, with solar angle and intensity being the two most influencing
factors. The PV’s output power is computed using Eq. (14) [36]. Also,
the uncertainties in PV generation are modelled using the PDF.

𝑃 𝑝𝑣
𝑒,ℎ = 𝑃 𝑝𝑣

𝑠𝑡𝑐 .𝐺
𝑝𝑣∕𝐺𝑝𝑣

𝑠𝑡𝑐 .
[

1 + 𝜆𝑝𝑣𝑚𝑝𝑡(𝑇
𝑝𝑣
𝑐 − 𝑇 𝑝𝑣

𝑟𝑒𝑓 )
]

(14)

The 𝑇 𝑝𝑣
𝑐 is obtained from Eq. (15).

𝑇 𝑝𝑣
𝑐 = 𝑇 𝑝𝑣

𝑎 +
(𝑁𝑝𝑣

𝑜𝑡 − 20)
0.8

.𝐺𝑝𝑣 (15)

3.3. Modelling of WT

WT blades capture kinetic energy when they spin. The kinetic
energy is converted to mechanical energy, which drives a generator
to produce electricity. The electricity from a WT is renewable, cost-
effective and environmentally friendly. However, the power from a WT
is intermittent and highly reliant on wind speed and the mechanical
characteristics. Therefore, the uncertainties in wind speed are simulated
using the Weibull PDF. Fig. 3 illustrates the proposed wind speed’s CDF
and Weibull PDF. Eqs. (16)–(18) show the formulation of the PDF for
WTs [37].

PDF𝑤𝑡(𝑣) = 𝜆𝑤𝑡

𝑐𝑤𝑡

[
𝑣𝑤𝑡 − 𝑣𝑤𝑡

0
𝑐𝑤𝑡

]𝜆𝑤𝑡−1. exp(−
[
𝑣𝑤𝑡 − 𝑣𝑤𝑡

0
𝑐𝑤𝑡

]𝜆𝑤𝑡
) (16)

𝜆𝑤𝑡 =
(𝜎𝑤𝑡

𝑣
𝜇𝑤𝑡
𝑣

)−1.086 (17)

𝑐𝑤𝑡 =
𝜇𝑤𝑡
𝑣

𝑇𝑤𝑡(1 + 1∕𝜆𝑤𝑡)
(18)

The power output of WT, 𝑃𝑤𝑡
𝑡 , is a function of the wind speed which is

formulated by Eq. (19) [38].

𝑃𝑤𝑡
𝑒,ℎ =

⎧

⎪

⎨

⎪

0 0 < 𝑣𝑤𝑡 < 𝑣𝑤𝑡
𝑐𝑖

𝑃𝑤𝑡
𝑟𝑎𝑡𝑒𝑑 .

(

𝛼𝑤𝑡
1 + 𝛼𝑤𝑡

2 𝑣 + 𝛼𝑤𝑡
3 𝑣2

)

𝑣𝑤𝑡
𝑐𝑖 < 𝑣𝑤𝑡 < 𝑣𝑤𝑡

𝑟
𝑤𝑡 𝑤𝑡 𝑤𝑡 𝑤𝑡

(19)
⎩

𝑃𝑟𝑎𝑡𝑒𝑑 𝑣𝑟 < 𝑣 < 𝑣𝑐𝑜
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Fig. 4. The modified IEEE Bus 69 radial network.
Fig. 5. Hourly electricity price and emission rate.

Fig. 6. Hourly forecasted load profile.

The generation coefficients of WT are obtained by Eqs. (20)–(22).

𝛼𝑤𝑡
1 =

𝑣𝑤𝑡
𝑐𝑖

(𝑣𝑤𝑡
𝑐𝑖 − 𝑣𝑤𝑡

𝑟 )2
[

𝑣𝑤𝑡
𝑐𝑖 + 𝑣𝑤𝑡

𝑟
]

− 4
[

𝑣𝑤𝑡
𝑐𝑖 𝑣

𝑤𝑡
𝑟
]

(
𝑣𝑤𝑡
𝑐𝑖 − 𝑣𝑤𝑡

𝑟
2𝑣𝑤𝑡

𝑟
)3 (20)

𝛼𝑤𝑡
2 = 1

(𝑣𝑤𝑡
𝑐𝑖 − 𝑣𝑤𝑡

𝑟 )2
[

4(𝑣𝑤𝑡
𝑐𝑖 + 𝑣𝑤𝑡

𝑟 )(
𝑣𝑤𝑡
𝑐𝑖 + 𝑣𝑤𝑡

𝑟
2𝑣𝑤𝑡

𝑟
)3
]

− (3𝑣𝑤𝑡
𝑐𝑖 + 𝑣𝑟) (21)

𝛼𝑤𝑡
3 = 1

(𝑣𝑤𝑡
𝑐𝑖 − 𝑣𝑤𝑡

𝑟 )2
[

2 − 4(
4𝑣𝑤𝑡

𝑐𝑖 + 𝑣𝑟
2𝑣𝑤𝑡

𝑟
)3
]

(22)
7

Fig. 7. The operating costs and CO2 emissions per hour in the base system.

3.4. Modelling of MT

MT is one of the beneficial DER in an DN. MTs are dispatchable
and have low investment costs, high reliability, and longer run-time.
Eqs. (23)–(25) guarantee that the output of each MT be within its
allowed generation limits. The commitment states, up/down ramp-rate
boundaries, and start-up/shut-down states are considered in the MT
generation constraints [39].

𝑃𝑚𝑡,𝑚𝑖𝑛
𝑔 .𝜎𝑚𝑡,𝑢𝑐𝑔,ℎ ≤ 𝑃𝑚𝑡

𝑔,ℎ ≤ 𝑃𝑚𝑡,𝑚𝑎𝑥
𝑔 .𝜎𝑚𝑡,𝑢𝑐𝑔,ℎ (23)

𝑃𝑚𝑡
𝑔,ℎ−1 − 𝑃𝑚𝑡

𝑔,ℎ = 𝑃𝑚𝑡,𝑟𝑢
𝑔 (24)

𝑃𝑚𝑡
𝑔,ℎ − 𝑃𝑚𝑡

𝑔,ℎ−1 = 𝑃𝑚𝑡,𝑟𝑑
𝑔 (25)

The generation cost of MT can be expressed by a polynomial quadratic
formulation as shown in Eq. (26).

𝐶𝑜𝑠𝑡𝑚𝑡𝑔,ℎ = 𝛼𝑚𝑡1,𝑔 + 𝛼𝑚𝑡2,𝑔𝑃
𝑚𝑡
𝑔,ℎ + 𝛼𝑚𝑡3,𝑔(𝑃

𝑚𝑡
𝑔,ℎ)

2 (26)

3.5. Modelling of FC

FCs are electrochemical energy conversion systems that use hy-
drogen or other fuels to generate electricity and produce water as a
by-product. FCs can deliver high-efficiency electrical power with low
operational noise and hardly any environmental pollutants. Also, FCs
come in diverse forms, each with its chemical properties. Therefore,
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b

𝑉

Table 2
MT generation cost parameters and rate of CO2 emission.

𝛼𝑚𝑡
1 ($) 𝛼𝑚𝑡

2 ($∕kWh) 𝛼𝑚𝑡
3 ($∕kWh2) 𝜃CO2 ,𝑚𝑡

ℎ (kg/kWh) 𝑃 𝑚𝑡,𝑚𝑖𝑛 (kW) 𝑃 𝑚𝑡,𝑚𝑎𝑥 (kW)

10 0.0133 0.002 0.890 50 1000
Table 3
FC generation cost parameters and rate of CO2 emission.

𝛼𝑓𝑐
1 ($) 𝛼𝑓𝑐

2 ($∕kWh) 𝛼𝑓𝑐
3 ($/kWh2) 𝜃CO2 ,𝑓𝑐

ℎ (kg/kWh) 𝑃 𝑓𝑐,𝑚𝑖𝑛 (kW) 𝑃 𝑓𝑐,𝑚𝑎𝑥 (kW)

45 0.375 – 0.477 100 1000
Table 4
Parking time and location of PEV’s CPs.
CPs Number of PEVs Parking time of PEVs

Home Workplace

#1 200 1 AM–6 AM & 5 PM–12 AM 8 AM–3 PM
#2 200 1 AM–6 AM & 5 PM–7 PM 8 AM–3 PM
#3 100 1 AM–5 AM & 5 PM–12 AM –
#4 200 1 AM–5 AM & 5 PM–7 PM –
#5 150 1 AM–9 AM & 1 PM–6 PM & 10 PM–12 AM –
#6 100 1 AM–6 AM –
#7 50 1 AM–6 AM 8 AM–3 PM
Table 5
Characteristics of PEV battery.
Charging time Discharging time P𝑝𝑒𝑣,𝑡𝑜𝑡 Max Mileage Charging rate Discharging rate

1 AM to 6 AM 6 PM to 12 AM 24 kWh 170 km 6 kW 6 kW
T

𝑉

A
c

𝑆

E
c

0

0

t

𝑆

T
E

𝐶

this paper employs the polymer electrolyte membrane type of FC in
the system design. This type of FC consists of a current collector that
includes a gas channel, a catalyst layer plus a gas diffusion layer on
the cathode and anode area, and an ion conductive polymer membrane.
FCs’ merits include more prolonged running conditions, rapid refuelling
compared with the time required for battery recharging, rapid start-
up, protracted lifespan, good durability, efficiency, reduced wear and
tear, high power density. The FC model consists of three interconnected
subsystems: anode and cathode flow, stack voltage, and membrane
hydration [40]. The current–voltage relationship is generally provided
in the polarization curve model, which is the plot of FC voltage, 𝑉 𝑓𝑐

versus current density, 𝐼𝑓𝑐 . The 𝐼𝑓𝑐 is determined as stack current per
unit of cell active area, 𝐼𝑓𝑐 = 𝐼𝑓𝑐𝑠𝑡 ∕𝐴

𝑓𝑐 , given that FCs are serially
connected in the stack form. The total stack voltage can be defined by
multiplying the FC voltage, 𝑉 𝑓𝑐 , by the number of established cells, 𝑛
of the stack, as 𝑉 𝑓𝑐

𝑠𝑡 = 𝑛𝑉 𝑓𝑐 . Thus, the stack power of FCs is defined as
Eq. (27) [41].

𝑃 𝑓𝑐
𝑠𝑡 = 𝑉 𝑓𝑐

𝑠𝑡 .𝐼𝑓𝑐𝑠𝑡 = (𝑛𝑉 𝑓𝑐 )(𝐴𝑓𝑐𝐼𝑓𝑐 ) (27)

The FC voltage is determined by subtracting the FC losses or over-
voltages from the FC open circuit voltage, 𝐸𝑓𝑐 , and is calculated based
on Eqs. (28)–(32).

𝑉 𝑓𝑐 = 𝐸𝑓𝑐 − 𝑉 𝑓𝑐
𝑎𝑐𝑡 − 𝑉 𝑓𝑐

𝛺 − 𝑉 𝑓𝑐
𝑐𝑜𝑛𝑐 (28)

where

𝐸𝑓𝑐 = 1
2𝐹

(

𝛥𝐺 + 𝛥𝑆(𝑇 𝑓𝑐 − 𝑇 𝑓𝑐
𝑟 ) + 𝑅𝑇 𝑓𝑐[ln(𝑃H2

) + 1
2

ln(𝑃O2
)
])

(29)

The activation over-potential, 𝑉 𝑓𝑐
𝑎𝑐𝑡 containing anode and cathode can

e defined as Eq. (30).

𝑓𝑐
𝑎𝑐𝑡 = −

[

𝜆𝑓𝑐1 +𝜆𝑓𝑐2 .𝑇 𝑓𝑐+𝜆𝑓𝑐3 .𝑇 𝑓𝑐 .ln(
𝑃O2

(5.1).106𝑒
−498
𝑇𝑓𝑐

)+𝜆𝑓𝑐4 .𝑇 𝑓𝑐 .ln(𝐼𝑓𝑐 )
]

(30)

The voltage drop caused by the mass transport, 𝑉 𝑓𝑐
𝑐𝑜𝑛𝑐 can be defined as

Eq. (31).

𝑉 𝑓𝑐
𝑐𝑜𝑛𝑐 = −𝜆𝑓𝑐 .ln

(

1 −
(𝐼𝑓𝑐∕𝐴𝑓𝑐 ) )

(31)
8

5 (𝐼𝑓𝑐∕𝐴𝑓𝑐 )𝑚𝑎𝑥
he ohmic voltage drop, 𝑉𝛺 is also defined in Eq. (32).

𝛺 = 𝐼𝑓𝑐
(

𝑅𝑓𝑐
𝑚 + 𝑅𝑓𝑐

𝑐
)

(32)

Furthermore, the operation cost of FC can be defined by Eq. (33).

𝐶𝑜𝑠𝑡𝑓𝑐𝑐,ℎ = 𝛼𝑓𝑐1,𝑐 + 𝛼𝑓𝑐2,𝑐𝑃
𝑓𝑐
𝑐,ℎ (33)

3.6. Modelling of G2V and V2G for PEVs

Many factors affect PEV operation, including PEV battery power,
arrival and departure periods, and the initial state of charge (SoC). The
model of PEV is defined by Eqs. (34)–(38) [42]. Eq. (34) indicates the
energy balance of PEV batteries.

𝑆𝑂𝐶𝑝𝑒𝑣
𝑏,ℎ = 𝑆𝑂𝐶𝑝𝑒𝑣

𝑏,ℎ−1 +
(

𝑃 𝑝𝑒𝑣+
𝑏,ℎ .𝜂𝑝𝑒𝑣− − 𝑃 𝑝𝑒𝑣−

𝑏,ℎ
/

𝜂𝑝𝑒𝑣−
)

/

𝑃 𝑝𝑒𝑣,𝑡𝑜𝑡
𝑏 (34)

t any given time, the SoC of PEV batteries must be in its allowed
apacity as indicated in Eq. (35).

𝑂𝐶𝑝𝑒𝑣 ≤ SOC𝑝𝑒𝑣
𝑏,ℎ ≤ 𝑆𝑂𝐶

𝑝𝑒𝑣
(35)

qs. (36) and (37) indicate the upper/lower limits of
harging/discharging of PEV battery.

≤ 𝑃 𝑝𝑒𝑣+
𝑏,ℎ ≤ 𝑃 𝑝𝑒𝑣,𝑡𝑜𝑡

𝑏 .
(

1 − 𝑆𝑂𝐶𝑝𝑒𝑣
𝑏,ℎ−1

)

/

𝜂𝑝𝑒𝑣+ (36)

≤ 𝑃 𝑝𝑒𝑣−
𝑏,ℎ ≤ 𝑃 𝑝𝑒𝑣,𝑡𝑜𝑡

𝑏 .𝑆𝑂𝐶𝑝𝑒𝑣
𝑏,ℎ−1.𝜂

𝑝𝑒𝑣− (37)

Furthermore, each PEV should be charged to its desired SoC during
he departure period as shown in Eq. (38).

𝑂𝐶𝑝𝑒𝑣
𝑏,ℎ𝑑𝑒𝑝

= 𝑆𝑂𝐶𝑝𝑒𝑣
𝑑𝑒𝑝 (38)

he cost of charging/discharging the PEVs can be calculated by
q. (39).

𝑜𝑠𝑡𝑝𝑒𝑣𝑏,ℎ = (𝛼𝑝𝑒𝑣+𝑃 𝑝𝑒𝑣+
𝑏,ℎ ) + (𝛼𝑝𝑒𝑣−𝑃 𝑝𝑒𝑣−

𝑏,ℎ ) (39)
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Fig. 8. Load and CO2 profile of Electric Vehicles in G2V and V2G mode.
3.7. Power balance constraint

The power balance constraint at time ℎ is represented by Eq. (40).
∑

𝑔
𝑃𝑚𝑡
𝑔,ℎ +

∑

𝑐
𝑃 𝑓𝑐
𝑐,ℎ +

∑

𝑒
(𝑃 𝑝𝑣

𝑒,ℎ + 𝑃𝑤𝑡
𝑒,ℎ) +

∑

𝑏
(𝑃 𝑝𝑒𝑣−

𝑏,ℎ − 𝑃 𝑝𝑒𝑣+
𝑏,ℎ ) + 𝑃 𝑔𝑟

ℎ

=
∑

𝑙
𝑃 𝑙𝑜𝑎𝑑
𝑙,ℎ + 𝑃 𝑙𝑜𝑠𝑠

ℎ

(40)

where 𝑃 𝑔𝑟
ℎ is the power purchased from the main grid and 𝑃 𝑙𝑜𝑠𝑠

ℎ is the
power loss at time ℎ, which is calculated based on the proposed power
flow equations.

3.8. Proposed objective functions

The proposed strategy focuses on minimizing a MO function in-
cluding the total operating costs, 𝐶𝑜𝑠𝑡𝑑𝑛, and CO2 emissions, 𝐸𝑚𝑑𝑛, as
expressed in Eq. (41).

𝐹𝑀𝑂 = Min {𝐶𝑜𝑠𝑡𝑑𝑛, 𝐸𝑚𝑑𝑛} (41)

The total operating cost can be calculated as given in Eq. (42) [43].

𝐶𝑜𝑠𝑡𝑑𝑛 =
∑

𝑠
𝜌𝑠

∑

ℎ

[
∑

𝑔
𝐶𝑜𝑠𝑡𝑚𝑡𝑔,ℎ,𝑠 +

∑

𝑐
𝐶𝑜𝑠𝑡𝑓𝑐𝑐,ℎ,𝑠+

∑

𝑏
𝐶𝑜𝑠𝑡𝑝𝑒𝑣𝑏,ℎ,𝑠 +

∑

𝑒
𝐶𝑜𝑠𝑡𝑟𝑒𝑠𝑒,ℎ,𝑠 + 𝐶𝑜𝑠𝑡𝑔𝑟ℎ,𝑠

]

(42)

where 𝜌𝑠 is the probability of scenario 𝑠th. 𝐶𝑜𝑠𝑡𝑟𝑒𝑠𝑒,ℎ represents the
generation cost of RESs including WTs and PV cells at time ℎ and 𝐶𝑜𝑠𝑡𝑔𝑟
9

ℎ

represents the cost of purchasing power from the main grid at time ℎ.
The generation cost of RESs is calculated by Eq. (43).

𝐶𝑜𝑠𝑡𝑟𝑒𝑠𝑒,ℎ =
∑

𝑒
𝛼𝑟𝑒𝑠ℎ (𝑃 𝑝𝑣

𝑒,ℎ + 𝑃𝑤𝑡
𝑒,ℎ) (43)

where 𝛼𝑟𝑒𝑠ℎ is the cost coefficient of generating RESs at time ℎ. Eq. (44)
shows the cost of energy purchased from the main grid when there is
a power deficiency.

𝐶𝑜𝑠𝑡𝑔𝑟ℎ = 𝛼𝑔𝑟ℎ 𝑃 𝑔𝑟
ℎ (44)

where 𝛼𝑔𝑟ℎ is the coefficient cost of energy purchased from the main grid
at time ℎ. Furthermore, there are two parts in CO2 emission reduction.
The emissions of MT, FC, and the energy absorbed from the main
DN are reduced. The CO2 minimization function is shown in Eq. (45)
[26,43].

𝐸𝑚𝑑𝑛 =
∑

𝑠
𝜌𝑠

∑

ℎ

[

𝐸𝑚𝑑𝑔
ℎ,𝑠 + 𝐸𝑚𝑔𝑟

ℎ,𝑠
]

(45)

𝐸𝑚𝑑𝑔
ℎ = 𝜃CO2 ,𝑚𝑡

ℎ

∑

𝑔
𝑃𝑚𝑡
𝑔,ℎ + 𝜃CO2 ,𝑓𝑐

ℎ

∑

𝑐
𝑃 𝑓𝑐
𝑐,ℎ (46)

𝐸𝑚𝑔𝑟
ℎ = 𝜃CO2 ,𝑔𝑟

ℎ 𝑃 𝑔𝑟
ℎ (47)

where 𝐸𝑚𝑑𝑔
ℎ is the total emission produced by the MTs and FCs at time ℎ

(in kg CO2) and 𝐸𝑚𝑔𝑟
ℎ,𝑠 is the emission generated energy purchased from

the main grid at time ℎ (in kg CO2). Also, 𝜃CO2 ,𝑚𝑡
ℎ , 𝜃CO2 ,𝑓𝑐

ℎ , and 𝜃CO2 ,𝑔𝑟
ℎ

represent the CO2 emission rate of MT, FC and main grid, respectively
(in kg CO /kWh).
2
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Fig. 9. Power generation of DERs.
4. Illustrative implementation

The proposed MO optimization method is applied on a modified
IEEE bus 69 system radial DN as presented in Fig. 4. The remodelled
radial network comprises two WTs located at Buses 28 and 61, two
PV systems at Buses 37 and 68, one MT set at Bus 18, and one FC
unit at Bus 15. The MT and FC data of generation cost and CO2
emission are given in Tables 2 and 3, respectively. Table 4 illustrates
the number of PEVs and their parking time at respective CPs [44]. In
addition, the characteristics of PEV battery is indicated in Table 5. In
this paper, the PEV’s charging cycle begins at 01:00 and ends at 06:00,
while the discharging cycle starts at 18:00 and continues till 00:00 h
when electricity prices and demands are high. Fig. 5 shows the hourly
electricity prices and CO2 emission rate. Besides, Fig. 6 presents hourly
forecasted load profile of DN.

The unmodified IEEE 69 bus system is considered as the base system
for evaluating the performance of the recommended algorithm. The
base system is tested without the inclusion of any DER. Accordingly,
the power balance of load consumption and power purchased from
main grid is proposed as the problem constraint. Under the base system,
the operating cost is estimated at $11 223.32 and the CO2 emissions is
estimated around 61 493.9 kgCO2 as illustrated in Fig. 7.

Table 6 demonstrates the various simulation case studies (CSs).
First, in CS1, only the minimization of the operating costs is considered.
Then, in CS2, only the minimization of CO emissions is considered.
10
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Table 6
Case study definition.

Case study Total operating cost CO2 emissions MO FA

CS1 Yes No No
CS2 No Yes No
CS3 Yes Yes Yes

Finally, CS3 applies the FA to simultaneously reduce operating costs
and CO2 emissions as well as improve the voltage profile of DN.

Fig. 8 shows the V2G and G2V operations for the proposed CSs.
Based on Figs. 8(a) and 8(b), the PEVs are charged between 1 AM
and 6 AM, when the electricity’s price is low and discharged at peak
load hours of 6 PM to 12 AM, when the price of electricity is high.
Compared to the base case, the CS1 reduces the operating cost by 50%
with considering the uncertainties and by 46% without considering
uncertainties. In lowering the CO2 emissions in CS2, a flexible PEVs
scheduling is recommended, such that PEVs operate in a G2V mode
during low emission rates (between 1 AM and 6 AM) and in V2G
mode at the time of high emission rates (from 6 PM to 12 AM). When
the CO2 emission in CS2 is compared with the based case, its value
declined by 55% considering the uncertainties and by 54% without
considering uncertainties. In employing the MO strategy in CS3, it is
observed that the system is more cost-effective and environmentally
beneficial to charge the PEVs between 1 AM and 6 AM and discharge
them from 6 PM to 12 AM, as illustrated in Fig. 8(c). During the
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Fig. 10. Total power balance.
Table 7
Summary of operating costs, CO2 emissions, and energy losses.
Case study Daily operating cost [$] Daily CO2 emissions [kg] Total energy loss [kW]

Base case 11 223.32 61 493.90 7799.39
CS1 (without uncertainty) 5960.98 – 5328.74
CS1 (with uncertainty) 5500.63 – 5161.98
CS2 (without uncertainty) – 27 487.50 5578.44
CS2 (with uncertainty) – 27 888.60 5900.48
CS3 (without uncertainty) 5791.10 27 553.70 5578.44
CS3 (with uncertainty) 5681.00 27 929.90 5900.48
recommended G2V operational period, the emission rate and electricity
price are low, while both parameters are high during the V2G time
mode. Using the proposed MO framework, the CO2 emission reduced by
55% and 54% with and without considering uncertainties, respectively,
compared to the based case. Conversely, the operating cost declined
by 49% considering the uncertainties and by 48% without considering
uncertainties.

Fig. 9 represents the power generated by DERs in the various CSs.
It is clear from Fig. 9 that the power output of MT in CS3 is reduced
markedly and FC power generation is enhanced significantly compared
to CS1 and CS2. It can also be seen that considering the proposed MO
structure, the employing of RESs has generally increased. Furthermore,
Fig. 10 indicates the total power balance in the various CSs. It can be
seen that on average, most of the energy for the low-emission operation
is from the FC unit, which generates less CO emissions than the
11
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MT. Similarly, PVs and WTs also contribute more power than MT for
minimizing CO2 emissions. Fig. 11 shows the CO2 emission and energy
losses in the CSs. It is clear that the energy losses are equal for all CSs,
while the CO2 emission in CS3 is slightly enhanced for both scenarios
with and without considering the uncertainty compared to the CS2.
Accordingly, the proposed MO strategy increases the CO2 emission
by 0.15% and 0.24% for scenarios with and without considering the
uncertainty, respectively. Besides, by applying DERs and PEVs in the
proposed algorithm, the voltage profile in CS3 is improved by 6%, as
shown in Fig. 12, thus, enhancing the system’s performance.

Finally, Table 7 provides a summary of the operating costs and CO2
emissions in the CSs. It can be seen that the operating cost in CS3 is
reduced for scenario without uncertainty while is enhanced for scenario
with uncertainty compared to CS1. Also, the CO2 emissions in CS3 are
increased for both scenario without and with uncertainty compared
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Fig. 11. CO2 emission and energy losses.
Fig. 12. Voltage profile of the modified IEEE 69 bus system in CS3.
to CS2. Therefore, it can be generally mentioned that investigating
uncertainty in the optimization algorithm reduces operating costs and
increases CO2 emissions compared to the scenarios without uncertainty.
Furthermore, Table 8 compares the CO2 emission and financial benefits
for PEVs owners in CS3 with and without PEVs. It is clear that the PEVs
12
owners can save around $787 daily in costs and reduce 33 564 kg CO2
with considering PEVs in the proposed algorithm.

For the sake of a detailed analysis, the proposed FA results are
compared with Particle Swarm Optimization (PSO) algorithm for all
CSs in Figs. 13–15. Fig. 13 demonstrates the linearized Pareto front for
the proposed FA and the presented PSO results in CS3. As it is clear,
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Table 8
CO2 and financial benefits for PEVS owners in CS3.
Case study Daily operating cost [$] Daily CO2 emissions [kg] Revenue for PEVs owners [$]

Without V2G operation 11 223.32 61 493.9 0
With V2G operation 5681.00 27 929.9 787.724
Fig. 13. Linearized Pareto front for FA and PSO results in CS3.
Fig. 14. Process time taken for FA and PSO on all CSs.
the FA performs much better compared to the PSO. As the point of
applying either the FA or PSO is speed rather than extreme accuracy,
the FA seems to perform comparably well to the PSO for the similar
scale optimization problems. Furthermore, the process time taken for
FA and PSO to obtain the final results on all CSs is illustrated in Fig. 14.
It can be seen that these times are actually faster for FA, given that both
algorithms were run on the same processor, but the results indicates
that the FA runs a little faster compared to the PSO. Moreover, Fig. 15
shows the number of iterations to find the global minimum result for
the proposed CSs. It is clear that the FA performs better compared to
the PSO so that for proposed CSs, and particularly the single-objective
ones, the FA is much more efficient than PSO.

5. Conclusion

This paper presents a flexible optimization approach for charg-
ing/discharging of PEVs by simultaneously reducing the operating
cost and CO2 emissions of the network applying a multi-objective
heuristic-based Firefly Algorithm in a stochastic framework under the
uncertainties of RESs, load consumption, and charging/discharging tim-
ing of PEVs. In addition, small-scale DERs including photovoltaic cells,
wind turbines, fuel cell, and micro-turbine are presented to reinforce
the network and facilitate the mass adoption of the PEVs. The proposed
13

strategy is tested using a modified IEEE 69 bus system in MATLAB
software and the simulation results demonstrate the effectiveness of the
proposed multi-objective strategy. The main results can be highlighted
as follows:

1. A 48% reduction operating costs and a 55% reduction in CO2
emissions in the modified network are achieved with the pro-
posed FA optimization framework.

2. The results recommend operating the PEVs in grid-to-vehicle
mode at low-priced electricity and low CO2 emission rate hours,
and vehicle-to-grid operations when electricity price and CO2
emissions rate are high.

3. The PEV owners financially benefit from the proposed system
through their participation in the energy market through the
vehicle-to-grid services by saving around $787.7 daily in oper-
ating costs.

4. The voltage profile of the network is improved up to 6%, thus,
further enhancing the overall system’s stability and reliability.

5. Finally, based on the presented comparison between the pro-
posed FA and PSO, it can be noted that the proposed optimiza-
tion framework in this paper is faster and the total iterations to
achieve the best value is also lower compared to the PSO results.

Accordingly, the proposed heuristic-based Firefly Algorithm has

proven effective in achieving an overall reduction in operating costs,
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Fig. 15. Number of iterations to find the global minimum result of all CSs.
minimizing CO2 emissions and improving network stability. According
to the structure of the proposed optimization algorithm, the multi-
energy career networks can be studied to investigate the flexibility of
the multi-energy networks. In addition, the life cycle assessment can be
also proposed in future researches to realize the environmental benefits
of the PEVs in the proposed system.
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